
Handling Constraints in Multi-Objective GA for Embedded System Design

Biman Chakraborty Ting Chen Tulika Mitra Abhik Roychoudhury
National University of Singapore

stabc@nus.edu.sg, {chent,tulika,abhik}@comp.nus.edu.sg

Abstract

Design space exploration is central to embedded sys-
tem design. Typically this is a multi-objective search prob-
lem, where performance, power, area etc. are the differ-
ent optimization criteria, to find the Pareto-optimal points.
Multi-objective Genetic Algorithms (GA) have been found
to be a natural fit for such searches and have been used
widely. However, for certain design spaces, a large part of
the space being explored by GA may violate certain design
constraints. In this paper, we use a multi-objective GA algo-
rithm based on “repair”, where an infeasible design point
encountered during the search is repaired to a feasible de-
sign point. Our primary novelty is to use a multi-objective
version of search algorithms, like branch and bound, as
the repair strategy to optimize the objectives. We also pre-
compute a layout of the genes such that infeasible design
points are less likely to be encountered during the search.
We have successfully employed our hybrid search strategy
to design application-specific instruction-set extensions that
maximize performance and minimize area.

1 Introduction

Embedded system design can be viewed as a complex
design space exploration problem that attempts to optimize
conflicting criteria, for example, maximizing performance
while minimizing energy and area requirement. The multi-
objective nature of these optimization problems implies that
the search returns a set of Pareto-optimal design points. A
design point p is Pareto-optimal if there does not exist any
other design point p′ that is superior to p in terms of all
the objectives. Multi-objective Genetic Algorithms (GA)
are quite suitable in discovering Pareto fronts. GA is much
more efficient than exact algorithmic searches and even the
non-exhaustive ones like branch and bound [1]. Therefore,
several research groups have successfully applied multi-
objective GA for embedded system design (see [6] for an
overview of this topic). Most of these optimization prob-
lems, where GA has been hugely successful, are charac-

terized by a design space that contains very few infeasible
points.

In this paper, we show that there exists another class of
multi-objective optimization problems in the context of em-
bedded system design where a large fraction of the design
space is infeasible (i.e., violates one or more design con-
straints). We argue that GA performs poorly for such prob-
lems as the mutation and the crossover operations result in
a large percentage of the population being infeasible after
a few generations. We then propose a hybrid optimization
strategy that combines GA with branch and bound search.
Our hybrid algorithm repairs an infeasible point generated
by GA to a feasible point. Moreover, to improve the qual-
ity of the design points, we repair an infeasible point to a
“neighboring” point that optimizes the objectives. This is
accomplished via a multi-objective version of branch and
bound — exact search and optimization over a small part
of the design space. We also pre-compute a gene layout for
GA such that crossover operation is less likely to produce
infeasible design points.

To evaluate the effectiveness of our hybrid search strat-
egy, we have employed it for the design of application-
specific instruction-set extensions (custom instructions) [9].
Custom instructions encapsulate the frequently occurring
computation patterns in an application and help simple em-
bedded processors achieve considerable performance and
energy efficiency. However, choosing an appropriate set
of custom instructions for an application so as to maxi-
mize performance while minimizing area/energy is a dif-
ficult problem. In our experiments, we found that our com-
bination of multi-objective GA and branch and bound for
custom instructions design significantly improves the qual-
ity of the solutions.

Related Work Design space exploration of embedded
systems is a well-studied problem. Apart from multi-
objective GA, substantial research has been done in devel-
oping heuristic search techniques for computing the set of
Pareto-optimal design points. Platune [8] and PICO (Pro-
gram In Chip Out) [10] are some examples of heuristic
multi-objective design space exploration frameworks. The



heuristic algorithms typically exploit dependence among
the parameters, sensitivity of the objective function on the
parameters [7], symbolic constraint satisfaction etc. to
prune the design space. Design space exploration for cus-
tom instructions has also received lot of attention lately.
Given a set of candidate patterns, various approaches have
been proposed to select the optimal subset under different
constraints. These include exhaustive search [2], ILP [13]
and heuristic algorithms [3, 13]. To the best of our knowl-
edge, ours is the first work that looks at the multi-objective
selection problem for custom instructions. Our search tech-
nique handles constraint violations in multi-objective GA
by repairing infeasible solutions. Quite a few constraint
handling methods exist in the GA literature [11]. One of
them is to preserve the feasibility of the solutions, that is,
two feasible solutions, after crossover and mutation op-
erations, are guaranteed to create two feasible offsprings.
While this approach works well for some constrained prob-
lems, it very much depends on the specific problem at hand
and the generalization of these redefined operators to other
similar problems is by no means obvious. The most popu-
lar approach in handling the constraints is to use penalties.
The basic idea is to define the fitness value of an infeasible
solution with a penalty term. [4] discusses various issues
related to the use of penalty functions. One major draw-
back of this approach is that it redefines the optimization
problem and the optimal solution depends on the penalty
parameters. Our strategy of repairing an infeasible solution
raises another concern – the computational cost of repair.
For the custom instruction problem we show that the time
overhead for repair is well-compensated by the superiority
of the solutions produced.

2 Difficult Multi-objective problems in Em-
bedded System Design

A closer look at the constraints for embedded system
optimization problems reveals that these constraints can
be divided into two classes. The first class of constraints
arises due to the limited resources such as area/energy.
These constraints are replaced by objective functions in the
multi-objective version of the problem. Thus, if the multi-
objective optimization problem has performance and area
as objectives, the corresponding single objective version of
the problem may optimize performance subject to an area
budget A, i.e., with the constraint area ≤ A.

The second class of the constraints can be loosely termed
as mutual exclusion constraints. A mutual exclusion con-
straint is of the form V1+. . .+Vn ≤ 1 where V1, . . . , Vn are
0/1 integer decision variables. V1, . . . , Vn typically repre-
sent the different choices with corresponding performance,
energy, and area functions and at most one of these choices
can be selected. Mutual exclusion constraints are quite

prevalent in embedded design space exploration problems
such as HW/SW partitioning, application-specific instruc-
tions selection, code optimization etc.

21 3 4 5 6 21 3 4 5 6

21 3 4 5 6

1 1 1 0 0 1 1

1 1 1 11 0

0 0 1 1 0

crossover

Figure 1. Example of infeasible solution being con-
structed from feasible solutions by crossover.

0

10

20

30

40

50

60

70

80

0 50 100 150 200
Generation

%
 o
f 
In
fe
as
ib
le
 P
oi
nt
s

Figure 2. Percentage of infeasible points over gen-
erations for custom instruction selection with djpeg

The presence of mutual exclusion constraints creates dif-
ficulty for multi-objective GA. In GA, each binary decision
variable is represented by a gene and the sequence of genes
forms a chromosome representing a particular design point.
The basic assumption of GA is that the values of the dif-
ferent genes are independent, i.e., there is no epistasis or
interaction among the different genes. Unfortunately, the
mutual exclusion constraints imply the presence of epista-
sis and not all design points are feasible. Both the classical
crossover and mutation might not respect this constraint. In
Figure 1, we show how this can happen via a crossover op-
eration. In this example, there is only one mutual exclu-
sion constraint — we cannot set both gene 2 and gene 5.
The parent chromosomes both satisfy this constraint but the
child chromosome produced by crossover shown in Figure
1 does not satisfy this constraint.

As a result of infeasible solutions being constructed
(from feasible solutions) by crossover (and mutation too),
GA may end up with significant fraction of infeasible de-
sign points in its population. For example, Figure 2 shows
the percentage of infeasible points in the population of 100
chromosomes over 200 generations for custom instruction
selection problem (benchmark djpeg). We make sure that
all the design points in the initial population are feasible.
Still, as the evolution progresses, we can observe as much
as 70% infeasible points in a generation. This shows that
we need to go beyond simple multi-objective GA methods.

2



3 Handling mutual exclusion constraints

In this section, we discuss novel techniques used in
our work to handle mutual exclusion constraints in multi-
objective GA. We assume familiarity with basic GA termi-
nology, such as gene, chromosome, selection, crossover and
mutation (see [5] for an overview).

3.1 Optimizing gene layout

To deal with mutual exclusion constraints, multi-
objective GA should be careful about the choice of chro-
mosome encoding. In the following, we use the words
“chromosome” and “solution” interchangeably. The most
straightforward encoding scheme is to randomly assign the
genes in a chromosome to the binary design variables.
Clearly in such an encoding scheme, design variables par-
ticipating in the same mutual exclusion constraint may be
spread throughout the chromosome. In contrast, if design
variables participating in the same constraint are close to-
gether in the chromosome, they are less likely to be sepa-
rated under a single-point crossover.

In problems with mutual exclusion constraints, we pro-
pose the following solution. We say that a gene is covered
by a mutual exclusion constraint C if it is placed in the chro-
mosome between (any) two genes participating in C. When
we perform a single point cross-over at a randomly chosen
gene, all the constraints covering the gene will be broken
apart. The resultant offsprings will inherit the gene values
of those broken constraints from different parents. Because
only one gene in a mutual exclusion constraint is allowed
to take the value 1, an offspring may become infeasible al-
though both of its parents are feasible solutions. The natu-
ral way to alleviate the above problem is to make sure that a
gene is covered by as few constraints as possible. Formally,
the task of optimizing gene layout is to minimize the func-
tion F =

∑n
i=1 Ngi

where Ngi
is the number of constraints

covering the gene gi.

Example 3.1 Suppose there are three mutual exclusion
constraints: E1 = {1, 4},E2 = {2, 3, 5} and E3 = {1, 6}.
It is easy to see from Figure 3(a) that if we just use the layout
which places gene i at position i, there are a lot of overlap
among constraints. For example, gene 3 is covered by all
three constraints. If a rearrangement of the gene positions
is made as shown in Figure 3(b), any gene is covered by one
and only one constraint.

In practice, given the large number of constraints and design
variables, the way to find the optimal gene placement also
seems to be difficult. Therefore, we have used a single ob-
jective GA to a-priori find out a relatively good placement
of genes. The multi-objective GA search is then run using
this gene layout.

1 2 3 4 5 6 

E1
E2
E3

4 1 6 2 3 5 

E1 E3 E2

(a) Initial Gene Layout 

(b) Optimized Gene Layout 

Figure 3. Optimizing gene layout

3.2 Handling Invalid Solutions

The simplest way to handle constraint violation is to ig-
nore the solutions that violate any of the constraints. Un-
fortunately, the number of mutual exclusion constraints is
often very high leading to a large fraction of design points
being infeasible. In such cases, the naive approach has dif-
ficulty in finding even one feasible solution, let alone a set
of Pareto-optimal solutions. In order to proceed towards
a Pareto front, we need to consider infeasible solutions in
some better way rather than ignoring them.

In this paper, we instead repair an infeasible solution
[11]. The repaired solution replaces the original infeasible
solution in the population. There are no standard heuristics
for the design of repair algorithms; often people use simple
greedy heuristics. We propose the following repair strategy
based on branch and bound search: (1) For all the genes in-
volved in violated constraints, clear their values to 0 and (2)
Perform a branch and bound search over the genes whose
values are cleared to 0 in step 1 to obtain the best feasible
solution.

The branch-and-bound repair mechanism retains the
“correct” portion of an infeasible solution (the portion of a
chromosome which does not violate any design constraints)
and replaces the “erroneous” portion with a correct one by
performing a search over valid gene value combinations. A
repair limit is set to reduce the total number of genes to be
repaired. Note that as all the genes involved in violated con-
straints are cleared to 0, this partial repair always results in
feasible solutions.

Within the branch-and-bound search, the search space is
pruned by defining heuristic functions to bound the objec-
tive values of partially instantiated solutions. Let S denote
a partial solution, i.e., all its genes have not been instanti-
ated. If the estimated objective function values for solutions
found by extending S are dominated by the objective func-
tion values of existing complete solutions, then we do not
need to explore any solution obtained by extending the par-
tial solution S.

3



4 Case Study: Custom Instruction Selection

To illustrate the effectiveness of our hybrid multi-
objective GA, we now present a case study with the cus-
tom instructions selection problem. Selection of custom
instructions (computational patterns) 1 constitutes a classic
design space exploration problem. Significant research
effort has been invested in developing automated selection
techniques. However, to the best of our knowledge, all these
techniques attempt to optimize for a single objective such
as maximizing performance of the application, or minimiz-
ing the area required to implement the custom instructions
etc. For high-performance, low-cost embedded systems, it
is important to optimize for multiple conflicting objectives.

4.1 Problem Formulation

Given an application let us assume, without loss of gen-
erality, the following conflicting objectives for the custom
instructions selection problem: (1) maximize the perfor-
mance of the application and (2) minimize the additional
area requirement due to the custom instructions. The fol-
lowing problem formulation can of course be easily gener-
alized to include additional objectives such as minimizing
the total energy consumed by the application. Given an ap-
plication, the first step of the design process is to extract all
possible computational patterns from the application [14].
Let us assume that we have identified N potential patterns
(custom instructions) in a program denoted by C1 . . . CN .
A pattern Ci has ni different instances occurring in the pro-
gram denoted by ci.1,. . . ,ci.ni

. Let Pi be the performance
gain obtained by implementing Ci in hardware as opposed
to software. Ri is the amount of area (hardware blocks) re-
quired to implement Ci. Let fi.j be the execution frequency
of pattern instance ci.j obtained through profiling of the ap-
plication. Then our goal is to cover each original instruc-
tion in the code with zero/one patterns such that the perfor-
mance is maximized and area is minimized. Formally, for
each pattern instance ci.j let us define binary variable si.j

to be equal to 1 if ci.j is selected and 0, otherwise. So the
objective functions for the problem are:

performance =
N∑

i=1

ni∑
j=1

(si.j × Pi × fi.j) (1)

area =
N∑

i=1

(Si × Ri); (2)

Si =
{

1 if
∑ni

j=1 si.j ≥ 1
0 otherwise;

1We use the terms patterns and custom instructions interchangeably.

In other words, binary variable Si (1 ≤ i ≤ N) is equal
to 1 if any of the instances corresponding to pattern Ci is
selected and 0 otherwise.

The constraint for this problem is that a static program
instruction can be covered by at most one custom instruc-
tion instance. So, if instances ci1.j1 ,. . . , cik.jk

cover a static
program instruction, then the corresponding constraint is

si1,j1 + . . . + sik,jk
≤ 1 (3)

This is the mutual exclusion constraint which creates diffi-
culty in multi-objective design space exploration. It is easy
to see that the single-objective version of this optimization
problem (e.g., maximizing performance defined by Equa-
tion 1 under a fixed area budget) can be easily formulated
using Integer Linear Programming or ILP [13]. However,
ILP is not practical for large programs due to the exces-
sively long execution time and it cannot be used to optimize
against multiple objectives.

4.2 A Multi-Objective Genetic Algorithm

Algorithm 1: Multi-Objective GA with Repair
1 geneLayout();
2 initRandomPopulation(); makeFronts(population);
3 for 1 to MAX generations do
4 proportionateSelection(); crossover(); mutation();
5 for each infeasible solution S do
6 branch-and-bound repair(S);

7 makeFronts(newPopulation); rudolphElitism();

Algorithm 1 shows our hybrid multi-objective GA algo-
rithm for the custom instruction selection problem. First,
we use a single objective GA to find out the best possi-
ble gene layout to minimize the average number of con-
straints covering a gene as we have discussed in Section
3.1. The makeFronts function sorts the population into
various fronts on the basis of their non-dominance. After
sorting into equivalence sets or fronts, we assign dummy
fitness values to the chromosomes according to the NSGA
(Non-dominated Sorting Genetic Algorithm) Scheme [5].
The dummy fitness values are assigned in such a manner
that all the individuals in front i get higher fitness values
than all the individuals in front i + 1. Fitness values are
used for a proportionate selection of chromosomes. Single-
point crossover and a random gene flip mutation are used as
basic evolutionary operators [5]. To preserve elitism in suc-
cessive populations, we use the rudolphElitism function,
which picks the best non-dominated solutions from both the
parent and off-spring populations [12].

In repairing an infeasible solution, we employ multi-
objective branch and bound search. The branch and bound

4



algorithm instantiates the cleared genes one by one. How-
ever, to avoid exploring the entire design space correspond-
ing to these cleared genes, a heuristic function is required.
The heuristic function computes an upper bound of perfor-
mance gain and lower bound of area corresponding to a par-
tially instantiated chromosome. If according to the heuris-
tic function, a partially instantiated chromosome x is domi-
nated by some other fully instantiated chromosome, then we
do not need to instantiate x any further. Clearly, the amount
of pruning critically depends on the design of the heuristic
function. The two heuristic functions used are:

performanceGain =
N∑

i=1

ni∑
j=1

(s′i,j × Pi × Fi,j)(4)

area =
n∑
1

(S′
i × Ri); (5)

s′i,j =




si,j if ci,j is instantiated;
1 if ci,j is not instantiated and si,j = 1

does not conflict with instantiated ci,js;
0 otherwise;

S′
i =

{
1 ∃1 ≤ j ≤ ni si,j = 1 and ci,j is instantiated
0 otherwise;

Intuitively, the heuristic function performanceGain gives
an upper bound on performance that a partially instantiated
solution can take and area gives an lower bound on the area.

5 Experimental Evaluation

In this section, we evaluate our hybrid multi-objective
GA algorithm with custom instruction selection problem.
We use six benchmark programs selected from MediaBench
and MiBench. We use SimpleScalar tool set for the exper-
iments. The programs are compiled using gcc 2.7.2.3 tar-
geted for SimpleScalar with -O3 optimization. The GA al-
gorithms are run on a Sunfire 4800 server containing eight
750MHz Ultra Sparc III CPU with 8 GB RAM.

Given a binary executable of an application, we first
exhaustively enumerate all possible patterns and their in-
stances [14]. We impose a constraint of maximum 4 in-
put operands and 2 output operands for any pattern. The
execution frequencies of the pattern instances are obtained
through profiling. The hardware latencies and area of cus-
tom instructions (patterns) are obtained using Synopsys
synthesis tool. Finally, the number of execution cycles of
a custom instruction is computed by normalizing its la-
tency (rounded up to an integer) against that of a multiply-
accumulate (MAC) operation, which we assume takes ex-
actly one cycle. We do not include floating-point opera-
tions, memory accesses, and branches in custom instruc-
tions as they introduce non-deterministic behavior.

Max. Area Area Speedup (%)
(gates) Heuristic GA Heuristic GA

2,000 1,971 1,772 4.7 4.8
4,000 3,992 3,992 6.1 8.3
6,000 5,650 5,963 7.1 10.2
8,000 7,432 7,556 7.8 12.1

10,000 9,631 9,338 9.1 13.4
12,000 11,795 11,411 9.9 14.0
14,000 13,811 13,926 10.7 14.9
16,000 15,884 15,499 11.7 15.9
18,000 17,695 17,100 12.3 16.4

Table 1. Comparison of GALayoutRep with a heuris-
tic method for djpeg benchmark.

Effectiveness of layout and repair To evaluate the effec-
tiveness of gene layout and repair, we compare the perfor-
mance of the following three genetic algorithms.

• BasicGA: GA which uses a random gene layout and
does not repair infeasible solutions.

• GALayout: GA which optimizes gene layout but does
not repair infeasible solutions.

• GALayoutRep: GA which optimizes gene layout and
also repairs the infeasible solutions.

For each of the above algorithms, we run for 200 gener-
ations with population size 100. We choose a cross-over
probability of 0.5 and mutation probability of one gene per
solution. In branch and bound repair process, we repair at
most 20 genes in an infeasible chromosome.

The Pareto front generated by the three algorithms are
shown visually in Figure 4. The objective function Speedup
appears along the y-axis and area appears along the x-axis
(the unit of area is the number of gates). The figure clearly
shows the superiority of GALayoutRep that optimizes the
layout and repairs infeasible solutions.

The time required to optimize the gene layout is negli-
gible (at most 0.23% of the time required by BasicGA). To
investigate the time overhead of GALayoutRep, we ensure
that GALayoutRep runs for the same amount of time as Ba-
sic GA. The number of generations used by GALayoutRep
for various benchmarks now varies from 160 to 170 to take
into account the time taken by repair. Even with this restric-
tion, we observe that GALayoutRep is still superior.

Comparison of GA with heuristic methods Finally, we
compare the solution returned by multi-objective GA with
state-of-the-art heuristic methods. As mentioned before,
previously proposed solutions are all based on single objec-
tive. To convert multi-objective version of the optimization
problem into a single-objective version, we seek to optimize
performance under a fixed area constraint. For GA, we still

5



0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 2000 4000 6000 8000 10000 12000

Area (gates)

S
p

ee
d

u
p

 (
%

)

Basic
Layout
LayoutRep

0%

5%

10%

15%

20%

25%

30%

0 2000 4000 6000 8000 10000 12000 14000 16000

Area (gates)

S
p

ee
d

u
p

 (
%

)

Basic
Layout
LayoutRep

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 10000 20000 30000 40000 50000 60000 70000 80000

Area (gates)

S
p

ee
d

u
p

 (
%

)

Basic
Layout
LayoutRep

(a) bitscnt (b) blowfish (c) cjpeg

0%

5%

10%

15%

20%

25%

0 10000 20000 30000 40000 50000 60000 70000

Area (gates)

S
p

ee
d

u
p

 (
%

)

Basic
Layout
LayoutRep 0%

5%

10%

15%

20%

25%

0 2000 4000 6000 8000 10000 12000 14000

Area (gates)
S

p
ee

d
u

p
 (

%
)

Basic
Layout
LayoutRep

0%

10%

20%

30%

40%

50%

60%

70%

0 1000 2000 3000 4000 5000 6000 7000

Area (gates)

S
p

ee
d

u
p

 (
%

)

Basic
Layout
LayoutRep

(d) djpeg (e) rijndael (f) sha

Figure 4. Visual comparison of Pareto fronts

use multi-objective GALayoutRep to create the Pareto front;
we then select the solution from the Pareto front that leads
to highest speedup under the area constraint. We compare
it against the speedup of the solution returned by heuris-
tic method proposed in [13]. The heuristic method ranks
the pattern instances according to speedup/area ratio. It
selects patterns according to this rank ensuring that the mu-
tual exclusion constraints are not violated. Table 1 shows
the comparison of GA with heuristic for djpeg benchmark.
Other benchmarks show similar trends. GA achieves higher
speedup than the heuristic solution; in some cases it per-
forms better in both area and performance objectives.

6 Discussion

In this paper, we propose a hybrid multi-objective search
algorithm for design space exploration, namely multi-
objective GA combined with multi-objective branch and
bound for repair. Apart from pruning sub-optimal parts
of the design space, we are concerned about GA getting
stuck with a large number of infeasible solutions as the
search progresses. Our repair strategy takes care of this con-
cern. We employ our algorithm to the design of application-
specific instruction set extensions. Experimental results
from this design problem show that the quality of the Pareto
front improves substantially due to our repair strategy.

Acknowledgments This work was partially supported by
a InfoComm and InfoTech Initiative (ICITI) project R252-
000-150-112 at the National University of Singapore.

References

[1] K. Apt. Constraint Programming. Cambridge University
Press, 2003.

[2] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-
specific instruction-set extensions under microarchitectural
constraints. In DAC, 2003.

[3] N. Clark et al. Processor acceleration through automated
instruction set customization. In MICRO, 2003.

[4] D. Dasgupta and Z. Michalewicz. Evolutionary Algorithms
in Engineering Applications. Springer Verlag, 1997.

[5] K. Deb. Multi-Objective Optimization using Evolutionary
Algorithms. Wiley, 2001.

[6] M. Eisenring et al. Conflicting criteria in embedded system
design. IEEE Design and Test, 17(2), 2000.

[7] W. Fornaciari et al. A sensitivity-based design space explo-
ration methodology for embedded systems. Design Automa-
tion for Embedded Systems, 7(1-2), 2002.

[8] T. Givargis and F. Vahid. Platune: A tuning framework for
system-on-a-chip platforms. IEEE TCAD, 21(11), 2002.

[9] R. E. Gonzalez. Xtensa: A configurable and extensible pro-
cessor. IEEE Micro, 20(2), 2000.

[10] V. Kathail. PICO: Automatically designing custom comput-
ers. IEEE Computer, 35(9), 2002.

[11] Z. Michalewicz. A survey of constraint handling techniques
in evolutionary computation methods. In Annual Conf. on
Evolutionary Programming. MIT Press, 1995.

[12] G. Rudolph. Evolutionary search under partially ordered
sets. Technical Report C1-67/99, Univ. of Dortmund, 1999.

[13] P. Yu and T. Mitra. Characterizing embedded applications
for instruction-set extensible processors. In DAC, 2004.

[14] P. Yu and T. Mitra. Scalable custom instruction identification
for instruction-set extensible processors. In CASES, 2004.

6


