
Design Space Exploration of Caches Using
Compressed Traces

Xianfeng Li
lixianfe@comp.nus.edu.sg

Hemendra Singh Negi
hemendra@comp.nus.edu.sg

Tulika Mitra
tulika@comp.nus.edu.sg

Abhik Roychoudhury
abhik@comp.nus.edu.sg

School of Computing
National University of Singapore
Republic of Singapore 117543

ABSTRACT
Memory subsystem, in particular, cache design is important
for both high performance and embedded computing sys-
tems. The trend towards increased customization for em-
bedded systems, in addition, requires the design of an opti-
mal cache configuration for each application. Trace driven
simulation is widely used to evaluate cache performance.
However, traces are storage inefficient and simulation is too
slow especially when hundreds of design points need to be
evaluated. Trace based simulation has two sources of redun-
dancies: multiple occurrences of the same sequence in the
trace and containment relationship among cache configura-
tions. We exploit both the redundancies in a unified manner
by simulating multiple cache configurations in a single pass
directly over a compressed trace (which has already identi-
fied the repetitive sequences). Experimental results indicate
that our approach achieves significant savings both in stor-
age and in simulation time compared to existing methods.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories

General Terms
Algorithms, Performance, Design.

Keywords
Cache, single pass simulation, compressed trace, design space
exploration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’04,June 26–July 1, 2004, Saint-Malo, France.
Copyright 2004 ACM 1-58113-839-3/04/0006 ...$5.00.

1. INTRODUCTION
Memory subsystems, and in particular caches, have signif-

icant impact on performance, power, and size of both high
performance and embedded computing systems. For high
performance systems, the processor architect attempts to
find the optimal memory subsystem given a set of repre-
sentative applications expected to run on the system. An
embedded system, on the other hand, runs a specific appli-
cation program for the entire lifetime of the system. As the
application program is fixed, there exists a lot of flexibility
in choosing an optimal design for the application in ques-
tion. In particular, customized processors [4, 6] and con-
figurable system-on-chip platforms [1] provide the designer
of an embedded system with the opportunity to configure
the memory subsystem for a particular application. This
brings us to the problem of design space exploration: the
designer needs to explore the various choices efficiently for
a given application program. In this paper, we concentrate
on choosing a suitable data/instruction cache for a given
application program, where some representative inputs are
provided by the user.

The problem of design space exploration is computation-
ally intensive. Clearly, it is expensive to simulate the traces
for the representative inputs over the space of all designs.
Consider the task of deciding a suitable cache memory for a
given application. The design of the cache memory involves
instantiating several parameters: line size, number of lines,
associativity, replacement policy etc. Thus, the number of
possible cache memories to be tried out can easily grow to
hundreds. In addition, the traces of realistic programs can
grow to billions of instructions. Clearly it is infeasible (both
in time and space) to do a naive simulation of such traces on
all possible design points. One possible approach to solve
this problem would be to ignore part of the design space
by applying statistical techniques. An alternative approach
would be to identify and avoid the redundancies in the com-
putation involved in exhaustive design space exploration.

In this paper, we have taken the second approach. Given
a representative trace of an application program, we em-
ploy a time and space efficient strategy to find out the op-
timal cache configuration for the trace. Note that with the
increasing processor-memory gap, reducing the number of

cache misses is crucial for overall performance; furthermore
since cache misses result in off-chip main memory accesses,
they result in substantial energy consumption as well [19].
Thus, the number of cache misses incurred by a trace on a
particular processor design is a meaningful indicator of the
performance and energy consumption of the memory sub-
system.

Let us now inspect the problem at hand to identify the
potential redundancies in simulating a trace against several
cache configurations.

• First of all, there exists an inclusion relationship among
certain cache configurations. Clearly, if we simulate a
trace against a direct-mapped cache with 8 cache lines
we can on the way collect information about the sim-
ulation results for a direct mapped cache with 4 cache
lines (with the same line size). Indeed, this inclusion
property has been exploited in previous works on cache
simulation [8, 12, 20].

• Secondly, the trace being simulated typically contains
many repetitive patterns (i.e., the same address se-
quence being repeated many times) [3]. For the trace
of data accesses this could be due to several sweeps
through the same data structure or “similar” sweeps
through different parts of the same data structure (such
as accessing the rows of a matrix). It is possible to sim-
ulate such patterns only once assuming an empty cache
and find out the confirmed hits and misses. Only the
unconfirmed misses (misses due to empty cache) need
to be resolved for the different occurrences of the pat-
tern by looking at the state of the cache before that
pattern.

In this paper, we develop a cache simulation technique
which exploits both of the aforementioned redundancies.
Our technique works on compressed traces and the sim-
ulation proceeds without decompressing such traces. Our
compression scheme is based on the lossless on-the-fly SE-
QUITUR algorithm [13] which represents a string σ via a
context free grammar Gσ of language {σ}. The hierarchy
of the rules in Gσ is created by the repetitive patterns in
σ. Any such pattern (whose repetition is captured and
exploited by the structure of Gσ) is simulated only once.
Furthermore, we do not simulate the compressed trace one
cache configuration at a time. Instead, in a single pass of the
grammar Gσ, we simulate multiple configurations which dif-
fer in number of cache sets and associativity. Since Gσ can
be represented as a directed acyclic graph (i.e., the rules of
Gσ are non-recursive), we achieve the simulation of multiple
cache configurations in a single bottom-up pass of the di-
rected acyclic graph. Experimental results on the MiBench
embedded benchmarks show substantial time and space re-
duction in simulation of a trace against many cache configu-
rations. This constitutes a time and space efficient strategy
for design space exploration of caches.

The rest of this paper is organized as follows. We survey
related work on design space exploration of caches in the
next section. Section 3 provides necessary background for
our cache simulation technique; it discusses the SEQUITUR
compression algorithm, as well as the data structures needed
for simulating a trace against multiple cache configurations.
Section 4 presents our core technique for directly simulating
a compressed trace against multiple cache configurations.

We also discuss implementation issues in (a) optimizing the
trace compression algorithm and (b) memory management
of the internal data structures required by our simulation
technique. Experimental results are presented in Section 5
and Section 6 concludes the paper.

2. RELATED WORK
Design space exploration of caches has been investigated

by many researchers in the past. Panda et al. in [16] have
given a source code analysis method to determine an op-
timal data cache size by analyzing array access patterns.
Subsequently, in [15], they have developed an analytical ap-
proach to decide upon the distribution of on chip memory
into scratch-pad memory and data cache, and determine the
appropriate cache line size. Ghosh and Givargis [5] have
developed a trace analysis algorithm to determine the opti-
mal cache size and associativity. The algorithm analyzes
the data memory references and is guaranteed to satisfy
designer-provided performance constraints. Finally, there
are other approaches which use statistical models and sym-
bolic execution to quickly generate performance estimation
of design points [14].

Simulation based approaches for design space exploration
of caches have also been studied. A key factor here is to
cut down the time and memory requirements for simula-
tion. Simulation time can be improved by trace reduction.
One possibility in this direction is to obtain a reduced trace
(which approximates the behavior of the original trace) via
statistical sampling [9]. On the other hand, lossless tech-
niques for trace reduction have been studied in [17, 22, 23].
Both [17] and [22] exploit the observation that the refer-
ences that hit in a small direct-mapped cache will also hit
in larger caches; this is used to remove certain references
from the trace prior to simulation. However, they still em-
ploy multi-pass simulation. The main idea in [23] is that by
simulating cache configurations in a particular order, some
redundant information can be stripped off from the trace
after each simulation.

Another effective way to speedup the simulation of cache
configurations is by doing single pass simulation of multiple
configurations [8, 12, 21]. The inclusion property given by
Mattson et al. [12] forms the backbone of single pass sim-
ulation technique. This property states that for certain re-
placement policies, the contents of a fully associative cache is
included in the contents of all larger fully associative caches
(with the same line size). Various types of data structures
have been used for single pass simulation of multiple cache
configurations. Mattson et al. [12] used a single stack, Hill
and Smith [8] used a forest, and Sugumar and Abraham
[20, 21] used binomial trees and generalized binomial trees
for single pass simulation.

Our work is closest to the work of Sugumar and Abraham.
We adapt and augment the binomial tree data structure
to simulate multiple cache configurations over compressed
traces. The compression algorithm used to generate our
trace is lossless; thus our simulation results are exact. We
note that simulation of a compressed trace for a single cache
configuration has been reported in [18]. There are several
differences between [18] and our work: (a) we simulate mul-
tiple cache configurations in a single pass, (b) unlike our
work, the technique of [18] is restricted to fully associative
caches, and (c) our work employs customized memory man-
agement techniques (see Section 4.3) to achieve scalability;

on the other hand, the work of [18] mentions practical diffi-
culties in simulating large caches.

Simulation based exploration of cache configurations have
also been studied for the purpose of minimizing energy con-
sumption [11, 19]. These works exhaustively traverse the
design space by enumerating the design points and estimat-
ing energy consumption at these points. Thus, these works
can potentially be improved by using the data structures for
performance simulation of multiple cache configurations (as
in our work).

3. BACKGROUND
In this section, we provide the relevant background needed

for explaining our cache simulation technique. First, we de-
scribe SEQUITUR [13], the heart of the compression algo-
rithm used by us for deriving space efficient trace represen-
tation. We then describe a data structure called General-
ized Binomial Forest (GBF). It was developed by Sugumar
and Abraham [20, 21] for simulating an uncompressed trace
against multiple cache configurations in a single pass.

3.1 SEQUITUR algorithm
We present the SEQUITUR algorithm for lossless on-line

compression of traces. The trace can be seen as a string over
the alphabet of memory references. SEQUITUR represents
a string σ via context free grammar whose language is the
singleton set {σ}. Rules of the grammar capture the hierar-
chical structure of the trace; thus, the grammar is typically
far more compact than the original trace.

The SEQUITUR algorithm adds each symbol from the
input string to the end of grammar’s start production and
restructures the rules of the grammar to maintain the fol-
lowing invariants:

Invariant 1 No pair of adjacent symbols appear more than
once in the grammar

Invariant 2 Every rule (except the rule defining the start
symbol) is used more than once.

To intuitively understand the algorithm, we briefly de-
scribe how it works on the string 123123. After reading the
first four symbols, the grammar consists of the single pro-
duction rule S → 1231 (where S is the start symbol). On
reading the fifth symbol, it becomes S → 12312. Since the
adjacent symbols 12 appear twice in this rule (violating the
first invariant), SEQUITUR introduces a non-terminal to
get

S → A3A A→ 12

Note that here the rule defining non-terminal A is used
twice. Finally, on reading the last symbol of the string
123123 the above grammar becomes

S → A3A3 A→ 12

This grammar needs to be restructured since the symbols A3
appear twice. SEQUITUR introduces another non-terminal
to solve the problem

S → BB
B → A3
A→ 12

However, now the rule defining non-terminal A is used only
once. So, this rule is eliminated to produce the final result.

 S S −> BB

B −> 123

B

1 2 3

Figure 1: SEQUITUR grammar and DAG corre-
sponding to the trace 123123

Note that the grammar accepts only the string 123123.

S → BB B → 123

The generated grammar can also be represented as a Di-
rected Acyclic Graph (DAG) [10]. Figure 1 shows the gram-
mar and the DAG corresponding to the input trace 123123.

3.2 Generalized Binomial Forest (GBF)
Generalized Binomial Forest (GBF) [20] is an effi-

cient data structure to represent the contents of multiple
caches by exploiting containment relationship among them.
As this data structure is used for single pass cache simu-
lation, the following operations need to be efficiently per-
formed for an incoming address: (1) search to find out the
hit/miss for all cache configurations, and (2) update to re-
flect the state of all the caches after the address is processed.

Let CLS (N) denote a cache configuration with 2S cache
sets, the degree of associativity N and cache line size of 2L

bytes. Then GBF can represent a group of cache configura-
tions {CLS (n) | Smin ≤ S ≤ Smax;n ≤ N}, where 2Smin is
the smallest number of cache sets and 2Smax is the largest
number of cache sets present among the group of cache con-
figurations. For n = 1 (i.e., a direct mapped cache), we
adopt a shorthand to write CLS (1) simply as CLS . Note that
GBF representation assumes a Least Recently Used (LRU)
policy. However, it can be suitably modified to accommo-
date certain other replacement policies such as FIFO.

We first explain a simpler data structure called Binomial
Forest containing one or more Binomial Trees which is
used as a basis to develop GBF. A binomial forest can rep-
resent a group of direct mapped caches {CLS | Smin ≤ S ≤
Smax}. The binomial forest consists of 2Smin binomial trees,
one corresponding to each set in CLSmin .

A binomial tree can be defined recursively as follows. A
binomial tree of degree 0 (B0) is a single node. A binomial
tree of degree k (Bk) is obtained from two binomial trees of
degree k− 1 (Bk−1) by making the root of one as a child of
the root of the other. The number of nodes in a binomial
tree of degree k is 2k. The recursive definition of a binomial
tree of degree k is illustrated in Figure 2.

Binomial forest is a natural data structure to represent
a group of direct mapped caches. It exploits the fact that
the content of CLS is included in the content of CLS+1. In

particular, let p1 and p2 be two cache sets in CLS+1 with S
least significant bits as identical and equal to p. Let the
content of these cache sets be x1 and x2 (they can be empty
as well). Then the content of cache set p in CLS will be either
x1 or x2 depending on whichever is accessed last.

B k−1

B k−1

kB

Figure 2: Definition of Binomial Tree

The binomial forest for the cache configuration CLSmax
consists of 2Smax binomial trees of degree 0 — one corre-
sponding to each set; the binomial forest for CLSmax−1 con-

sists of 2Smax−1 binomial trees of degree 1 each, and so on.
Note that the binomial tree for set s in CLi−1 is obtained by
combining the binomial trees for set s and 2i−1 + s in the
forest for CLi . Among these two sets (i.e., s and 2i−1 + s)
we check which one was accessed last; the root of the cor-
responding binomial tree in CLi forms the root of binomial
tree for set s in CLi−1.

The aforementioned combination of binomial trees is fol-
lowed till the binomial trees corresponding to each of the
cache sets in CLSmin is obtained. Note that if Smin = 0,
then the binomial forest contains only a single binomial tree
(since the cache has a single set). The resulting binomial
forest succinctly represents all the information needed to
find the content for each of the constituent cache configura-
tions. Figure 3 depicts the construction of a binomial tree
for direct mapped cache configurations with 1− 8 sets.

For an incoming address, its index part is used to search
in the appropriate binomial tree. The search exploits the
structure of the binomial tree such that in a tree of degree
k, at most k nodes have to be searched. Once the index
matches at a node, the tags are checked for match. If the
tags match, then the address is a hit corresponding to all
the cache configurations represented by the subtree rooted
at the matched node. This node now becomes the most
recently used reference and is moved up to the root of the
binomial tree with a series of transformations.

We now describe the Generalized Binomial Forest (GBF),
which is a forest of Generalized Binomial Trees (GBT). A
Generalized Binomial Tree (GBT) can be thought of
as a more general form of binomial tree where each set can
contain a list of length at most n for n-way set-associative
caches. The elements in the list are ordered according to
Least Recently Used (LRU) replacement policy. The combi-
nation procedure is modified accordingly. A GBT can be de-
fined recursively as follows. A GBT of degree zero (B0(n)) is
a list of length n. A GBT of degree x (Bx(n)) is constructed
by putting together two GBTs of degree x−1 (Bx−1(n)) and
B′x−1(n)). The root list of the resulting GBT will contain
the most recently accessed n references in either root lists of
the two input GBTs. Figure 4 shows an example. Assume
that Bx−1(4) and B′x−1(4) are the GBTs corresponding to
two sets s1 and s2 that map to the same set s in the next
smaller cache configuration. Then the root list of the GBT
Bx(4) represents the content of set s, while the remaining

C
 L

 3

C
 L
 2

C
 L

 1
110 001

110

010 100 001

 000 101 011

 111

Order in which sets were updated
000,111,100,010,011,101,001,110

C
 0

 L

 000 111

000 001 010 011 100 101 110 111

100 001 110 011

000 101 010 111

010 100 101 011

Figure 3: Construction of Binomial Forest

lines along the two branches represent the content of s1 and
s2 that is not present in s. In order to represent a group of
cache configurations {CLS (n) | Smin ≤ S ≤ Smax;n ≤ N},
we will need 2Smin GBTs — one for each set in the smallest
cache. The GBT is searched and updated in a manner simi-
lar to binomial tree. A detailed description of GBTs as well
as their search and update procedure can be found in [20].

4. COMPRESSION DOMAIN SIMULATION
In this section, we describe our technique for cache simu-

lation over compressed traces. We start with simulation of a
single cache configuration and extend it to simulating mul-
tiple cache configurations in a single pass of the compressed
trace.

4.1 Cache simulation over compressed trace
The context free grammar generated by SEQUITUR al-

gorithm captures the repeating memory reference sequences
present in the trace. The grammar opens up the opportu-
nity to perform cache simulation for each repeating sequence
only once and thereby reducing the simulation time signif-
icantly. This goal can be achieved by traversing the DAG
corresponding to the grammar in a bottom-up fashion. Note
that each internal (non-leaf) node R in the DAG represents
a finite sequence of memory references TR that appears at
least twice in the trace (Invariant 2 in Section 3.1). We
simulate TR starting with an empty cache and the result is
stored in R. This simulation result is used by R’s parent
nodes, thereby saving repeated simulation of TR. For ex-
ample, in Figure 1, the sequence 123 is repeated twice and

1

1

4

2

3

a

d

b

c

1

3

2

a

4

c

b

d

T

T’

T’T

Bx-1(4) B’x-1(4) Bx(4)

Figure 4: Generalized Binomial Tree

this fact is captured in the DAG by the internal node B.
Once we have computed the result for B by simulating the
sequence 123, it can be used to compute the cache miss at
S.

We now present (1) what information needs to be stored
at a node R after simulation of the corresponding sequence
TR is complete, and (2) how the cache miss of a node is
computed from its children. Without loss of generality, we
assume an N-way set-associative cache with LRU replace-
ment policy. Direct-mapped and fully-associative caches are
just instances of set-associative caches. Also, it is possible
to simulate other replacement policies by modifying the in-
formation stored at a node accordingly.

Let TR be the sequence of memory references represented
by an internal node R. Let m be a memory reference in
TR and let sm be the cache set that m maps to. If TR
is simulated in isolation starting with an empty cache, the
following are the possible outcomes when m is looked up.

• Local miss: m results in a miss and there are less than
N unique references to cache set sm in TR before m
(where N is the associativity of the cache).

• Global miss: m results in a miss, but it is not a local
miss.

• Hit: m results in a hit.

If the outcome of m is a global miss or hit, it is not affected
by the cache state before TR. However, if the outcome of m
is a local miss, then it may hit or miss in the global trace
depending on the cache state before TR. Based upon the
above observation, we store the following information at a
node R of the directed acyclic graph corresponding to the
SEQUITUR grammar.

• hit(R): Number of hits in TR.

• local miss(R): Sequence of local miss references for
each cache set in the order in which they appear in

/* Initialization*/
hit(R)← hit(Y1);
local miss(R)← local miss(Y1);
cache state(R)← cache state(Y1);
/* Process the symbols from left to right */
for i→ 2 to n do

/* Update hit array */
hit(R)← hit(R) + hit(Yi);
/* Resolve local misses of Yi */
temp state← cache state(R);
foreach x ∈ local miss(Yi) do

if x ∈ temp state then
hit(R)← hit(R) + 1;

else if x is a local miss in R then
append x to local miss(R);

insert x into temp state;

end
/* Update cache state */
UPDATE(cache state(R), cache state(Yi));

end

Algorithm 1: Processing a grammar rule R → Y1Y2 · · ·Yn
for simulating one cache configuration

TR. Note that there can be at most N local misses per
cache set.

• cache state(R): Cache content after simulating TR.

For a leaf nodem denoting a single memory address hit(m) =
0, local miss(m) and cache state(m) contain m in the cor-
responding cache set.

Let R be an internal node (non-terminal) corresponding
to the grammar rule R→ Y1Y2 · · ·Yn (Y1 · · ·Yn are children
of node R). As any non-terminal in SEQUITUR grammar
is defined using exactly one rule, it is possible to compute
the simulation result of R given the simulation results of
its children. Algorithm 1 does the processing of the rule
R→ Y1Y2 · · ·Yn to compute the hits, local misses and cache
state for the trace representing R.

In the first step of the algorithm, the hits, local misses and
cache state are initialized. We then process the terminal/non-
terminal symbols on the r.h.s of the rule from left to right to
update each of these three quantities. In Algorithm 1, the
variable temp state is initialized to the state of the cache
after processing the grammar symbols Y1, Y2, . . . , Yi−1. For
each of the local misses x of a child node Yi, the algorithm
checks if it is a local miss, global miss, or a hit given the
sequence represented by Y1, Y2, . . . , Yi−1 as the context; it
then updates the local miss and hit accordingly.

Let m1,m2, . . . ,mni be the memory address sequence cor-
responding to symbol Yi and let the local misses among these
addresses bemi1 ,mi2 , . . . and so on. When we resolve the lo-
cal miss mi2 (to find out whether it is a hit or a global miss)
the variable temp state has only been updated with mi1 and
not the addresses between mi1 and mi2 . In other words,to
resolve the local misses, we only consider the preceding local
misses of Yi and the cache state after Y1, . . . , Yi−1. Updating
with the local misses is required because the contents of each
cache set is actually maintained as a sequence depending on
the replacement policy in question.

To see why updating with only local misses is sufficient,
note that given a cache state whether an access is a hit or a

miss is determined only by the cache contents and not the
usage ordering among the contents of a cache set. Clearly,
the hits in Yi do not change the cache contents; they only re-
order the sequence of elements in a cache set. Furthermore,
no global miss can precede a local miss by definition. There-
fore, to resolve a local miss of Yi, it is sufficient to consider
the preceding local misses in Yi, and the cache state after
Y1, . . . , Yi−1 (which is maintained by the variable temp state
in Algorithm 1).

The procedure invocation

UPDATE(cache state(R), cache state(Yi))

updates cache state of R with cache state of Yi, such that it
reflects the cache state for the segment of trace Y1Y2 · · ·Yi.
Later symbols Yi+1 · · ·Yn will be processed against this up-
dated cache state.

Figure 5 shows an example of compression domain simu-
lation for a direct mapped cache with two sets and a rule
E → ABC. Addresses 0 and 2 map to cache set 0 and ad-
dresses 1 and 3 map to cache set 1. The memory access
sequences corresponding to the symbols A, B, and C are
shown in the Figure. The hit, local miss, and cache states
corresponding to each symbol are also shown. For the se-
quence 01220 corresponding to the symbol A, 0 and 1 are
local misses (stored in local miss array), the first access to
2 is a global miss, the second access to 2 is a hit, and the
second access to 0 is also a global miss. The final cache state
corresponding to this sequence contains 0 and 1. While pro-
cessing the rule corresponding to symbol E, we first add
up the number of hits for A, B, and C. In addition notice
that some of the local misses may become hits in E. An
example is the local miss of address 0 in B. It becomes a
hit in E. The cache set 1 in the final cache set(E) con-
tains 1 from cache state(C). However, the 0th cache set in
cache state(C) is empty. It is filled up in cache set(E) by
2 from the cache state(B).

As mentioned before, the source of performance improve-
ment by processing a compressed trace comes from the fact
that a rule represents a segment of trace which appears mul-
tiple times. All references except local misses only need to
be processed once. The overheads involved are the time re-
quired to look up the local misses and to update the cache
state for each rule. As the SEQUITUR algorithm achieves
high compression ratio, indicating that typically a rule ap-
pears multiple times, the overheads are offset by the time
saved in processing each rule only once.

4.2 Simulating Multiple Configurations
In this section, we present an algorithm to simulate mul-

tiple cache configurations in one pass over the compressed
trace. The multiple cache configurations have fixed cache
line size, variable number of cache sets and degree of asso-
ciativity. Using the terminology from Section 3, we are inter-
ested in exploring the design space represented by {CLS (n) |
Smin ≤ S ≤ Smax;n ≤ N}. Smin is the smallest number
of cache sets and Smax is the largest number of cache sets
present among the cache configurations in the design space.
Our simulator reports the hit rate for all the cache config-
urations in a single pass. This information can be used by
the designer to choose an appropriate configuration given
the constraints.

Note that our simulator has to be invoked for each dif-
ferent cache line size. However, as observed in [5], varying

cache line size is not common as it requires significant re-
engineering of processor and memory data path as well as
their interfaces. Similarly, we assume LRU replacement pol-
icy and write-allocate caches, which are the most common
choices. A separate run of the simulator will be required
for each of the different choices of replacement and write
allocation policies.

Our algorithm traverses the grammar in the same way as
single cache configuration presented in Section 4.1. How-
ever, the information that needs to be stored at node R is
modified as follows.

• A two dimensional array hit(R).

• local miss(R) for CLSmax(N), the largest cache config-
uration. The references in local miss(R) can not be
hit in smaller cache configurations.

• A forest of General Binomial Trees GBF (R) described
in Section 3, which is a compact representation of mul-
tiple cache configurations.

The idea is to efficiently capture the hit, local miss and
cache state of multiple cache configurations. First, we use a
two-dimensional array hit(R) instead of a single value to
maintain the number of hits corresponding to a symbol.
However, hit(R)[m][n] only stores the number of references
that hits in cache configuration CLm(n) but misses in all the
smaller caches CLm′(n

′) where (m′ ≤ m, n′ < n) or (m′ < m,
n′ ≤ n). This is because, the hits in smaller caches will defi-
nitely be hits in larger caches. Thus, the total number of hits
of CLm(n) can be computed by accumulating the hit count
of itself and those from the smaller caches CLm′(n

′) (m′ ≤ m
and n′ ≤ n) at the end of the simulation. The time for this
post-processing of hit counts is of course negligible.

We maintain the local misses corresponding to the largest
cache configuration CLSmax(N). This is justified by the fact
that all the local misses of smaller cache configurations will
definitely be included in the local misses of CLSmax(N). Fi-
nally, GBF (R) succinctly captures the content of all the
cache configurations after simulating the sequence corre-
sponding to R.

Figure 6 illustrates how multiple cache configurations are
simulated over compressed trace by processing each rule.
For a non-terminal node E in the DAG, the GBFs of its
children are merged together to generate the GBF corre-
sponding to E. The local misses are resolved to update the
hit array and generate the local miss array of E. The de-
tailed algorithm is given next.

Let R be an internal node corresponding to the grammar
rule R→ Y1Y2 · · ·Yn (Y1 · · ·Yn are children of node R). Al-
gorithm 2 computes the simulation result of R given the
simulation results of its children.

Each local miss x in Yi is searched in the generalized bino-
mial tree corresponding to the cache set of x in the smallest
cache configuration. However, we use an efficient search pro-
cedure that starts searching from the middle of a GBT in-
stead of from the root. This can be done because x will first
encounter other local misses of Yi in the search path (which
are the most recently used references). However, we already
know the result of looking up x against that sequence from
the simulation of Yi. So we can start searching from the first
node in the GBT which is not from Yi. The search continues
till either the address is a hit, or a leaf node is reached. The

1

E

CBA

0 1 2 2 0 0 3 2 2 1

1
0
1

2
3

2
1

Hit = 1 Hit = 1 Hit = 0

Hit = 3

0
3

0
1

LM(A) LM(B) LM(C)

CS(A) CS(B) CS(C)

0
1

LM(E)

CS(E)

Direct mapped cache with 2 sets
LM = Local Misses
CS = Cache State at the end of simulation

1

Figure 5: Example of compression domain simulation

/* Initialization*/
hit(R)← hit(Y1);
local miss(R)← local miss(Y1);
GBF (R)← GBF (Y1);
/* Process the symbols from left to right */
for i→ 2 to n do

/* Update hit array */
hit(R)← hit(R) + hit(Yi);
/* Resolve local misses of Yi */
temp GBF ← GBF (R);
foreach x ∈ local miss(Yi) do

search x in temp GBF ;
if x is a hit then

update hit(R);

else if x is a local miss in R then
append x to local miss(R);

update temp GBF to insert x;

end
/* Update cache state */
UPDATE(GBF (R), GBF (Yi));

end

Algorithm 2: Processing a grammar rule for simulating mul-
tiple cache configurations

hit and local miss array are updated accordingly and the
GBT is modified to represent the new state of the cache.

The UPDATE routine merges the cache state represented
by GBF (R) after processing rules Y1 . . . Yi−1 with that of
GBF (Yi) to represent the state of the cache for the sequence
Y1 . . . Yi. The UPDATE routine looks up the references
present in GBF (Yi) one by one in GBF (R). For each refer-
ence x in GBF (Yi), the search of GBF (R) can again bypass
all the references of GBF (Yi) that appear before x. How-
ever, in this case the search is simpler as the hit and local
miss array are not updated.

4.3 Implementation Issues
We discuss two major implementation issues in this sec-

tion. First, the memory requirement to maintain GBTs cor-

1

GBF(B)GBF(A) GBF(C)

GBF(E)

LM(A) LM(C)

LM(E)

LM(B)

E

A CB

LM = Local Misses
GBF = Generalized Binomial Forest

Figure 6: Simulating multiple cache configurations.

responding to all the grammar rules can be prohibitively
expensive. We discuss a memory management scheme to
alleviate this problem. This allows our simulation technique
to scale up w.r.t. size of the caches and the number of cache
configurations. Secondly, we discuss specific improvements
made to the SEQUITUR algorithm to make the compressed
trace suitable for cache simulation.

We use an array based implementation of Generalized Bi-
nomial Tree [20]. It is more efficient than manipulating
pointer-based data structures. For a group of cache con-
figurations {CLS (n) | Smin ≤ S ≤ Smax;n ≤ N}, a forest of
GBTs is represented as 2Smin two dimensional arrays, each
with 2Smax−Smin+1−1 rows and N columns. The array im-
plementation has a factor of two redundancy. However, note
that we need a GBF for each rule in the grammar generated
by SEQUITUR, which may require considerable amount of
memory. For example, to simulate multiple cache configura-
tions with cache sets ranging from 1 to 256, and set associa-
tivity from 1 to 4, each rule needs roughly 8KB. Assuming
that the grammar has ten thousands rules, the memory al-

located for GBFs is 80MB. Besides, we also need to allocate
memory for hit array and local misses for each rule. Thus
the total memory usage can be above 100MB. With larger
range of cache configurations, there will be significant swap-
ping.

However, we observed that, in practice, for the majority
of the rules, the GBTs are far from being full. On an av-
erage, only about 20% of the GBT array is used for the set
of cache configurations and benchmarks we have studied.
Recall that our SEQUITUR grammar representation of the
trace can be represented as a directed acyclic graph (DAG).
We observed via experiments that typically, the GBTs for
only a few nodes near the root of the DAG are close to full.

Based on these observations, we allocate a working pool
of GBTs in the memory at the very beginning. A rule R is
processed using the GBTs from the working pool. Once the
processing is finished, the GBTs corresponding to R are con-
verted into a more compact format and stored away. Later
on, when R is required again by its parent(s), the GBTs are
constructed again from the compact format. This approach
cuts down the memory usage and subsequent swapping con-
siderably.

We also make several modifications to SEQUITUR algo-
rithm to make it more suitable for cache simulation. First,
the original grammar generated by SEQUITUR often con-
tains rules with very few symbols. This can cause many
problems: (a) the grammar will contain many rules and
hence will require considerable amount of memory for pro-
cessing, and (b) there is a lot of overhead in processing a
short rule. Let us elaborate the second point. Simulation
over compressed trace will be efficient only if there are lot of
references that generate global misses and hits within a rule.
This is because only these references need to be processed
once, whereas references corresponding to the local misses
need to be processed more than once. Within a short rule,
there are very few global misses or hits and local misses
are dominant. To solve this problem, we do some post-
processing of the grammar generated by the SEQUITUR
algorithm. The short rules below some threshold are elim-
inated via inlining. The post-processed grammar will typi-
cally have less number of rules and the rules are longer.

The grammar generated by SEQUITUR algorithm also
has the obvious problem that it requires log(n) rules to rep-
resent a sequence xn as it uses hierarchical representation.
Instead, we use run-length encoding to represent these se-
quences. For example, we represent the sequence xxxx as
A→ x(4) instead of B → AA; A→ xx. The run-length en-
coding has two benefits: (a) it reduces the number of rules
and therefore it is more compact and requires less memory,
(b) it reduces the processing time for the sequence. The sec-
ond point needs some explanation. First, note that the final
cache state and the local miss sequence for xn is the same
as the symbol x. The only thing that needs to be modified
is the number of hits of xn as it needs to include the local
misses of x that generates hit in xn. Again the number of
extra hits is the same for the second to nth instances of x.

Finally, for benchmarks with huge traces, we divide the
trace into multiple sub-traces and generate grammar for
each. This is done to avoid generating huge grammars and
keep the number of rules between thousands to ten thou-
sands. In our experiments, we generate a grammar for every
128MB of a trace.

5. EXPERIMENTAL RESULTS
We evaluate the efficiency of our technique by compar-

ing it against the fastest known cache simulator Cheetah.
Cheetah is an accurate single pass cache simulator over un-
compressed traces that implements the algorithm based on
Generalized Binomial Forest. Our technique also produces
accurate cache hit/miss rates. This is because we perform
exact simulation (even though in a single pass) and employ a
lossless compression scheme. In other words, we do not use
any approximation. However, our technique achieves sig-
nificant speedup compared to Cheetah as it works on com-
pressed traces.

We select programs from MiBench [7], an embedded bench-
mark suite, for our experiments. The description of the
benchmarks chosen is given in Table 1. The benchmark pro-
grams are compiled and simulated by SimpleScalar toolset[2]
with some code plugged into the simulator to collect traces.
We report experimental results for data caches only. Instruc-
tion traces have more regularity than data traces, which re-
sult in higher compression ratios. Therefore, the speedups
obtained by simulating over compressed traces are observed
to be higher for instruction traces (compared to the speedups
that we report here for data memory traces).

We simulate cache configurations with 1 to 256 cache sets,
degree of associativity from 1 to 4, and 16-byte cache lines.
That is, a total of 24 cache configurations are simulated in a
single pass. The experiments are performed on a Pentium IV
1.3GHz computer with 1 GB main memory. Both Cheetah
and our simulator are compiled with the same optimization
options.

The performance results are presented in Table 2. Col-
umn Uncompressed gives sizes of raw traces which Chee-
tah uses for simulation. Column Compressed gives sizes of
compressed traces. For most benchmarks, the SEQUITUR
grammar along with our optimization achieves a compres-
sion ratio of more than 10. The simulation timings for Chee-
tah and our method are given in the columns Cheetah and
Our method respectively. The Ratio column gives the speed-
up of simulation time that our work achieves over Cheetah.
For most benchmarks, the speed-ups are significant. The
last two benchmarks rijndael and typeset achieve little
speed-up. This is because not much compression is achieved
due to the irregular data access in these traces. Table 2
also indicates that the speedup is not proportional to the
compression ratio. This is because the processing of a node
in the directed acyclic graph (for the SEQUITUR grammar)
has overheads in terms of resolving the local misses and com-
bining the cache states of its children.

Table 3 gives more insight into the behaviors of the two
simulators. In both cases, we need to perform search and
update of GBTs, which are the most time consuming oper-
ations in both the simulators. The column Search show the
number of addresses that are looked up in GBTs for both the
simulators. In case of Cheetah (uncompressed trace), this
is exactly same as the number of memory references present
in the trace. In our method (compressed trace), the number
of searches is cut down significantly as the hits and global
misses are only searched once. Columns under Compare show
the total number of nodes in the GBT that are looked up
during the search. This number is also significantly less in
our method compared to Cheetah. Finally, column Local

miss gives the percentage of local misses in the rules. These
numbers justify one of the major sources of the speedup that

Program Description
basicmath Performs simple mathematical calculations
bitcount Counting the number of bits in an array of integers
cjpeg JPEG image compression
djpeg JPEG image decompression
dijkstra Computing shortest paths between pairs of nodes in a graph
FFT Fast Fourier Transform on an array of data
ghostscript A postscript language interpreter
gsm(encode) Encoding of GSM voice communication standard
gsm(decode) Decoding of GSM voice communication standard
ispell A Spelling checker
lame A MP3 enocder
patricia Representing trees of sparse leaf nodes with Patricia trie
rijndael A block cipher selected by AES
typeset A general typesetting tool

Table 1: Description of benchmark programs.

Program Trace size (MB) Time (sec)
Uncompressed Compressed Ratio Cheetah Our Method Ratio

basicmath 160 2.9 55.17 12.34 2.81 4.39
bitcount 291 3.5 83.14 18.17 1.32 13.77
cjpeg 107 29.3 3.65 10.67 5.77 1.85
djpeg 44 4.7 9.36 3.47 1.12 3.10
dijkstra 339 19.7 17.21 29.11 13.54 2.15
FFT 122 9.4 12.98 9.36 2.95 3.17
ghostscript 1209 45.7 26.46 104.24 26.59 3.92
gsm(encode) 1583 62.6 25.29 132.20 17.27 7.65
gsm(decode) 296 45.6 6.49 18.96 8.18 2.32
ispell 1191 83.9 14.20 94.82 39.88 2.38
lame 204 13.6 15.00 16.73 4.87 3.44
patricia 847 44.3 19.12 68.21 18.41 3.71
rijndael 797 480.8 1.66 88.52 84.94 1.04
typeset 85 43.2 1.97 9.11 8.64 1.05

Table 2: Comparison of single pass simulation for uncompressed (Cheetah) and compressed traces (Our
method).

Program Search Compare Local
Uncompressed Compressed Ratio Uncompressed Compressed Ratio Miss (%)

basicmath 41.97 5.15 8.15 193.98 20.92 9.27 2.94
bitcount 76.52 2.20 34.79 272.44 7.03 38.75 10.09
cjpeg 28.14 11.50 2.45 172.75 63.61 2.72 6.12
djpeg 11.72 2.12 5.53 51.82 7.23 7.16 14.08
dijkstra 89.10 24.75 3.60 504.68 136.27 3.70 10.26
FFT 32.20 5.57 5.60 147.21 21.66 6.80 4.49
ghostscript 317.12 52.42 6.05 1670.40 204.45 8.17 3.06
gsm(encode) 415.06 31.66 13.11 1929.99 124.30 15.6 4.98
gsm(decode) 77.67 15.54 5.00 279.87 69.02 4.05 4.92
ispell 312.32 69.03 4.52 1487.94 335.68 4.43 6.11
lame 53.62 9.20 5.83 284.97 44.10 6.46 9.05
patricia 222.08 32.73 6.79 1065.83 151.37 7.04 5.39
rijndael 209.01 133.62 1.56 1505.82 1105.02 1.36 0.08
typeset 22.40 15.42 1.45 156.47 91.93 1.7 4.79

Table 3: Sources of speedup for our method (numbers of search and compare are in millions)

our work can achieve. Only less than ten percent of the ad-
dresses that are looked up in a rule are local misses for most
benchmarks. Therefore, most addresses are either hits or
global misses, which do not need to be processed further.
Note that benchmark rijndael has the lowest percentage
of local misses; however, its speedup is the lowest. This
is because the compression ratio for rijndael is very low,
i.e., there are very few repetitive patterns. In summary, the
combination of compression ratio and the length of the rules
determine the performance of our simulator.

6. DISCUSSION
In this paper, we have discussed a time and space efficient

technique for simulating a compressed trace against multiple
cache configurations. The simulation proceeds by a single
pass of the compressed trace representation. We have imple-
mented our technique and we report experimental results for
MiBench programs. The results indicate substantial gains in
simulation timings (as compared to existing work on simu-
lating an uncompressed trace against multiple cache config-
urations [20, 21]). The major application of our simulation
strategy is for design space exploration of caches. It is an
exact and efficient technique which can simulate huge traces
of realistic programs (upto 1GB) against large number of
design points (i.e., cache configurations).

In a broader perspective, we note that the recent years
have seen substantial work in using compressed traces for
profile-driven analysis [10], deciding data layout [18], pro-
gram optimization and debugging [24]. This paper demon-
strates another application of compressed traces, specifically
for embedded processor design.

7. ACKNOWLEDGMENTS
This work was partially supported by a InfoComm and

InfoTech Initiative (ICITI) research project R252-000-150-
112 at the National University of Singapore. We thank the
anonymous referees for their helpful comments.

8. REFERENCES
[1] Altera. Nios embedded processor system development.

http://www.altera.com/products/ip/processors/

nios/nio-index.html.

[2] Douglas C. Burger and Todd M. Austin. The
SimpleScalar tool set, version 2.0. Technical Report
CS-TR-1997-1342, University of Wisconsin, Madison,
June 1997.

[3] Trishul M. Chilimbi. “Efficient representations and
abstractions for quantifying and exploiting data
reference locality”. In PLDI, 2001.

[4] P. Faraboschi et al. Lx: a technology platform for
customizable VLIW embedded processing. In ISCA,
2000.

[5] A. Ghosh and T. Givargis. “Analytical design space
exploration of caches for embedded systems”. In
Design Automation and Test in Europe (DATE), 2003.

[6] R. E. Gonzalez. Xtensa: A configurable and extensible
processor. IEEE Micro, 20(2), 2000.

[7] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,
T. Mudge, and R. Brown. MiBench: a free,
commercially representative embedded benchmark
suite. In IEEE Intl. Workshop on Workload
Characterization, 2001.

[8] M. D. Hill and A. J. Smith. “Evaluating associativity
in CPU caches”. IEEE Transactions on Computers,
38(12):1612–1630, December 1989.

[9] S. Laha, J.H. Patel, and R.K. Iyer. Accurate low-cost
methods for performance evaluation of cache memory
systems. IEEE Transactions on Computers, 37(11),
1988.

[10] J. R. Larus. “Whole program paths”. In PLDI, May
1999.

[11] Y. Li and J. Henkel. “A framework for estimating and
minimizing energy dissipation of embedded HW/SW
systems”. In Design Automation Conference, 1998.

[12] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.
Traiger. “Evaluation techniques for storage
hierarchies”. IBM Systems Journal, 9(2):78–117, 1970.

[13] C. G. Nevill-Manning and I. H. Witten. “Linear-time
incremental hierarchy inference for compression”. In
Data Compression Conference(DCC’97), pages 3–11,
1997.

[14] M. Oskin, F.T. Chong, and M. Farrens. HLS:
Combining statistical and symbolic simulation to
guide microprocessor designs. In ISCA, 2000.

[15] P.R. Panda, N.D. Dutt, and A. Nicolau.
“Architectural exploration and optimization of local
memory in embedded systems”. In International
Symposium on System Synthesis (ISSS 97), 1997.

[16] P.R. Panda, N.D. Dutt, and A. Nicolau. “Data cache
sizing for embedded processor applications”. In Design
Automation and Test in Europe (DATE), 1998.

[17] T. R. Puzak. Analysis of cache replacement
algorithms. PhD thesis, University of Massachusetts,
Amherst, February 1985.

[18] S. Rubin, R. Bodik, and T. Chilimbi. “An efficient
profile-analysis framework for data layout
optimizations”. In Principles of Programming
Languages (POPL02), January 2002.

[19] W-T. Shiue and C. Chakrabarti. Memory exploration
for low power embedded systems. In Design
Automation Conference, 1999.

[20] R. Sugumar and S. Abraham. Set-associative cache
simulation using generalized binomial trees. ACM
Transactions on Computing Systems, 13(1), 1995.

[21] R. A. Sugumar and S. G. Abraham. “Efficient
simulation of multiple cache configurations using
binomial trees”. Technical Report CSE-TR-111-91,
CSE Division, University of Michigan, 1991.

[22] Wen-Hann Wang and Jean-Loup Baer. “Efficient
trace-driven simulation methods for cache
performance analysis”. In Proc. 1990 ACM
SIGMETRICS Conf. on Measurement and Modeling
of Computer Systems, pages 27–36, May 1990.

[23] Z. Wu and W. Wolf. “Iterative cache simulation of
embedded CPUs with trace stripping”. In
International Workshop on Hardware/Software
Codesign, 1999.

[24] Y. Zhang and R. Gupta. Timestamped whole program
path representation and its applications. In PLDI,
2001.

