
Specifying Multithreaded Java Semantics for
Program Verification

Abhik Roychoudhury
Department of Computer Science

School of Computing
National University of Singapore

Singapore 117543

abhik@comp.nus.edu.sg

Tulika Mitra
Department of Computer Science

School of Computing
National University of Singapore

Singapore 117543

tulika@comp.nus.edu.sg

ABSTRACT
The Java programming language supports multithreading
where the threads interact among themselves via read/write
of shared data. Most current work on multithreaded Java
program verification assumes a model of execution that is
based on interleaving of the operations of the individual
threads. However, the Java language specification (which
any implementations of Java multithreading must follow)
supports a weaker model of execution, called the Java Mem-
ory Model (JMM). The JMM allows certain reordering of
operations within a thread and thus permits more behav-
iors than the interleaving based execution model. Therefore,
programs verified by assuming interleaved thread execution
may not behave correctly for certain Java multithreading
implementations.

The main difficulty with the JMM is that it is informally
described in an abstract rule-based declarative style, which
is unsuitable for formal verification. In this paper, we de-
velop an equivalent formal executable specification of the
JMM. Our specification is operational and uses guarded
commands. We then use this executable model to verify
popular software construction idioms (commonly used pro-
gram fragments/patterns) for multithreaded Java. Our pro-
totype verifier tool detects a bug in the widely used “Double-
Checked Locking” idiom, which verifiers based on interleav-
ing execution model cannot possibly detect.

1. INTRODUCTION
The Java programming language supports multithreaded

programming where multiple threads can communicate via
reads/writes of shared objects (see [21] for a detailed dis-
cussion on software design using multithreaded Java). Mul-
tithreading is a useful technique as it allows the program-
mer to structure different parts of the program into different
threads. Implementing the user interface of a software as a
separate thread is a common example of such structuring.

Concrete real-life uses and applications of Java multithread-
ing are presented in [18].

Java threads can be run on multiple hardware processors
or on a single processor through a thread library (such as
POSIX threads [7]). As the implementations of multithread-
ing are varied, the Java Language Specification (JLS) pre-
scribes certain abstract rules which any implementation of
Java multithreading must follow [16]. These rules are called
the Java Memory Model (JMM). However, the JMM is more
complex than an interleaved execution of the threads, where
each thread executes in program order. The operations in
any Java thread include read/write of shared variables and
synchronization operations like lock/unlock. In order to
allow standard compiler and hardware optimizations, the
JMM permits these operations within a thread to be com-
pleted out-of-order. Thus, the permitted set of execution
traces under the JMM is a superset of the simple interleaved
execution of the individual threads. This makes the debug-
ging and verification of multithreaded Java software very
difficult as we have to consider:

• arbitrary interleaving of the threads,

• certain (not all) re-orderings of operations in the indi-
vidual threads.

There is currently a huge body of ongoing work on em-
ploying static analysis and model checking techniques [10]
for concurrent Java program verification [14, 19, 25, 26, 31].
Some of these techniques translate the program to a for-
mal model [19, 25] and then use dataflow analysis/ model
checking to search the state space of this model. Others
[14, 31] directly analyze program source code by employing
techniques such as stateless search and persistent sets. How-
ever, a commonality among all these techniques is that they
assume the underlying execution model of a multithreaded
program to be sequentially consistent [20].

Sequential Consistency.Before proceeding any further,
let us elaborate on this point. An execution model for multi-
threaded programs is sequentially consistent if for any pro-
gram P (a) any execution of P is an interleaving of the
operations in the constituent threads (b) the operations in
each constituent thread execute in program order. Thus, in
the following program with two threads

(Op1 ; Op2) ‖ (Op′1 ; Op′2)

Op1, Op
′
1, Op

′
2, Op2 is a sequentially consistent execution but

Op1, Op
′
2, Op2, Op

′
1 is not. As sequential consistency denotes

the programmer’s intuitive understanding of the execution
model, it is generally an useful model to assume for purposes
of program verification.

Unfortunately, it is not sufficient to assume a sequentially
consistent execution model for verifying multithreaded Java
programs. The reason for this lies in the JMM. The cur-
rent JMM (which any implementation of Java multithread-
ing must follow) is weaker than sequential consistency, that
is, it allows more behaviors than simple interleaving of the
operations of the individual threads. Thus, assuming se-
quential consistency during program verification of an in-
variant property might lead to an observable violation of
the invariant in a verified-correct program on some execu-
tion platforms !! Examples of such programs even include
some popular multithreaded Java software construction id-
ioms such as the “Double-Checked Locking” idiom [29].

There could be several solutions to this problem. First,
we could develop a restricted fragment of Java programs
for which the JMM guarantees sequentially consistency [2].
Programmers are then encouraged to write programs only
in this fragment. Secondly, we could change the JMM alto-
gether (this is being seriously considered by an expert group,
see [1]). Finally, we could develop an executable formal de-
scription of the JMM and incorporate it into program veri-
fication.

Let us now study each of these solutions in depth. In
the first solution, the fragment of Java programs for which
the execution will always appear to be sequentially consis-
tent are the so-called “properly synchronized programs” or
“data-race-free programs” [3]. Intuitively, these programs
ensure that whenever a thread accesses a shared object, it
possesses a lock to the object. There are two difficulties with
this solution. First, even if the user’s program is “properly
synchronized”, he/she might use software libraries from un-
trusted sources which are not guaranteed to be “properly
synchronized”. Moreover, demanding synchronization for
every shared object access is known to cause unacceptable
performance overheads in practice [3, 21].

For the purposes of program verification, the second so-
lution also has certain difficulties. First of all, even if the
JMM is changed, the new memory model will not be imple-
mented for some time to come. Existing Java Virtual Ma-
chines (JVM) will continue to be used on uniprocessor as
well as multiprocessor platforms. Therefore, changing the
JMM now will not solve the problem of the Java program-
mer for many years to come. Moreover, the two concrete
proposals for an improved JMM [22, 23] (which were pro-
posed very recently, and are now being hotly debated) are
also weaker than sequential consistency. In fact since the
Java memory model describes all possible program behav-
iors on all possible platforms, it is unrealistic to define a
Java memory model which enforces sequential consistency.

In this paper, we advocate the third solution. We com-
pose a formal description of the JMM along with a formal
model of the program for the purposes of program verifica-
tion. Java’s “write-once, run-everywhere” strategy makes
it important to develop programs which do not behave dif-
ferently on different platforms. Moreover, a verified-correct
program behaving incorrectly on certain platforms is of par-
ticular concern! As the JMM captures all possible behaviors,
incorporating it into program verification allows platform in-

dependent reasoning.
However to include the JMM in program verification, we

have to take note of the following issues. First, the JMM [16]
is informally described in a declarative style. It specifies
certain rules that must never be violated in a multithreaded
execution. In other words, the model is neither operational
nor executable. This makes the JMM almost impossible to
reason with (see [28] for the complexities of informal reason-
ing about the JMM). We develop an executable specification
of the JMM in this paper.

Secondly, program verification via model checking suffers
from the state space explosion problem. Composing the
memory model along with the program model further blows
up the state space to be explored. However, note that the
Java memory consistency model coincides with sequential
consistency for “properly synchronized” programs, that is,
programs where any access to shared data is preceded by
explicit synchronization. In reality, a significant portion of
a multithreaded Java program is “properly synchronized”.
The “unsynchronized” portion using the performance en-
hancing features of the JMM (which allow reordering of
operations within a thread) mostly appear in “low-level”
program fragments. These are widely used software con-
struction idioms performing a specific task. These program
fragments are typically executed many times in the course
of program executions. Hence they are optimized by avoid-
ing explicit synchronization for every shared data access.
We have used our executable memory model to debug and
verify such program fragments.

Summary of Results.Concretely, our contributions are:

• We develop a formal executable specification of the
JMM: the rules for implementing multithreading in
the Java programming language. Our operational style
specification describes all possible behaviors that any
implementation of Java multithreading can exhibit.

• Our approach of (a) constructing an executable JMM
and (b) composing it with the program model for pro-
gram verification, is completely generic. It is not tied
to the current JMM.

• We have used our executable model of JMM to de-
velop a prototype invariant checker. This tool is par-
ticularly useful for verifying unsynchronized program
fragments. Our checker has been used to detect a bug
in the widely used “Double-Checked Locking” software
construction idiom [29].

• Finally, our formal JMM specification alleviates the
difficulty in understanding the current JMM [16]. The
rule-based JMM has been described as “very hard to
understand” [3, 28] and most reasoning has been done
via informal counter-example construction.

Organization.The rest of the paper is organized as fol-
lows. In Section 2, we discuss related work on the JMM and
program verification. Section 3 discusses the informal spec-
ification of the JMM, while Section 4 presents the formal
specification. Section 5 discusses applications of our JMM
specification in program verification. Finally, we discuss the
broad implications of our work in Section 6.

2. RELATED WORK
Verification of Java programs has been studied exten-

sively. Specifically, significant progress has been achieved
recently in multithreaded Java program verification [6, 11,
14, 19, 25, 26, 30]. Out of these works, [11, 19, 25] extract
formal model from Java source code and analyze the formal
model, while [6, 14, 30] propose techniques to directly an-
alyze the source code by modifying the state space search
algorithm. These works appear at a higher level of abstrac-
tion than our work. They assume a simple execution model
of sequential consistency and develop algorithms to analyze
sequentially consistent execution traces of a program. Our
work concentrates on formalizing the underlying execution
model, but does not address the issue of state-space search
algorithms.

Recently, some research has been directed towards devel-
oping executable models of the JVM [4, 24]. In particular,
Moore [24] develops a formal model of a multithreaded JVM
and advocates its use for verifying Java programs. Here,
the only difference from conventional program verification
is that instead of source code verification, the byte-code is
verified. This work still suffers from the problems we dis-
cussed earlier: the reasoning performed is platform depen-
dent because a specific JVM is formalized (which enforces
sequential consistency). Any platform independent verifica-
tion of Java programs must take into account the JMM.

The JMM has been a topic of intense research in the past
few years. The informal model was first developed in the
Java Language Specification [16]. Pugh [28] first pointed out
the difficulties in informally reasoning about the model and
suggested changes. Subsequently, researchers have proposed
several improvements to the model [22, 23]. Contrary to
these works, our work does not address the question: “What
should be the semantics for multithreaded Java” ? Instead,
it argues that multithreaded Java semantics (the current
one or any future improvement) should be incorporated into
Java program verification.

Since the inception of the JMM, several formalizations of
Java concurrency have been proposed, [5, 8, 15, 17] to name
a few. Some of these [5] focus only on language level con-
currency constructs without considering the memory model.
Some others [8, 15] construct non-executable specifications
of the memory model. Most importantly, the goal of all these
works is to have a clear understanding of Java concurrency
(via formal specification) and then perform human reason-
ing. Our goal is different. We have developed an executable
formal JMM specification for (semi)-automated reasoning
about Java programs. This allows us to verify nontrivial
software fragments, which would be extremely cumbersome
to perform with human reasoning.

Developing executable memory models has been studied
in the context of hardware multiprocessors [13, 27]. Similar
to Java threads, hardware shared-memory multiprocessors
also impose a consistency model which dictates the allowed
interactions among the processors via a shared memory.

3. THE JAVA MEMORY MODEL
In this section, we present the Java Memory Model (JMM)

given in [16]. The model is abstract and is not constructed as
a guide for implementing Java multithreading. Rather any
Java multithreading implementation is supposed to allow
only behaviors allowed by the model. We construct a formal

executable description of the model in the next section.
The Java threads interact among themselves via shared

variables. For any shared variable v, each thread (a) pos-
sesses a local copy of v and (b) is allowed to access the global
master copy of v in main memory. The JMM essentially im-
poses constraints on the interaction of the threads with the
master copy of the variables and thus with each other. The
model defines the following actions for reading/writing the
local/master copy of v in thread t.

• uset(v): Read from the local copy of v in t

• assignt(v): Write into the local copy of v in t

• readt(v): Initiate reading from master copy of v to
local copy of v in t.

• loadt(v): Complete reading from master copy of v to
local copy of v in t.

• storet(v): Initiate writing the local copy of v in t into
master copy of v

• writet(v): Complete writing the local copy of v in t
into master copy of v

Apart from the above actions, each thread t may perform
lock/unlock on shared variables, denoted lockt and unlockt
respectively.

When a thread executes a virtual machine instruction that
uses/assigns the value of a variable, it accesses the local copy
of that variable. Before unlock, the local copy is transferred
to the master copy through store and write actions. Simi-
larly, after lock action the master copy is transferred to the
local copy through read and load actions. Given the above
definitions, we can now consider a multithreaded program as
“properly synchronized”, if every access to a shared variable
occurs between a lock and its corresponding unlock.

Two important points need to be noted here. First, the
local copies of shared variables conceptually form a thread’s
private “cache”. Secondly, data transfer between the local
and the master copy is not modeled as an atomic action.
This is to model the realistic transit delay when the master
copy is located in the hardware shared memory and the local
copy is in the hardware cache.

Among the eight actions mentioned above, a thread in a
Java program invokes only four of them: use, assign, lock,
and unlock. Each thread invokes these actions in its pro-
gram order. The other four (load, store, read, and write)
are invoked arbitrarily by the multithreading implementa-
tion, subject to temporal ordering constraints specified in the
JMM. A major difficulty in reasoning about the JMM (as
reported in literature [28]) seems to be these ordering con-
straints. They are given in an informal, rule-based, declara-
tive style. It is difficult to reason how multiple rules deter-
mine the applicability/non-applicability of an action. Our
operational specification avoids this difficulty by modeling
each action as a guarded command. Details appear in the
next section.

We conclude this section by briefly explaining why the
JMM is weaker than sequential consistency. Note that the
threads cannot directly invoke actions which modify the
master copy of a shared variable. Therefore, modifications
to the master copy of a shared variable can complete out-of-
order. As a result, writes to shared variables are not seen by
all threads in the same order. For example in the following
program with two threads:

(assign u, 1 ; assign v, 2) ‖ Op

The following is a legal trace of the program:

assign u, 1; % Local writes to u
assign v, 2; % Local writes to v
store v, 2; write v, 2; % Write master copy of v
Op % thread 2 executes here
store u, 1; write u, 1 % Write master copy of u

In this trace, the write operations of the first thread do not
complete in program order. In fact, when the second thread
executes Op it can observe (via reads) the old value of u,
and new value of v. This is never possible under sequential
consistency.

4. JMM SPECIFICATION
This section presents a formal executable specification of

the Java Memory Model (JMM). Our specification style is
operational. In particular, we describe each action in the
JMM as a guarded command. First we present an exe-
cutable specification of the core memory model consisting of
eight actions. A proof of equivalence of our executable for-
mal description of the JMM with the rule-based declarative
description in the Java language specification [16] appears
in the appendix.

4.1 Core Memory Model
Our model is an asynchronous concurrent composition of

n Java threads Th1, . . . , Thn and a single main memory pro-
cess MM. Communication among processes takes place via
shared data. Each process can perform a set of actions,
each of which is modeled by a guarded command. The
asynchronous concurrent composition of these processes is
the union of the guarded commands of the constituent pro-
cesses.

Local States.We now proceed to describe the local states
of the Thi and MM processes. Then, we formally describe the
actions which the threads and the main memory processes
execute. Note that the threads communicate via shared pro-
gram variables {v1, . . . , vm}; we denote the type of vj as τj .
The program variables are not part of the local states of
Thi or MM. Rather thread Thi maintains a local copy of each
program variable vj , while MM maintains the master copy.

Set of Shared Variables = {v1, v2, . . . , vm}
v1 : τ1, v2 : τ2, . . ., vm : τm

Thread statei = (Cachei, Rd qsi, Wr qsi)

Cachei = [cachei,1, . . . , cachei,m]
Rd qsi = [rd qi,1, . . . , rd qi,m]
Wr qsi = [wr qi,1, . . . , wr qi,m]
cachei,j = (rvaluei,j , dirtyi,j , stalei,j)
rvaluei,j : τj dirtyi,j , stalei,j : Boolean
rd qi,j , wr qi,j : Queue of τj

The local state of a thread process Thi can be described by
a 3-tuple (Cachei, Rd qsi, Wr qsi) as shown above. Cachei
contains the local copy of the shared variables (it need not
correspond to a physical cache). Rd qsi and Wr qsi each
denote exactly m queues, one for each shared variable.

The local copy of the shared variable vj in Thi is described
by cachei,j = (rvaluei,j , dirtyi,j , stalei,j). The first compo-
nent rvaluei,j is the value of vj in the local copy of Thi.

The second component dirtyi,j is a bit indicating whether
the local copy of vj is dirty, that is, there is an assignment
to vj by Thi which is not yet visible to other threads (via
store, write actions). The third component stalei,j is a bit
indicating whether the local copy is stale, that is, the local
copy does not reflect recent write(s) which is (are) visible to
some other threads.

As mentioned before, read/write of the master copy of a
variable is not modeled as atomic operation. A read ac-
tion need not immediately precede its corresponding load

action and a write action need not immediately follows its
corresponding store action. The set of queues Rd qsi and
Wr qsi model this transit delay. Queue rd qi,j contains val-
ues of the variable vj as obtained (from master copy) by
Thi’s read actions, but for which the corresponding load

actions (to update the local copy) are yet to be performed.
Similarly, queue wr qi,j contains values of the variable vj
as obtained (from local copy) by Thi’s store actions, but
for which the corresponding write actions (to update the
master copy) are yet to be performed.

The local state of the main memory process MM is a pair
(Memvals, Lock state). Memvals are the values of the
master copy of shared variables: mvalj denotes the value of
the shared variable vj in the main memory. The variable
Lock state records, for each thread, the number of lock

actions executed for which the matching unlock actions are
yet to occur; lock cnti is a natural number. If thread i
has executed l lock actions for which the matching unlock

actions have not occurred, then lock cnti = l.

MM state = (Memvals, Lock State)

Memvals = [mval1, mval2, . . ., mvalm]
Lock state = [lock cnt1, lock cnt2, . . ., lock cntn]
mvalj : τj lock cnti : nat

The JMM enforces

∀i, j(i 6= j ⇒ (lock cnti = 0 ∨ lock cntj = 0))

as an invariant. In other words, at most one thread can
possess a lock at any given time. This does not prevent
unsafe accesses of shared variables, because a thread may
not acquire a lock before accessing shared variables (as is
the case in unsynchronized program fragments). In this pa-
per, we consider only a single lock. This can be extended
straightforwardly to the case of multiple locks.

Actions. Figure 1 formally describes the eight different ac-
tions performed by Thi and MM as mentioned in JLS [16]. At
any time step, these processes can execute either a program
action or a platform action which are defined below.

Definition 1 (Program Action). An action invoked
by the program running as thread Thi is called a program ac-
tion. The actions usei, assigni, locki, and unlocki are
program actions.

Definition 2 (Platform Action). An action which
is performed by the underlying multithreading implementa-
tion is called a platform action. The actions (loadi, storei,
readi, and writei) are platform actions.

Typically, the purpose of executing platform actions is to
enable those program actions which are currently disabled.

Action usei(j) :
¬stalei,j → return cachei,j

Action assigni(j, val) :
empty(rd qi,j) → cachei,j := val; dirtyi,j := true; stalei,j := false

Action loadi(j) :
¬empty(rd qi,j) → cachei,j := dequeue(rd qi,j); stalei,j := false

Action storei(j) :
dirtyi,j ∧ empty(rd qi,j) ∧ ¬full(wr qi,j) → enqueue(cachei,j , wr qi,j); dirtyi,j := false

Action readi(j) :
¬dirtyi,j ∧ empty(wr qi,j) ∧ ¬full(rd qi,j) → enqueue(mvalj , rd qi,j)

Action writei(j):
¬empty(wr qi,j) → mvalj := dequeue(wr qi,j)

Action locki:
(∀k 6= i lock cntk = 0)

∧
∀1 ≤ j ≤ m (empty(rd qi,j) ∧ ¬dirtyi,j) →

lock cnti := lock cnti + 1; for j := 1 to m do stalei,j := true

Action unlocki:
lock cnti > 0

∧
∀1 ≤ j ≤ m (empty(wr qi,j) ∧ ¬dirtyi,j) → lock cnti := lock cnti − 1

Initial Conditions:
∀1 ≤ i ≤ n, lock cnti = 0
∀1 ≤ i ≤ n,∀1 ≤ j ≤ m ¬dirtyi,j ∧ stalei,j ∧ empty(rd qi,j) ∧ empty(wr qi,j)

Figure 1: Actions in the core memory model

We model each action as a guarded command of the form
G → B, where the guard G is first evaluated; if G is true, then
the body B is executed atomically. The guarded-command
notation for describing concurrent systems has been popu-
larized by many researchers including Chandy and Misra in
their Unity programming language [9]. We denote action
usei(j) as a use action on shared variable vj by Thi; simi-
larly for assign, load, store, read, and write. The action
locki denotes locking of all shared variables by Thi; similarly
for unlocki.

Understanding the JMM.We now explain the difficulty
in understanding/reasoning about the rule-based JMM and
how our guarded-command specification overcomes that dif-
ficulty. Typically several rules of the rule based JMM con-
tribute to the applicability of an action. Thus it is difficult
to comprehend the applicability condition of an action. Our
formal model makes this applicability condition explicit via
the guards in each action. In the following, we give one
example to illustrate this point. We use the notation < to
denote the temporal ordering relation among actions.

In the JMM, no rule directly prevents assigni(j) to take
place between a readi(j) and the corresponding loadi(j).
However, it is prevented by the interaction among three dif-
ferent rules of the JMM. One rule requires read, load and
store, write to be uniquely paired, where:

readi(j) < loadi(j) and storei(j) < writei(j).

Another rule states that a store must invervene between an
assign and a load action.

assigni(j) < loadi(j)⇒
assigni(j) < storei(j) < loadi(j)

Yet another rule ensures that

storei(j) < loadi(j)⇒ writei(j) < readi(j)

where writei(j) (readi(j)) is the write (read) corresponding
to storei(j) (loadi(j)). Thus, from these three rules we get

assigni(j) < loadi(j)⇒
assigni(j) < storei(j) < writei(j) < readi(j) < loadi(j)

In other words, we infer that an assigni(j) cannot take
place between a readi(j) and the corresponding loadi(j).
This restriction is explicitly stated in our specification with
empty(rd qi,j) as the guard for assigni(j) action.

4.2 Volatile Variables
In this section, we extend our memory model to handle

volatile variables. The Java Language Specification (JLS)
[16] describes a variable v as volatile, if every access of v
by a thread leads to an access of the master copy of v in
the main memory. In other words, the notion of volatile
variables disables the effect of caching.

In addition to the shared program variables described in
the previous section, let {vm+1, . . . , vm+k} be volatile vari-
ables of type τvol

1. First, we extend the local states of the
thread and main memory processes to include states for the
volatile variables. Here the main difference is that we do
not have separate read and write queues for each volatile
variable. Instead, the reads of all volatile variables for Thi
are recorded in a single queue vol rd qi, similarly for writes.
This models the requirement that not only the memory ac-
cesses of the same volatile variable but also those of different
volatile variables should proceed in order.
1All volatile variables are assumed to be of same type; the
model can be easily extended if they are of different types.

Cachei = [cachei,1, . . . , cachei,m+k]
Memvals = [mval1,mval2, . . . ,mvalm+k]
Rd qsi = [rd qi,1, . . . , rd qi,m, vol rd qi]
Wr qsi = [wr qi,1, . . . , wr qi,m, vol wr qi]
vol rd qi, vol wr qi : Queue of (VolVarId, τvol)
VolVarId : m+ 1, . . . ,m+ k

We describe the actions on volatile variables. We denote
the use of volatile variable vj by Thi as use volatilei(j);
similarly for other actions. The extension of read and write

in presence of volatile variables is straightforward. Instead
of updating the read (write) queue of an individual non-
volatile variable we now update vol rd qi (vol wr qi). For
locki and unlocki actions, instead of checking the read and
write queues of only non-volatile variables, we check the read
and write queues of both volatile and non-volatile variables.

The extensions for other actions (shown in Figure 2) are
more involved. Note that each use/assign of a volatile vari-
able requires a main memory access, that is, load/store.
Moreover, the load must immediately precede an use and
the store must immediately follow an assign. Thus, stalei,j
is true after every access of the local copy of the volatile
variable vj in Thi; this forces the next access to go to main
memory. Also, dirtyi,j is true if Thi has performed exactly
one update (via assign action) on the local copy of volatile
variable vj which is not yet propagated to the master copy.
Multiple updates of the local copy of a volatile variable is
not possible without updating the master copy.

4.3 Prescient Stores
The JLS also allows prescient stores — that is, a store

which occurs before the assign. This optimization is al-
lowed only if the value that is written by assign is known
beforehand. We define a prescient store as pending if the
store has taken place, but the corresponding assign has
not yet taken place. Prescient stores are allowed only for
non-volatile variables.

To incorporate prescient stores into our memory model of
Section 4.1, we extend the thread state. We add to cachei,j
an extra state variable prescienti,j . The type of prescienti,j
is {nil} ∪ τj . Thus prescienti,j = nil if there is no pend-
ing prescient store on variable vj by thread Thi; otherwise
prescienti,j holds the value of the pending prescient store
on vj by Thi. We define a new action prescient storei(j)

Action prescient storei(j) :
empty(rd qi,j) ∧ ¬full(wr qi,j) →

pick val ∈ τj ; enqueue(val, wr qi,j);
prescienti,j := val; dirtyi,j := false

Note that we have weakened the guard of storei(j) by re-
moving the condition dirtyi,j = true. This is because a pre-
scient store precedes an assign which sets the dirty bit. The
assign action is modified to ensure that the assign writes
the same value as the corresponding prescient store. The
modification reflects both: (a) a normal assign as shown in
Section 4.1 when prescienti,j = nil, (b) a delayed assign for
a preceding prescient store where prescienti,j 6= nil. In
the second case, we do not set the dirtyi,j bit; this prevents
an unnecessary store action following the delayed assign.

Action assigni(j, val) :
prescienti,j = val

∨
(prescienti,j = nil ∧ empty(rd qi,j)) →

cachei,j := val; stalei,j := false;
if prescienti,j = nil then dirtyi,j := true;
prescienti,j := nil

Note that, prescienti,j 6= nil is true only between a pre-
scient store and the corresponding delayed assign. Accord-
ing to the JLS [16], no lock, load, or store actions can oc-
cur between a prescient store and a delayed assign. This is
ensured in our model by strengthening the guards of locki,
loadi(j) and storei(j) with the condition prescienti,j =
nil.

4.4 Waiting and Notification
Java supports the feature of waiting and notification. A

thread Thi, which has acquired the lock, may voluntarily re-
lease it via a wait. Thi is added to the set of waiting threads.
Subsequently, Thj (i 6= j) acquires the lock and decides to
notify one (or more) of the threads from the list of wait-
ing threads, possibly Thi. Thread Thi, however, can proceed
only after Thj (the current owner of the lock) releases the
lock. To model waiting and notification, we extend the local
state of MM with a state variable Wait set : set of Thread id.
Also, we conjoin the condition i 6∈Wait set to the guards of
the actions usei, assigni, and locki. This prevents a wait-
ing thread from progressing. The guard of unlocki is not
changed, as a waiting thread must be allowed to unlock (so
that other threads can progress). The other actions (load,
store, read, and write) correspond to actions taken by the
JVM implementation. They are not directly fired by the
Java program and therefore their guards are unaffected.

To model the three well-known synchronization constructs
wait, notify, and notifyAll, we add actions or guarded
commands to our model. The description of these actions
follows directly from the standard notions of waiting, re-
sumption and notification. Details are omitted for space
considerations.

5. VERIFYING PROGRAMS
In this section, we discuss how our executable Java Mem-

ory Model can be used for verifying concurrent Java pro-
grams. For this purpose, we first discuss how each thread is
modeled and how the threads are scheduled. Subsequently
we discuss techniques for alleviating the state space explo-
sion problem.

Modeling each thread.Given a multithreaded program
Th1 ‖ Th2 ‖ . . . ‖ Thn, we model each thread as follows:

• read of a variable a is converted to action use(a)

• write of a variable a is converted to action assign(a)

• any code fragment marked as synchronized is pre-
ceded by lock and is succeeded by unlock.

The reader will observe that we have not discussed the mod-
eling of program expressions through use and assign ac-
tions. To model the statement c = a + b, we must exe-
cute use(a); use(b) followed by assign(c, v) where c is
the addition of the values returned by use(a) and use(b).
This can be accommodated by (1) extending the executable
model with a register set R to hold the values returned
by use actions, (2) extending assign to be of the form
assign(V , ER) where V is a shared variable and ER is an
expression containing registers in R. The exact description
of possible expressions depends on the type of the shared
variables.

Action use volatilei(j) :
¬stalei,j ∧ ¬dirtyi,j → stalei,j := true; return cachei,j

Action assign volatilei(j, val) :
¬dirtyi,j ∧ stalei,j ∧ empty(vol rd qi) → cachei,j := val; dirtyi,j := true; stalei,j := false

Action load volatilei(j) :
¬dirtyi,j ∧ stalei,j ∧ ¬empty(vol rd qi) → (j, val) := dequeue(vol rd qi); cachei,j := val; stalei,j := false

Action store volatilei(j) :
dirtyi,j ∧ ¬stalei,j ∧ empty(vol rd qi) ∧ ¬full(vol wr qi) →

enqueue((j, cachei,j), vol wr qi); dirtyi,j := false; stalei,j := true

Figure 2: Actions for accessing volatile variables

Scheduling the threads.At each time step, any one thread
executes either a program action or a platform action (refer
Definitions 1 and 2 in Section 4.1). Because there can be
several enabled actions at any given time, we can adopt
a scheduling strategy to rule out certain behaviors. For
example, given a multithreaded program Th1, . . . , Thn our
scheduling can proceed as follows:

If the next program action of any thread is enabled
then pick one such thread Thi;

execute the next program action of Thi
else pick a thread Thj with enabled platform action;

execute any enabled platform action of Thj .

The above policy portrays the situation that platform ac-
tions are executed only to enable program actions.2 The
above scheduling algorithm does not guarantee sequential
consistency, even though the program actions are started
in program order in each thread. Recall that in the JMM,
execution of a program action does not update the shared
memory. The “effect” of the program actions are updated
to the shared memory via the platform actions which may
complete out-of-order.

Invariant Checker.To verify an invariant (property that
must hold in every state of every execution trace), we ex-
haustively check the states of every execution trace. Our
invariant checker has been implemented on top of a mem-
oized logic programming system XSB [32]. Because our
model is expressed in guarded-command notation, the Murϕ
model checker [12] is a candidate implementation vehicle
as it supports a guarded-command–based specification lan-
guage. However, note that in the verification of any mul-
tithreaded program, it is sufficient to check only those exe-
cutions which are generated by our scheduling strategy. In
other words, we want to program (i.e. prune) the traver-
sal strategy of the search space of multithreaded executions.
This programming capability is very naturally supported in
a general purpose logic programming system where compu-
tation proceeds by search. A prototype checker based on
our executable memory model has been built using the XSB
logic programming system. The checker could be used in two
modes. Either we could search the entire search space con-
sisting of all allowed execution traces of program actions and
platform actions in the threads of a program; or we could

2We can relax this strategy to allow certain platform actions
(such as store, write) to proceed even in the presence of
enabled program actions.

input rules to prune the search space based on some schedul-
ing algorithm. In the following, we discuss some techniques
for further reducing the state space explosion.

State Space Reduction.Our executable memory model
maintains elaborate state information for each thread: the
local cache, as well as the read/write queues. Therefore,
composing the model of full-blown Java programs along with
the underlying Java memory model can result in a tremen-
dous state space explosion. To alleviate this problem, we
propose the use of our executable model for program verifi-
cation as follows.

In a multithreaded program Th1 ‖ Th2 ‖ . . . ‖ Thn the
user chooses only one program path in each thread Thi. A
program path essentially encodes a choice in every control
branch, and each of these choices impose constraints on pro-
gram variables. Note that the program path that is chosen
in thread Thi need not be bounded, for example, a finitely
represented unbounded loop can be chosen in Thi.

To represent the constraints on program variables imposed
by a program path, we extend the use action. The syntax
of use is extended to represent constraints on the value re-
turned by a use action, for example, use(a) = 0. We do not
specify the constraint domain here as this is not central to
our methodology. For the purposes of this paper’s illustra-
tion, it suffices to consider arithmetic equality and inequality
constraints. Thus, if the constraint use(a) = 0 appears in a
thread, then it means that (1) use(a) is executed to return
a value v, and (2) the check v = 0 is performed, all in one
atomic step.

Then we exhaustively check all possible execution traces
made from the chosen program paths of Th1, . . . , Thn, which
are allowed by the JMM. Our approach is motivated by the
fact that reasoning about the execution traces allowed by the
JMM requires low-level understanding of the actions/data-
structures of the JMM, and needs to be automated. How-
ever, reasoning about the program paths of a thread Thi
requires understanding the source code of Thi. In particu-
lar, the user will choose program paths π1, . . . , πn in threads
Th1, . . . , Thn if he/she suspects a legal trace of π1, . . . , πn to
violate the invariant being verified. This is a creative step,
but still does not require the user to reason about the JMM.
This task is left to the invariant checker which automatically
confirms/refutes the user’s suspicion.

Case Study.We now illustrate the checker’s use in find-
ing a bug in a commonly used software construction idiom

Thread 1

use(Inst) = null.

lock.

use(Inst) = null.

assign(Data, newval).

assign(Inst, newptr).

unlock.

Y := use(Data).

assign(Ret, Y).

Thread 2

use(Inst) 6= null.

Y := use(Data).

assign(Ret, Y).

Figure 3: Program paths in two threads running Double-Checked Locking

of multithreaded Java: the Double-Checked Locking idiom.
Double-Checked Locking [29] is a widely used pattern in
multithreaded Java programs (see [18] for a discussion of its
use). This program fragment is used for efficient lazy instan-
tiation of a singleton class. A singleton class is a class with
only one instance; for multithreaded programs this instance
is shared by multiple threads. Double-Checked Locking is
a program fragment for instantiation in which (a) only one
instance is generated, and (b) the instance is generated only
on-demand.

Consider a method getInstance which instantiates a sin-
gleton class Singleton. Clearly, getInstance must check
whether an instance already exists, before creating an in-
stance. This is to ensure that only one instance is generated.
In a multithreaded program however, this is not enough. To
avoid multiple instantiations of the Singleton class by mul-
tiple threads, the getInstance method must be executed as
a critical section. This is achieved by synchronization, as
shown in the following program fragment. Note that this
program fragment will be run by multiple threads.

private static Singleton instance = null;

.... // the other fields

public static synchronized Singleton getInstance()

{

if (instance == null)

instance = new Singleton();

return instance;

}

However, there is a substantial performance overhead for
synchronizing on every invocation of getInstance. Double-
Checked Locking [18, 29] is an efficient scheme which avoids
such synchronization. Note that after the creation of an in-
stance of the Singleton class is completed, there is no need
to synchronize; any invocation of getInstance should sim-
ply return this instance. Double-Checked Locking avoids
these redundant synchronizations. A program fragment im-
plementing Double-Checked Locking is shown in Figure 4.

Any thread which invokes getInstance will execute this
program fragment. Note that if instance is null (i.e.,
an instance of the Singleton class has not yet been cre-
ated), then the program fragment forces synchronization
and checks whether instance is null again within the criti-
cal section. In between the first instance == null check
and the synchronization, another thread may invoke the
method getInstance, find that instance is null, and then
create an instance of the Singleton class. Hence the need
for the second instance == null check.

We have not shown the other fields of Singleton, which
get initialized in the constructor of the Singleton class. We

private static Singleton instance = null;

.... // the other fields

public static Singleton getInstance()

{

if (instance == null){

synchronized (Singleton.class) {

if (instance == null)

instance = new Singleton();

}

}

return instance;

}

Figure 4: Double-Checked Locking

want to check that when multiple threads run getInstance

concurrently, any invocation of getInstance always returns
an initialized object, that is, the fields of the object returned
by getInstance are not uninitialized garbage. For this pur-
pose, it is sufficient to consider only one field of the object
called datafield, which we assume to be initialized in the
constructor.

When several threads run getInstance concurrently, one
thread allocates a Singleton object and returns it, while
other threads simply return the already allocated object.
To show this, we can construct the program paths shown in
Figure 3 with two threads running concurrently. Thread 1
allocates the Singleton and returns it, while Thread 2 re-
turns the Singleton which has been allocated by Thread 1.
In figure 3, Inst and Data denote two shared memory loca-
tions containing instance and datafield of the Singleton

object. The location Ret holds the value of o.datafield

where o is the object returned by getInstance. We could
have modeled two different locations Ret1, Ret2 to hold the
values returned by the different threads. Modeling them as
the same location only simplifies the invariant to be proved.

Initially, Inst = null, Ret = null and Data = garbage.
We need to prove that Ret 6= garbage is an invariant. To
ensure that this property holds in every multithreaded im-
plementation, we must show that for every execution traces
allowed by the JMM, a state in which Ret = garbage is
never reachable. This is accomplished automatically by our
invariant checker. The program paths shown in Figure 3 are
input to the checker. The checker yields a counterexample
in only 0.15 seconds on a Pentium-4 1.3 GHz workstation
with 1 GB of memory. In other words, the checker generates
a trace where the object returned by getInstance can con-
tain garbage values in the datafields. This shows that the

Double-Checked Locking program fragment is unsafe to use
in a multithreaded environment. A counter-example trace
constructed by the checker is:

read(Inst), load(Inst), use(Inst) = null Thread 1
lock Thread 1
read(Inst), load(Inst), use(Inst) = null Thread 1
assign(Data, newval), assign(Inst, newptr) Thread 1
store(Inst), write(Inst) Thread 1
read(Inst), load(Inst), use(Inst) 6= null Thread 2
read(Data), load(Data), Y := use(Data) Thread 2
assign(Ret, Y), store(Ret), write(Ret) Thread 2

This corresponds to the situation where Thread 1 creates an
instance by setting Data and Inst. This updates the local
copies of Data and Inst. The master copy of Inst is then
updated. Because now Inst 6= null, thread 2 executes; it
reads the master copy of Data and assigns this value to Ret.
However, the master copy of Data has not been updated
yet (i.e., the write on o.datafield by Thread 1 has not
completed), which causes Ret = garbage.

Thus, if the writes of Data and Inst are re-ordered then
the Double-Checked Locking program fragment is unsafe to
use for multithreaded programs. This re-ordering is allowed
by the JMM and will be performed in many multi-processor
implementations, for example, SUN SPARC, DEC Alpha.
To safely use the Double-Checked Locking program frag-
ment on such implementations, we need to turn off this re-
ordering by explicitly inserting a memory-barrier instruc-
tion in the constructor of Singleton. This memory-barrier
instructs the underlying implementation not to re-order op-
erations across the barrier.

6. DISCUSSIONS
In this paper, we have used formal specification and verifi-

cation techniques to analyze multithreaded Java programs.
Our work is concentrated on formally specifying the Java
Memory Model(JMM), the rules imposed by the Java lan-
guage specification for any implementation of multithread-
ing. We demonstrate (with a concrete case study) why rea-
soning about the JMM is necessary to verify multithreaded
Java programs in a platform-independent fashion.

Even though this paper has focused on the JMM, the ap-
proach can apply to any multithreaded programming disci-
pline. Typically, verification techniques for multithreaded
programs assume a sequentially consistent execution model.
The focus there is on the automation/efficiency of search-
ing the sequentially consistent execution traces. However,
multithreaded programming languages (such as Java) might
impose weaker consistency models in order to allow for effi-
cient implementations. This raises the question of generat-
ing a formal executable specification of these weak consis-
tency models.

Weak memory consistency models [3] have traditionally
been described declaratively as a set of rules. Construct-
ing an equivalent executable formal model serves many pur-
poses: understanding the consistency model, using the con-
sistency model to aid verification of multithreaded programs.
In this paper, we have undertaken this approach for a real-
istic multithreaded programming language (Java), and ex-
plored its utility. Our technique can be used to detect re-
orderings which produce counter-intuitive results in the ex-
ecution of a multithreaded program — that is, break the
programmer’s intuition of sequential consistency. These re-
orderings can then be explicitly disabled. The rest of the

re-orderings, whose effect is not visible by other threads,
are allowed to proceed. This provides the efficiency of a
weak memory consistency model while maintaining the pro-
grammer’s intuitive abstraction of a single shared memory,
as in sequential consistency.

7. ACKNOWLEDGMENTS
This work was partially supported by National University

of Singapore Research Project R-252-000-095-112.

8. REFERENCES
[1] Java Specification Request (JSR) 133. Java Memory

Model and Thread Specification revision. In
http://jcp.org/jsr/detail/133.jsp, 2001.

[2] S. Adve. Memory model tutorial. In Revising the Java
Thread Specification Workshop, OOPSLA, 2000.

[3] S.V. Adve, V.S. Pai, and P. Ranganathan. Recent
advances in memory consistency models for hardware
shared-memory systems. IEEE special issue on
distributed shared-memory, 87(3), 1999.

[4] G. Barthe et al. A formal executable semantics of the
Javacard platform. In European Symposium on
Programming, LNCS 2028, 2001.

[5] E. Borger and W. Schulte. A programmer friendly
modular definition of the semantics of Java. In Formal
Syntax and Semantics of Java, LNCS 1523, 1999.

[6] D.L. Bruening. Systematic testing of multithreaded
Java programs. Master’s thesis, MIT, 1999.

[7] David R. Butenhof. Programming with POSIX
threads. Addison Wesley, 1997.

[8] P. Cenciarelli et al. An event based structural
operational semantics of multithreaded Java. In
Formal Syntax and Semantics of Java, LNCS 1523,
1999.

[9] K. Mani Chandy and J. Misra. Parallel Program
Design: a foundation. Addison Wesley, 1988.

[10] E.M. Clarke, E.A. Emerson, and A.P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Transactions on Programming Languages and
Systems, 8(2), 1986.

[11] J. Corbett et al. Bandera: Extracting finite state
models from Java source code. In ACM/IEEE
International Conference on Software Engineering
(ICSE), 2000.

[12] D. L. Dill. The Murϕ verification system. In Computer
Aided Verification (CAV), LNCS 1102, 1996.

[13] D.L. Dill, S. Park, and A. Nowatzyk. Formal
specification of abstract memory models. In
Symposium on Research on Integrated Systems. MIT
Press, 1993.

[14] P. Godefroid. Model checking for programming
languages using VeriSoft. In ACM Symposium on
Principles of Programming Languages (POPL), 1997.

[15] A. Gontmakher and A. Schuster. Java consistency:
non-operational characterizations for Java memory
behavior. ACM Transactions on Computer Systems,
18(4), 2000.

[16] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Chapter 17, Addison Wesley, 1996.

[17] Y. Gurevich, W. Schulte, and C. Wallace.
Investigating Java concurrency using Abstract State
Machines. In Abstract State Machines Workshop,
LNCS 1912, 2000.

[18] A. Holub. Taming Java Threads. Berkeley CA,
APress, 2000.

[19] G. Holzmann and M. Smith. A practical method for
verifying event driven software. In ACM/IEEE
International Conference on Software Engineering
(ICSE), 1999.

[20] Leslie Lamport. How to make a multiprocessor
computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, 28(9),
1979.

[21] Douglas Lea. Concurrent Programming in Java :
Design Principles and Patterns. Addison Wesley, 1997.

[22] J. Maessen, Arvind, and X. Shen. Improving the Java
Memory Model using CRF. In ACM OOPSLA, 2000.

[23] J. Manson and W. Pugh. Core semantics of
multithreaded Java. In ACM Java Grande Conference,
2001.

[24] J.S. Moore. Formal models of Java at the JVM level –
a survey from the ACL2 perspective. In Workshop on
Formal Techniques for Java Programs, in association
with ECOOP, 2001.

[25] G. Naumovich, G.S. Avrunin, and L.A. Clarke. Data
flow analysis for checking properties of concurrent
Java programs. In ACM/IEEE International
Conference on Software Engineering (ICSE), pages
399–410, 1999.

[26] G. Naumovich, G.S. Avrunin, and L.A. Clarke. An
efficient algorithm for computing MHP information
for concurrent Java programs. In ESEC/FSE, LNCS
1687, pages 338–354, 1999.

[27] S. Park and D.L. Dill. An executable specification and
verifier for relaxed memory order. IEEE Transactions
on Computers, 48(2), 1999.

[28] W. Pugh. Fixing the Java Memory Model. In ACM
Java Grande Conference, 1999.

[29] D. Schmidt and T. Harrison. Double-checked locking:
An optimization pattern for efficiently initializing and
accessing thread-safe objects. In 3rd Annual Pattern
Languages of Program Design conference, 1996.

[30] S.D. Stoller. Model checking multithreaded
distributed Java programs. In SPIN Workshop on
Model Checking of Software, LNCS 1885, 2000.

[31] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In IEEE International Conference
on Automated Software Engineering, 2000.

[32] XSB. The XSB logic programming system v2.2, 2000.
Available for downloading from
http://xsb.sourceforge.net/.

APPENDIX
We present the proof of equivalence of our executable Java
Memory model and the rule-based memory model given in
the Java Language Specification (JLS) [16]. The proof fol-
lows from two lemmas of soundness and completeness. First
we formalize the notion of a trace.

Definition 3 (Trace). Given a program with n > 1

threads, an execution trace is a mapping

N→ Act× {1, . . . , n}

where Act is the set of permissible actions by any thread and
{1, . . . , n} denotes the thread id. Thus, an execution trace
is a sequence of actions of the various threads.

The permissible actions are {use, assign, load, store,
read, write, lock, unlock}. Some of these actions (read,
write, lock and unlock) involve interaction between a thread
and the main memory process. Note that the notion of
an execution trace does not distinguish between the pro-
gram actions (use, assign, lock, unlock), and platform ac-
tions (load, store, read and write) for a particular thread.
Given the above definition, we can prove soundness of our
JMM specification as follows.

Lemma 1 (Soundness). Any execution trace of a mul-
tithreaded Java program which is allowed by our executable
memory model is also allowed by the rules of the JLS [16].

Proof: We prove this by showing that any execution trace
in our executable model obeys all the rules in the JLS. The
detailed proof given below is a case-by-case analysis of the
rules in JLS.

Execution Order Rules.Each trace allowed by our model
satisfies the first four rules of execution order in JLS by
definition (Definition 3). Also, locki/unlocki actions are
performed jointly by Threadi and MM since they are in-
voked by Threadi and they modify the state of the MM
process. To guarantee that each loadi is uniquely paired
with a preceding readi, note that loadi dequeues an en-
try from some rd qi,j . Hence it is uniquely paired with the
readi instruction which enqueued this entry to rd qi,j pre-
viously. The pairing of storei with writei is guaranteed by
our executable model similarly.

Rules about Variables.Let αP be a trace of a program
P , s.t. αP is allowed by our executable memory model.
Because our model invokes the use, assign actions as per
their occurrence in threads of program P , the first rule is
satisfied by αP . The second rule requires a storei(j) to
intervene between assigni(j) and loadi(j). This is ensured
in our model by the dirtyi,j bit. An assigni(j) will always
set dirtyi,j to true. Now, a loadi(j) can be applied only
if rd qi,j is non-empty, that is, there is a pending readi(j).
As rd qi,j is empty before the execution of assigni(j), a
readi(j) must intervene between assigni(j) and loadi(j).
Now readi(j) can be applied only if dirtyi,j is false. Since
storei(j) is the only action which can set dirtyi,j to false,
therefore we guarantee that storei(j) must intervene.

The third rule requires assigni(j) to intervene between
loadi(j) / storei(j) and a subsequent storei(j). This is
also ensured by the dirtyi,j bit. After the execution loadi(j)
/ storei(j), the bit dirtyi,j is guaranteed to be false (refer
Figure 1). Also, the guard of a subsequent storei(j) re-
quires dirtyi,j to be true. Therefore, there must be an inter-
vening action which sets dirtyi,j to be true. Since assigni(j)
is the only such action, it must intervene.

The fourth and fifth rules require assigni(j) or loadi(j)
to precede the first occurrence of usei(j) or storei(j). The
usei(j) requires stalei,j to be false. Since all stale bits are

initially true, therefore actions setting stalei,j to false must
precede usei(j). The only actions setting stalei,j to false are
assigni(j), loadi(j). Similarly, we can show that the first
occurrence of storei(j) must be preceded by assigni(j) by
taking the dirtyi,j bit into consideration.

The sixth rule requires every loadi(j) to be preceded by
a corresponding readi(j) which transmits the same r-value
as loadi(j). As mentioned before, this is ensured in our
model by the rd qi,j queue. Since loadi(j) dequeues values
which were enqueued into rd qi,j by a preceding readi(j),
we can see that this rule is always satisfied by traces in our
executable model.

The dependence between storei(j) and writei(j) as de-
manded by the seventh rule is shown similarly (by consider-
ing the wr qi,j queue).

The last rule requires (a) readi(j) to be in the same order
as corresponding loadi(j) actions, (b) writei(j) actions to
be in the same order as the corresponding storei(j) actions,
(c) if a storei(j) precedes loadi(j), then the correspond-
ing writei(j) precedes the corresponding readi(j), and (d)
if a loadi(j) precedes storei(j), then the corresponding
readi(j) precedes the corresponding writei(j). Require-
ment (a) and (b) are ensured by the FIFO discipline of
rd qi,j and wr qi,j respectively. Requirement (c) is ensured
by the guard of readi(j) which is enabled only if wr qi,j is
empty, that is, there is no pending writei(j). Similarly, re-
quirement (d) is ensured by disabling storei(j) if rd qi,j
is non-empty. Note that the guard ¬dirtyi,j is used for
the readi(j) action to prevent a deadlock. Without that
guard, a readi(j) can follow an assigni(j). But after that
the loadi(j) can be enabled only if there is an intervening
storei(j) and the storei(j) can be enabled only if there is
an intervening loadi(j). The guard ensures that a readi(j)
cannot follow an assigni(j) without intervening storei(j)
and writei(j).

Rules about Locks.The first rule requires that only one
thread at a time owns a lock. This is ensured in our model,
since the condition ∀k 6= i lock cntk = 0 in the guard of
locki ensures that all threads other than i do not own the
lock. The second rule requires that only a thread owning a
lock can execute an unlock. This is ensured in our model
since unlocki is executed only if lock cnti > 0 i.e. thread i
owns the lock.

Rules about Interaction of Locks and Variables.The
first rule requires storei(j) and the corresponding writei(j)
to intervene between an assigni(j) and an unlocki. This
is ensured in our model since the guard of unlocki is true
provided empty(wr qi,j) holds (no pending writei(j)) and
¬dirtyi,j holds (no pending storei(j)).

The second rule requires assigni(j) or readi(j)/loadi(j)
pair to intervene between a locki and a subsequent usei(j) /
storei(j). In our model, after the locki action is executed
we must have ∀j stalei,j ∧ ¬dirtyi,j . Therefore usei(j) /
storei(j) actions are not enabled. The only action setting
dirtyi,j is assigni(j), and the only actions resetting stalei,j
are loadi(j) and assigni(j). Therefore, one of these actions
must intervene. Furthermore, loadi(j) can intervene only
if rd qi,j is non-empty. Since rd qi,j is empty when locki
is executed, the readi(j) corresponding to the intervening
loadi(j) must also take place after locki. 2

We prove completeness of our JMM specification w.r.t.
the model described in [16].

Lemma 2 (Completeness). Any execution trace of a
multithreaded Java program which is allowed by the rules of
the Java language specification [16] is also allowed by our
executable memory model.

Proof: Consider some execution trace α allowed by [16]
which is not allowed by our model. Consider the first action
a in α which is disallowed by our model but is allowed by
[16]. Since there are only eight actions in both models, a
can only be one of them. The eight cases are shown below,
and for each of them a contradiction is obtained. Thus, no
such trace α may exist.

• a = usei(j) : Then stalei,j must be true. Then, a
occurs before any assigni(j) / loadi(j) or after oc-
currence of locki (by induction on application of our
rules). This is disallowed by [16] as well.

• a = assigni(j) : Then rd qi,j is non-empty. If this
trace is allowed by [16] then the trace α cannot have a
subsequent loadi(j) until dirtyi,j is reset, which is only
possible by storei(j). But storei(j) again cannot be
executed by [16] if rd qi,j is non-empty (because then
storei(j) will precede a loadi(j) but the corresponding
read, write will be in reverse order). Thus thread i
cannot progress and such a trace α is disallowed.

• a = loadi(j) : If rd qi,j is empty, no value can be
loaded. Execution of loadi(j) is disallowed by [16] also
in such cases.

• a = storei(j) : If dirtyi,j is false, then there is no
preceding assigni(j) without a subsequent storei(j)
(by induction on our rules). This is disallowed in [16]
by the rules about variables (third rule). If rd qi,j is
non-empty then storei(j) will precede a loadi(j) but
the corresponding read, write will be in reverse order.
Again if wr qi,j is full, no value can be stored. All these
cases are again disallowed by [16].

• a = readi(j) : If dirtyi,j is true or wr qi,j is non-
empty, then there is a preceding assign leading to a
pending storei(j) or writei(j) operation. This will lead
to a store preceding a load where the corresponding
read and write are in reverse order, violating the last
rule about variables in [16]. Again non-full rd qi,j must
trivially hold.

• a = writei(j) : Non-empty wr qi,j must trivially hold.

• a = locki : If lock cntk > 0 where k 6= i, then thread k
contain has executed lock for which the corresponding
unlock has not been performed yet (by induction). If
rd qi,j is non-empty then there will be a load after lock
whose read has been executed before lock. If dirtyi,j
is true, then there will be a store after lock whose
assign is executed before lock. All of these situations
violate the rules for locks and their interaction with
variables in [16].

• a = unlocki : If lock cnti = 0 then thread i does
not own the lock (by induction). If dirtyi,j is true or
wr qi,j is non-empty for some variable j, then there is
a preceding assign leading to a pending storei(j) or
writei(j) operation. Each of these situations are again
disallowed by the rules for locks and their interaction
with variables in [16]. 2

