
Compression-Domain Parallel Rendering

Tulika Mitra
School of Computing

National University of Singapore
Singapore 117543

tulika@comp.nus.edu.sg

Tzi-cker Chiueh
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794-4400

chiueh@cs.sunysb.edu

Abstract

Three dimensional triangle mesh is the dominant rep-
resentation used in parallel rendering of 3D geometric
models. However, explosive growth in the complexity of
the mesh-based 3D models overwhelms the communica-
tion bandwidth of existing parallel rendering systems. An
effective solution to this problem is to use a compressed
mesh representation. In recent years, researchers have
shown a great deal of interest in developing highly efficient
mesh compression algorithms. However, using compressed
mesh in the parallel rendering architecture to achieve high-
est end-to-end performance is a largely unexplored area.
We have earlier developed an efficient mesh compres-
sion/decompression algorithm, called Breadth First Traver-
sal (BFT) [3, 4]. In this work, we design and implement
a parallel rendering architecture that can use a BFT mesh
representation. The enabling technology is a novel algo-
rithm that can perform a compression-domain subdivision
of the BFT mesh for bandwidth-efficient distribution of sub-
meshes to parallel processors. Parallel rendering using
BFT mesh reduces the communication requirement to about
one third of that of uncompressed representation.

1 Introduction

Three-dimensional graphic rendering pipeline converts
the geometric representation of a 3D virtual world to a
photo-realistic 2D image. The input to the pipeline is a
scene consisting of a set of objects that are typically repre-
sented as triangle meshes (set of triangles). The 3D graph-
ics pipeline itself consists of two distinct stages:geometric
transformationandrasterization[1]. The geometric trans-
formation stage maps triangles from a 3D coordinate sys-
tem (object space) to a 2D coordinate system (image space)
by performing a series of transformations. The rasterization
stage converts transformed triangles into pixels.

The 3D graphics pipeline is computation intensive, but is

quite amenable to parallel implementation. The paralleliza-
tion strategies can be classified as sort-first, sort-middle,
and sort-last depending on where the sorting operation (i.e.,
distribution of primitives to different processors) is per-
formed [5]. In this paper, we will concentrate onsort-first
architectureeven though the techniques are generic enough
to be applied to both sort-middle and sort-last architectures.

In the sort-first strategy [6], the image space is parti-
tioned into regions, calledtiles, and each processor is re-
sponsible for all the rendering calculations (both geometry
and rasterization) in the tiles to which it is assigned. Each
3D triangle is then distributed to the processor(s) that is re-
sponsible for the tile(s) with which that triangle overlaps.
One triangle can be sent to multiple processors. Finally the
image regions from the processors are simply combined to-
gether to form the rendered image.

Parallel rendering architectures have the disadvantage
that the same triangle has to be sent to all the tiles with
which it overlaps. As the tile size decreases, the overlap fac-
tor increases, and so does the communication requirement
for triangle distribution. One solution to this problem is to
use a compressed representation during the transfer that can
significantly reduce the communication requirement. Note
that as the viewpoint changes per frame, the set of trian-
gles for each tile also changes. As a result, the compression
algorithm should be run corresponding to all the tiles per
frame. Unfortunately, current state-of-the-art triangle mesh
compression algorithms are too computation intensive to be
performed on-the-fly per frame.

The solution to this problem is to compress the entire
triangle mesh statically once. During sorting, the single
compressed mesh is subdivided into multiple compressed
submeshes — one per tile. But it is challenging to do this
subdivision in compression domain, that is, without decom-
pressing the entire mesh and then compressing the triangles
for each tile separately from scratch. In fact, to the best
of our knowledge, there is no algorithm that can perform a
compression-domain sorting of triangle mesh.

We have previously developed a simple and highly ef-

1
2 3

4

5

6 7

8

9

10

Figure 1. BFT mesh traversal.

ficient triangle mesh compression algorithm, called BFT
mesh encoding [3, 4]. We have shown that that addition of
a simple BFT decompressor at the front-end of the graph-
ics processor can then directly accept a BFT mesh. In this
work, we design a compression-domain sorting or distribu-
tion algorithm for BFT encoding. Our algorithm accepts a
BFT mesh and the tile size as inputs. It then incrementally
generates one BFT submesh per tile without explicit de-
compression and recompression. These BFT submeshes are
then distributed to the parallel processors for decompression
and rendering. This compression-based technique signifi-
cantly reduces the communication bandwidth requirement
during triangle distribution. To the best of our knowledge,
this work is thefirst attempttowards on-the-fly sorting of
compressed mesh representation.

The rest of the paper is organized as follows. Section
2 briefly describes BFT mesh compression algorithm. In
Section 3, we discuss on-the-fly sorting of BFT mesh. Sec-
tion 4 evaluates the performance of BFT-oriented parallel
rendering system and Section 5 concludes the paper.

2 BFT Compression Algorithm

In this section, we briefly describe theBreadth-First
Traversal (BFT)[4, 3] algorithm for triangle mesh compres-
sion. A triangle mesh is represented withgeometry(a set
of vertex positions, color, and other attributes) andconnec-
tivity (the incidence relations among vertices, edges, and
triangles). Traditionally, each triangle in a triangle mesh

is represented independently in terms of the geometry of
its three vertices. However, the overwhelming size of tra-
ditional triangle mesh representation has lead to sophis-
ticated, triangle-mesh–specific compression/decompression
algorithms [2, 4, 7, 8, 9].

Triangle mesh compression consists of (1) lossless con-
nectivity compression and (2) lossy geometry compression.
BFT is a connectivity compression algorithm. It does not
perform geometry compression. However, any efficient
geometry compression algorithm can be easily integrated
with BFT algorithm. BFT achieves a compression effi-
ciency comparable to state-of-the-art mesh compression al-
gorithms. At the same time, the simplicity of the BFT algo-
rithm lends itself amenable to compression-domain sorting
for parallel rendering architecture.

The basic idea of the BFT algorithm is to traverse a tri-
angle mesh in a breadth-first order from a chosenseed tri-
angle. The vertices of the seed triangle form afrontier. A
frontier is a circular buffer of vertices. BFT visits each edge
— consisting of two consecutive vertices — of the frontier
and enumerates the unvisited triangle, if any, that is incident
on that edge in terms of thethird vertex. At the same time,
it incrementally modifies the frontier to delete the vertices
whose incident triangles have all been visited, and to add the
new vertices. BFT continues to enumerate the triangles and
modify the frontier till either there is only one vertex left in
the frontier, or a frontier left withn vertices has not been
modified forn consecutive steps. Figure 1 illustrates this
traversal process with a small triangle mesh. The shaded
portion in the figure is a hole in the triangle mesh. The bold
lines indicate the frontier. The ordering of the triangles rep-
resents the order in which the triangles are enumerated.

The edge for which BFT attempts to find an incident and
not-yet-visited triangle is calledcurrent edgeand the two
vertices of the edge, in order of their appearances in the
frontier, are calledleft vertexandright vertex, respectively.
A current edge for which BFT cannot find any unvisited
triangle, because either it is a boundary edge or both of its
incident triangles have been visited, is called anull edge.

The third vertex used to form a triangle with the current
edge can be represented either explicitly in terms of its ge-
ometry or implicitly as a reference to some vertex that ap-
peared previously. In case of BFT, this reference is a pointer
into the frontier, specified as an offset from the right vertex
or the left vertex, depending on which offset is smaller.

2.1 Encoding Commands

Given an input triangle mesh, BFT performs the follow-
ing two steps: (1) it pre-processes the triangle mesh to find
out the visiting order of the triangles; and (2) it represents
the mesh as a command sequence, where each command
encodes either a new triangle in terms of the corresponding

2

−1 1 2

4

1 2 3

−2 −1

−1 1

3 4

−2 −1

2 3

3

−1 1 2 3
4

5

678

−1 1 2 3
4

5

678

7

−3

1 2 3 1−1

−2 −2

−3

−6
−5

−4 −5 −6 −4 −5

−1 2 34 4

−1 1 2 3 −1 2 3

−1 1 2 3 −1 1 3

−1 1 2 3 −1 1 2 3

−1 1 2 3

X

−1 1 2 3

X
Before After Command

NEW

RF0

LF0

<4>RF

LF <4>

NULL

DL

DR

Figure 2. BFT encoding commands.

third vertex or the presence of a null edge. Figure 2 illus-
trates the different commands used by the BFT compression
algorithm: first five commands encode the cases when a tri-
angle is enumerated with a third vertex and the last three
commands encode the different null edge cases. The left-
hand and right-hand side of the figure represent the frontier
before and after visiting the current edge{1,2}. The bold
line indicates the current edge, and the broken lines are in-
cident to the third vertex. We store geometry data for all
the vertices separately as a vertex array sorted in the or-
der in which they appear in the BFT mesh withNewcom-
mands. The BFT decompression algorithm dynamically re-
constructs the frontier of the BFT traversal and enumerates
triangles on the frontier according to the information en-
coded in the command sequence.

3 Sorting of BFT Mesh

To take advantage of BFT mesh during triangle distribu-
tion, we have to generate on the fly atiled BFT mesh—
that is, one BFT submesh per tile — from the original BFT
mesh. One technique to generate tiled BFT mesh works as
follows. Suppose, we are given a clipping algorithm that
can generate a BFT submesh corresponding to a particu-
lar tile by clipping the original BFT mesh against the tile
bounding box. In that case, forn tiles, the system gener-
ates one BFT submesh corresponding to each tile. We will
discuss how to speedup this process later in the paper. But
first, let us describe the clipping algorithm that generates a

BFT submesh corresponding to a tile.

3.1 Clipping of BFT Mesh

Clipping removes the triangles outside a bounding box
from the triangle mesh. This removal completely destroys
the original triangle mesh structure. So we need to develop
a new clipping algorithm for BFT mesh that can generate a
clipped BFT mesh on the fly. The basic idea is as follows: as
the original BFT mesh is decompressed, if a triangle is not
clipped, we send the original triangle’s encoding as it is; if
a triangle gets clipped, then we apply a set ofmodification
rules to change or remove the encoding so as to remove
the triangle in question from the mesh and send this new
encoding.

The BFT mesh clipping algorithm uses a generic clip-
ping algorithm (Cohen-Sutherland clipping algorithm [1])
to identify clipped and unclipped vertices and triangles. The
BFT clipping algorithm then generates (1) a clipped BFT
mesh, which contains only the unclipped triangles; and (2)
a partially-clipped mesh, which is a set of independent trian-
gles that are results of triangulation of the unclipped portion
of the partially-clipped triangles.

The BFT clipping algorithm consists of a BFT mesh de-
compressor and a set of modification rules. When a trian-
gle is decompressed, the algorithm first checks if the trian-
gle is clipped or unclipped. The modification rules replace
the corresponding BFT command such that the clipped ver-
tices and the clipped triangles are deleted from the output
BFT mesh. The new BFT command is stored in the out-
put command stream. If a triangle is clipped, the algorithm
uses per-triangle clipping to identify whether the triangle is
completely or partially clipped. For partially-clipped trian-
gles, the resulting triangulated unclipped portion is stored
separately from the output BFT mesh. After traversing all
the triangles in a BFT mesh, as the last step, the algorithm
outputs all the independent triangles resulting from the tri-
angulation of partially-clipped triangles.

3.1.1 Modification Rules

The goal of the modification rules is the following: If a tri-
angle corresponding to a BFT command is clipped, then the
BFT command should be modified such that the triangle is
not present in the output clipped BFT mesh. Note that if
all the triangle vertices are unclipped, then the triangle is
also unclipped; the modification rules keep the BFT com-
mand unchanged in this case. But if any one of the triangle
vertices is clipped, then the modification rules change the
BFT command so as to remove the triangle. Recall that a
BFT command not only encodes a triangle, but it also mod-
ifies the frontier. Let us assume that a BFT command is
present in the input BFT mesh, but is modified in the clipped

3

vl vr vx t c c′

NC NC NC NC New/RF/LF New/RF/LF
NC NC C C New/RF/LF Null
NC NC NC NC RF0 RF0
NC NC C/- C/- RF0/DR DR
NC NC NC NC LF0 LF0
NC NC C/- C/- LF0/DL DL
NC NC - - Null Null
C C NC C New/RF/LF Add
C C C C New/RF/LF φ
C C X/- C/- RF0/DR φ
C C X/- C/- LF0/DL φ
C C - - Null φ

NC C NC C New/RF/LF 〈Null,Add〉
NC C C C New/RF/LF Null
NC C X/- C/- RF0/DR φ
NC C X/- C/- LF0/DL DL
NC C - - Null Null
C NC NC C New/RF/LF Add
C NC C C New/RF/LF φ
C NC X/- C RF0/DR DL
C NC X/- C LF0/DL φ
C NC - C Null φ

Table 1. Modification rules. vl, vr, vx: left,
right, and third vertex; t: triangle; c, c′: input
and output command(s); NC: unclipped; C:
clipped; X: don’t care; –: undefined; φ: no
output command.

BFT mesh. Then the frontier of the input BFT mesh, af-
ter processing the command, will differ from the frontier of
the clipped BFT mesh. Because the vertices of the decom-
pressed triangles depend on the state of the frontier, the rest
of the commands will generate completely different trian-
gles for the input and the clipped BFT mesh.

One solution to this problem is to maintain two frontiers
during decompression and clipping of the BFT mesh: one
corresponding to the input BFT mesh that is maintained by
the decompressor, and another corresponding to the clipped
BFT mesh generated so far. Now the modification rules can
replace a command by looking forward and backward in
both the frontiers starting from the current edge. However,
the clipping algorithm is supposed to be fast to sustain in-
teractive rendering rate, and hence cannot afford to perform
such look-ahead.

3.1.2 Synchronization Invariants

Our idea is to design the modification rules such that the
clipping algorithm can simulate the two logical frontiers
with a single physical frontier. The modification rules

v rv l

v l v r

Vertex ID
Counter

12
0 0 1 1 1 2 3 3 4
2 3 4 5 6 7 8 9 10 11

4 4

Vertex ID
Counter

12
0 0 0 1 1 1 2 3 3 4
1 2 3 4 5 6 7 8 9 10 11

4 4

end-pointer

end-pointer

1 13
4 5

Global Counter = 5

Global Counter = 4

begin-pointer

begin-pointer
New 13

Figure 3. Global and local counters. The
shaded vertices are clipped. The upper fig-
ure and lower figure show the frontier before
and after the Newcommand is processed, re-
spectively. Vertex 13 is clipped and increases
the global counter value by 1.

obey the following invariants to keep the logical frontiers
“synchronized”, which allows us to replace a BFT com-
mand by only looking at the vertices that are involved in
that command. The invariants are: (1) at any instant, the
two frontiers are identical except that the clipped vertices
are absent in the clipped BFT mesh’s frontier; and (2) at
any instant, the current edges of the two frontiers are the
same if the current edge is unclipped; otherwise the clipped
BFT mesh’s current edge is the closest unclipped succes-
sor of the original mesh’s current edge. For example, if
〈{1,2}, 3,4, 5, 6,7, 8〉 is the original frontier with current
edge{1, 2} and the clipped vertices are marked in bold,
then the corresponding frontier in the clipped BFT mesh
is 〈{1, 3}, 5, 6, 8〉 with {1, 3} as the current edge. The
BFT mesh clipping algorithm simulates the two frontiers
by physically maintaining only the frontier of the original
mesh and a status bit with each vertex in the frontier that
indicates whether the vertex is clipped or not.

Table 1 shows the complete set of modification rules
for different combinations of left, right, and third vertices.
The formal proof of correctness that the set of modification
rules maintains synchronization invariants and generates a
semantically correct clipped BFT mesh can be found in [3].

3.1.3 Offset Modification

Note that we need to change the offset ofRF andLF com-
mands in the clipped BFT mesh. A naive method to gener-
ate the new offsets forRFandLF commands is to scan the
frontier starting from the current edge till the third vertex is
reached, and count the number of clipped vertices encoun-
tered during the scan. Leto be the original offset andc be
the count of the number of clipped vertices. Theno−c gives
the new offset value.

This sequential scanning can be eliminated by maintain-
ing a counter with each vertex in the frontier. The counter
indicates the total number of clipped vertices encountered

4

V

ab
c

d e
f

1 2 3 4 1 2 3 4 5
Add 5

Figure 4. Add command. The shaded rectan-
gle represents the clipped region. a,b,c,d,e,f
is the triangle traversal order. Unclipped tri-
angles e and f expect the vertex V to be
present in the frontier. V is added to the fron-
tier with Add command.

when that vertex was added at the end of the frontier. A
global counter keeps track of the total number of clipped
vertices encountered so far. Initially, the global counter is
set to 0. When a vertex is added at the end of the fron-
tier, the global counter is incremented by 1 if the vertex is
clipped. The global counter value is attached to the counter
field of the added vertex. Figure 3 illustrates the concept of
the counter.

Now, for RF command with offseto, the count of the
number of clipped vertices

c = counter[begin−pointer+2+o]−counter[begin−pointer],

and forLF command with offseto,

c = counter[end−pointer]− counter[end−pointer − o]

For example, in Figure 3, if the triangle{1,2,5} is repre-
sented as RF<2>, thenc = 1.

3.1.4 Add Command

The existing set of BFT commands is not sufficient to delete
clipped triangles and maintain the two synchronization in-
variants. For example, consider a clipped triangle with
clipped left and right vertices, but an unclipped third ver-
tex. If the triangle is enumerated viaNew, LF, or RF com-
mand, then deleting the corresponding command from the
clipped BFT mesh removes the triangle. But the first syn-
chronization invariant requires the third vertex to be added
to the frontier. The existing set of BFT commands does not
allow to add a vertex without adding a triangle. Therefore,
we need to extend the set of BFT commands with a new
command, calledAdd to insert a vertex without encoding
any triangle.

Add command is required for the unclipped vertices near
the clipping plane that have both clipped and unclipped in-
cident triangles. If the BFT traversal order visits a clipped

incident triangle before visiting the unclipped incident tri-
angles, then theAdd command is required to add the ver-
tex to the frontier. This way the vertex can be used by the
unclipped incident triangles. Figure 4 explains whyAdd
command is required and how it changes the frontier.

Intuitively, the clipping algorithm keeps the BFT mesh
intact till it encounters a clipped triangle. Then the algo-
rithm repeatedly applies modification rules to take care of
the triangles near the boundary. Next, BFT traversal reaches
the portion of the triangle mesh outside the boundary, and
the corresponding BFT commands are deleted. Finally,
BFT traversal may again cross the boundary to come back to
the unclipped portion. Figure 5 illustrates the BFT clipping
algorithm with an example BFT mesh. The bold solid line
in the figure indicates the frontier. The arrow represents the
current edge while the circle represents the current triangle.

3.2 BFT Sorting

The sorting process uses 2D image-space coordinates of
the triangle vertices to determine the tiles overlapping with
the 2D image of the triangle. Once the submeshes for the
tiles are constructed, they are sent to the rendering engines
one BFT submesh at a time. We use the simplebounding
box sortingalgorithm to identify the tiles a triangle overlaps
with. Bounding box algorithm constructs a screen aligned
bounding box for each triangle (xmin, xmax, ymin, ymax)
and finds the intersection of this bounding box with the tiles
by simple comparisons. The triangle bounding box of a tri-
anglet is denoted as[t].

Given a BFT mesh and the tile size, we want to generate
one BFT mesh per tile. A naive technique can generate a
tiled BFT mesh by using the clipping algorithm for the BFT
mesh as a subroutine. Forn tiles, this technique requires
n passes, where each pass sets the triangles corresponding
to one tile as unclipped and all the others as clipped. Then
in each iteration, the system generates a BFT mesh corre-
sponding to one tile. The major disadvantage of this naive
approach is that it requires the original mesh to be decom-
pressedn times. To speedup the process, we want an algo-
rithm that can modify the BFT submeshes corresponding to
all the tiles as each triangle of the original mesh is decom-
pressed.

One possible solution is to start with empty BFT meshes
for all the tiles. We define a vertexv as unclipped for tileb,
if v’s coordinate is inside tileb, andv is defined as clipped
for all the other tiles. A triangle is unclipped or associ-
ated with a tile if all its vertices are unclipped for that tile.
Now, as each BFT command is decompressed, the modifi-
cation rules examine the clipping status of the triangle ver-
tices with respect to each tile. The rules then generate mod-
ified (possibly empty) BFT command sequence for each of

5

v l

v r

v x

v xv rv l
1 2

3 4

t
b

2
3

1

4

t

NC
C
C

C C C C

C C C
C C C

NC NC NC

B1

B2

B3

B4

New

Figure 6. Sorting of BFT mesh. Image space is divided into four tiles in the left, 1–4, and the
corresponding BFT meshes are B1–B4. Triangle t is enumerated in the original BFT mesh with New
command and t is associated with tile 2. The command New is appended to B2, but no commands
are appended to B1, B3, or B4.

the tiles and append these modified commands to the corre-
sponding BFT meshes generated so far. Figure 6 illustrates
how this solution works.

Unfortunately, this simple algorithm does not take care
of the triangles that span multiple tiles. All the vertices of
a shared triangle do not belong to one tile. Therefore, for
any tile associated with a shared triangle, one of the triangle
vertices will always be clipped for that tile. Hence, the mod-
ification rules consider this triangle as clipped with respect
to all the associated tiles.

The fundamental problem is that the modification rules
associate a vertex only with the tile for which it is un-
clipped; whereas sorting requires a vertex to be associated
with all the tiles with which its incident triangles overlap.
To solve the problem, we use the concept of vertex bound-
ing box. Intuitively, a vertex bounding box[v] of a vertex
v includes all the tiles associated withv’s incident trian-
gles. For a vertexv, [v] is defined as a bounding box that is
the smallest superset of all the incident triangles’ bounding
boxes. Figure 7 illustrates the concept of vertex bounding
box.

A vertexv is unclipped for tileb, if b ∈ [v] and clipped
otherwise. Using a vertex bounding box ensures that the
vertex is associated with all the tiles with which its incident
triangles overlap. But because[t] ⊆ [v0] ∩ [v1] ∩ [v2], it is
no longer guaranteed that for a tileb, if v0, v1, andv2 are
all unclipped, thent is also unclipped forb. Therefore, the
modification rules have to be changed such that a command
enumerates a trianglet for tile b, if and only if b ∈ [t].

Table 2 presents the modification rules to generate BFT
meshes for all the tiles from the input BFT mesh. The sec-
ond column shows the set of tiles for which the correspond-
ing rule applies. For a particular input commandc, the dif-
ferent rules cover mutually exclusive tiles. The next four
columns show the status of the left vertex, right vertex, third
vertex, and the triangle with respect to the tiles in the sec-
ond column. Compare this table with Table 1 to make sure
that they represent the same set of rules.

Sorting algorithm for the BFT mesh now consists of two
passes. The first pass is a preprocessing step that scans

Dataset Vertex Triangle Edge
Bunny 34,834 69,451 104,288
Horse 48,485 96,966 145,449
Hand 327,323 654,666 981,999

Dragon 437,645 871,414 1,309,256
Buddha 543,652 1,087,716 1,631,574
Blade 882,954 1,765,388 2,648,082

Table 3. Characteristics of mesh models.

through the command stream to calculate the vertex bound-
ing box for each vertex in the vertex array. The second pass
generates BFT meshes for all the tiles by applying modifica-
tion rules to each command in the command stream. Exper-
imental results show that the sorting of BFT mesh adds only
about 15% overhead to the rendering pipeline as opposed to
10% for the sorting of independent triangles.

4 Performance Evaluation

In this section, we show the performance advantage of
parallel rendering using BFT mesh as opposed to using in-
dependent triangles. We use six triangle-mesh based 3D
models of varying complexity (refer Table 3).

Figure 8 shows the communication traffic for different
tile sizes. Compared toTiled Tri, Tiled BFTmesh cuts down
the communication requirement by one-third. Notice that
the percentage increase in communication traffic between
sequential (Tri) and parallel rendering (Tiled Tri) with inde-
pendent triangles is more than the percentage increase be-
tween sequential (BFT) and parallel rendering (Tiled BFT)
with BFT. Tri representation uses a fixed storage per trian-
gle and hence the difference betweenTri andTiled Tri is di-
rectly proportional to the ratio between the number of tiled
triangles and original triangles. In case of BFT, the band-
width is dominated by vertex geometry (16 bytes) and not
the connectivity (typically 0.25 bytes per triangle). There-
fore, the difference betweenBFT andTiled BFT is propor-
tional to the ratio between the number of tiled vertices and

6

c Tile vl vr vx t c′

New/RF/LF [t] NC NC NC NC New/RF/LF
New/RF/LF ([vl] ∩ [vx])− [t] NC X NC C 〈Null,Add〉
New/RF/LF ([vl]− [vx])− [t] NC X C C Null
New/RF/LF ([vx]− [vl])− [t] C X NC C Add

RF0 [t] NC NC NC NC RF0
RF0 ([vr] ∩ [vl])− [t] NC NC X C DR
RF0 ([vr]− [vl])− [t] C NC X C DL
DR [vr] ∩ [vl] NC NC – – DR
DR [vr]− [vl] C NC – – DL
LF0 [t] NC NC NC NC LF0
LF0 [vl]− [t] NC X X C DL
DL [vl] NC X – – DL
Null [vl] NC X – – Null

Other combinations φ

Table 2. Modification rules to replace a BFT command with a possibly empty sequence of BFT
commands to generate tiled BFT meshes. vl: left vertex; vr: right vertex; vx: third vertex; t: triangle;
c: input command; c′: output commands; NC: unclipped vertex; C: clipped vertex; X: don’t care; –:
undefined; φ: no command.

512x512 256x256 128x128 64x64 32x32 16x16
Tile Size in Pixels

0

2000

4000

6000

8000

B
us

 B
an

dw
id

th
 (

K
B

)

Tiled Tri
Tri
Tiled BFT
BFT

Bunny

512x512 256x256 128x128 64x64 32x32 16x16
Tile Size in Pixels

0

2000

4000

6000

8000

10000

B
us

 B
an

dw
id

th
 (

K
B

)

Tiled Tri
Tri
Tiled BFT
BFT

Horse

512x512 256x256 128x128 64x64 32x32 16x16
Tile Size in Pixels

0.0

10.0

20.0

30.0

40.0
B

us
 B

an
dw

id
th

 (
M

B
)

Tiled Tri
Tri
Tiled BFT
BFT

Hand

512x512 256x256 128x128 64x64 32x32 16x16
Tile Size in Pixels

0.0

10.0

20.0

30.0

40.0

50.0

60.0

B
us

 B
an

dw
id

th
 (

M
B

)

Tiled Tri
Tri
Tiled BFT
BFT

Dragon

512x512 256x256 128x128 64x64 32x32 16x16
Tile Size in Pixels

0.0

20.0

40.0

60.0

80.0

B
us

 B
an

dw
id

th
 (

M
B

)

Tiled Tri
Tri
Tiled BFT
BFT

Buddha

512x512 256x256 128x128 64x64 32x32 16x16
Tile Size in Pixels

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

B
us

 B
an

dw
id

th
 (

M
B

)

Tiled Tri
Tri
Tiled BFT
BFT

Blade

Figure 8. Communication requirement for parallel rendering with different tile sizes.

7

7. LF<2> NC NC NC LF<1>

C’xr VBefore Clipping

2. New NC NC NC New

VAfter Clipping

1. New NC NC C Null

3. New NC NC NC New

4. LF0 NC C NC DL

5. New C NC NC Add

6. New NC NC C Null

8. New NC NC NC New

C Vl

φ

φ

9. New NC NC C Null

12. RF0 NC C NC

10. LF0 C NC C

11. RF0 NC NC C DR

Figure 5. An example illustrating the BFT clip-
ping algorithm. White triangles are unclipped
and shaded triangles are clipped. Clipped
vertices are marked with a square.

t
[t]

v2

v1
[v1]

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 22 23 24
v3

21

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

4847

Figure 7. Bounding box of a vertex.

original vertices, which is smaller than the ratio for trian-
gles. Hence, the percentage difference betweenBFT and
Tiled BFTis smaller than the percentage difference between
Tri andTiled Tri.

5 Conclusion

Compression-domain processing of 3D mesh is a
promising approach towards solving the memory capac-
ity and bandwidth problems associated with large 3D
meshes. This paper demonstrates the practicability of this
approach for parallel rendering with prototype implemen-
tation. Performance evaluation of our approach suggests
that compression-domain 3D mesh processing can signifi-
cantly reduce the communication bandwidth requirement in
the parallel rendering pipeline, thereby enabling a parallel
graphics system to render very large 3D meshes that was
not possible with traditional uncompressed approaches.

6 Acknowledgment

This research was supported by the following grants:
NSF MIP-9710622, NSF ACI-9907485, and a grant from
Sandia National Laboratory.

References

[1] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.Com-
puter Graphics, Principles and Practice, Second Edition in C.
Addison Wesley, 1990.

[2] S. Gumhold and W. Straßer. Real Time Compression of Trian-
gle Mesh Connectivity.Proceedings of SIGGRAPH 98, pages
133–140, July 1998.

[3] T. Mitra. Mesh Compression and Its Hardware/Software
Applications. PhD thesis, Computer Science Department,
SUNY Stony Brook,http://www.ecsl.cs.sunysb.
edu/tr/TR90.ps.Z , December 2000.

[4] T. Mitra and T. Chiueh. A Breadth-First Approach to Efficient
Mesh Traversal.1998 SIGGRAPH / Eurographics Workshop
on Graphics Hardware, pages 31–38, August 1998.

[5] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-Speed
Rendering Using Image Composition.Computer Graphics
(Proceedings of SIGGRAPH 92), 26(2):231–240, July 1992.

[6] C. Mueller. The sort-First Rendering Architecture for High-
Performance Graphics. InProceedings of the ACM Sympo-
sium on Interactive 3D Graphics, 1995.

[7] J. Rossignac. Edgebreaker: Connectivity Compression for
Triangle Meshes. IEEE Transactions on Visualization and
Computer Graphics, 5(1):47–61, January - March 1999.

[8] G. Taubin and J. Rossignac. Geometric Compression
Through Topological Surgery.ACM Transactions on Graph-
ics, 17(2):84–115, April 1998.

[9] C. Touma and C. Gotsman. Triangle Mesh Compression.
Graphics Interface ’98, pages 26–34, June 1998.

8

