
Processor Customization for Wearable Bio-monitoring Platforms

Huynh Phung Huynh Tulika Mitra
Department of Computer Science
National University of Singapore
{huynhph1, tulika}@comp.nus.edu.sg

Abstract— Wearable bio-monitoring applications require sig-
nificant computation bandwidth. Processor customization is a
major technology trend that can potentially satisfy computation
requirement. In this paper, we apply processor customization
to wearable bio-monitoring platforms and create systems with
high performance. We choose Stretch customizable processor as
the hardware platform where application-specific extension in-
structions are implemented in reconfigurable logic. Experimental
results demonstrate that processor customization can return a
performance gain of up to 5.2X.

I. INTRODUCTION

The increasingly ageing population is posing a major chal-
lenge to the overall health-care systems worldwide. Remote
and non-obtrusive continuous bio-monitoring of a non-critical
patient at home is a viable alternative that can reduce consid-
erable burden on the hospital resources. Wireless body-area
sensor networks (or BANs) and related wearable computing
technologies promises a convenient platform for such bio-
monitoring applications. The recent technological advance-
ments in embedded processors, availability of ultra low-power
and lightweight sensor nodes and advances in wireless net-
working have all paved the ways for wireless BAN platforms.

Figure 1 illustrates the typical architecture of a wearable
bio-monitoring platform. Multiple tiny sensor nodes are at-
tached to the different parts of the patient’s body. These
sensor nodes continuously sample various vital signs, such
as ECG (Electrocardiograph), SpO2 (Saturation of Arterial
Oxygen) etc., at regular intervals and transmit the collected
samples to a gateway device (typically mobile phone or
personal digital assistant (PDA)) through wireless medium.
The gateway device is also located in the vicinity of the person
being monitored such as on his/her body. The sensor nodes
communicate with the gateway device through wireless com-
munication protocol such as ZigBee (802.15.4) or Bluetooth
(802.15.1). The gateway device is responsible for processing
the sampled data streams and detecting emergency conditions
(such as a fall) or anomaly in the vital signs. It can employ
mobile telephone networks (GPRS, 3G, etc.) or wireless LAN
to reach an Internet access point and thereby trigger an alarm
to the care-giver in case of an emergency or anomaly. It also
periodically reports the status of the patient to the medical
servers.

Clearly, the high-end bio-monitoring applications demand
significant computation bandwidth from the gateway device,
typically a PDA or smart phone. This is in addition to the
computation bandwidth required for running regular applica-
tions on the device, such as phone calls or music players.

InternetInternet

Home PC

Physician

Server

Caregiver

Emergency

Bluetooth/
WLAN

GPRS

ZigBee

SpO2
sensor

ECG
sensors

Motion
sensors

Fig. 1. Wearable bio-monitoring.

On the other hand, given the small form factor and battery
life restrictions, the PDAs include very lightweight processors
running at 100-300 MHz. Thus, there is an increasing trend
towards building customized gateway devices specifically tai-
lored towards wearable bio-monitoring platforms. As an exam-
ple, recently an application-specific multiprocessor system-on-
chip (MPSoC) design has been proposed for real-time analysis
of a 12-lead ECG [5], which requires processing of twelve
different signals from the patient’s body.

Following this line of development, we focus on processor
customization [4] to support the computation demand placed
on the gateway device by high-end bio-monitoring appli-
cations. Processor customization has recently emerged as a
major paradigm shift to provide scalable compute power in a
short time-to-market window. A customizable processor is, in
general, configurable w.r.t. the micro-architectural parameters,
such as cache configurations. More importantly, a customiz-
able processor may support application-specific extensions of
the core instruction-set. Custom instructions encapsulate the
frequently occurring computation patterns in an application.
They are implemented as custom functional units (CFU) in
the datapath of the existing processor core. CFUs improve
performance and power through parallelization and chaining
of operations.

In this work, we choose Stretch customizable processor [1]
as the hardware platform. Figure 2 shows the Stretch S5 engine
that incorporates Tensilica Xtensa RISC processor [3] and the
Stretch Instruction Set Extension Fabric (ISEF). The ISEF
is software-configurable datapath based on programmable
logic. This configurable fabric acts as a functional unit to
the processor. It is built into the processor’s datapath, and
resides alongside other traditional functional units such as the
ALU and the floating point unit. The programmer defined
application specific instructions (Extension Instructions) are

Co
nt

ro
l

I-Cache
32KB

D-Cache
32KB

SRAM
256KB

DATA RAM
32KB

ALU
FPU

32-BIT RF 128-BIT WRF

MMU

ISEF
INSTRUCTION SET

EXTENSION FABRIC

SPI

TWI

GPIO

UART

UART

JTAG

BUS

B
U
S

GMAC/
FIFO

GMAC/
FIFO

GMAC/
FIFO

GMAC/
FIFO GIB

DMA

PCI/PCI-X

DDR
Controller

B
U
S

the S5 engine

The S5530 processor is powered by the Stretch S5 engine,

which incorporates the widely accepted Tensilica® Xtensa®

RISC processor core and the powerful Stretch Instruction Set

Extension Fabric (ISEF). The ISEF is a software-configurable

data path based on proprietary programmable logic. Using the

ISEF, system designers extend the processor instruction set

and define the new instructions using only their C/C++ code.

As a result, developers get the performance of logic with C/C++

development simplicity—achieving unprecedented perfor-

mance, easy and rapid development, and significant cost sav-

ings. Stretch’s S5 engine unlocks the following two major RISC

bottlenecks to provide an unparalleled level of performance:

 Granularity of computations: Unlike typical RISC processors’

ALUs that perform low level operations such as shift, add,

and multiply, the ISEF can execute thousands of operations

as a single instruction.

 Data and compute bandwidth: The S5 uses 32 128-bit wide

registers coupled with 128-bit wide access to memory to feed

data to the ISEF at a bandwidth not available on any other

processor.

Package

 672 FCBGA – 27mm x 27mm

•

•

•

Stretch Advantages how this is Achieved
Design Flexibility Developers use C/C++ to program the pro-

cessor and configure the ISEF with cus-

tom instructions. Configurability enables

application flexibility allowing developers

to respond to emerging standards, add

new features and support new algorithms

with no redesign.

High Compute

Performance

“Hot spots” (sequences of operations that

are executed many times) are reduced to a

single instruction in the ISEF, providing

significant performance gains at the same

clock rate.

Rapid Development and

Faster Time to Market

Product customization by using only

C/C++ software simplifies application

development and eliminates traditional

long development cycles. This software-

based approach allows system designers

to quickly adapt to changing requirements

without changing their hardware.

Lower System Cost A Stretch processor can replace multiple

DSPs or combinations of processors and

FPGAs, thereby reducing system and

design costs. In addition, the software-only

environment eliminates the complexity of

hardware/software co-development.

Stretch Inc.
777 E. Middlefield Road
Mountain View, CA 94043
tel 650.864.2700 • fax 650.623.0150
www.stretchinc.com

All information contained in this document is subject to change without notice.
For more information, visit our web site at www.stretchinc.com
© 2005, Stretch Inc. All rights reserved. Stretch, the Stretch logo and
Extending the Possibilities are registered trademarks of Stretch Inc.

MK-5530C-0002-000

S5530 Block Diagram

Fig. 2. Stretch S5530 datapath [1].

implemented in this fabric. The core processor issues the
extension instructions to ISEF, which performs the compu-
tation and returns the result. In summary, the ISEF allows the
system designers to define new instructions post-silicon and
thus extend the processor’s instruction-set.

The major obstacle to customization of bio-monitoring
applications is that Stretch extensible processor (like many
other extensible processors) does not support floating point op-
erations within extension instructions. Unfortunately, profiling
of bio-monitoring applications indicate that all the compute-
intensive kernels contain significant amount of floating point
arithmetic operations. Therefore, we first transform the appli-
cations to use fixed point arithmetic instead of floating point
arithmetic. This transformation enables better exploitation
of instruction-set customization. We then generate multiple
customization options for each compute-intensive kernel with
varying area and performance gain. It is obvious that a cus-
tomization option with larger area will typically provide better
performance gain. Finally, We select appropriate customization
options for all the kernels so as to obtain best tradeoff between
area and performance gain for the entire application.

II. WEARABLE BIO-MONITORING APPLICATIONS

In this work, we choose a concrete bio-monitoring appli-
cation from the geriatric care domain as a case study. The
application consists of two related subsystems: (1) continuous
monitoring of vital signs and (2) fall detection.

A. Continuous Monitoring of Vital Signs

The subsystem for monitoring vital signs is capable of
continuously measuring ECG, SpO2, systolic blood pressure,
and heart beat rate. ECG electrodes are attached on the
chest to measure the cardiac activities. SpO2 probe irradiates
red and infrared light onto earlobe and then records the
continuous changes of transmitted intensities, which is called
PPG (Photo Plethysmogram). In each cardiac cycle, the ECG
R peak indicates the starting of cardiac contraction, and the
corresponding maximum inclination in the PPG indicates the
arrival of blood at earlobe. The interval between the two kinds
of peaks is defined as pulse transit time (PTT) [2] as illustrated
in Figure 3(a). That is, PTT is the time it takes for the blood
flow to reach from the heart to the earlobe. These vital signs
are continuously monitored and transmitted to the gateway
device.

The continuous measurement of vital signs requires a real-
time systolic blood pressure estimation algorithm as shown
in Figure 3(b). The detection of PTT involves peak detection
in both ECG and differentiated PPG. An Analog to Digital
converter samples the ECG signal. The sampled ECG wave-
form contains some amount of superimposed line-frequency
content. This line-frequency noise is removed by digitally
filtering the samples through a low-pass FIR filter. This is
followed by detection of all the QRS complex in the ECG
waveform. The ECG R peaks can be easily derived from the
QRS complex. The QRS complex also serves as a definite
indicator for every heart beat, hence, it can be used to calculate
the heartbeat rate. The PPG signal similarly goes through a
FIR filter to remove the noise followed by detection of all
the maximum slopes of the PPG. After R peaks of ECG and
maximum slopes of PPG are detected, the corresponding pairs
are mapped together to compute PTT. Finally, several PTT
readings in a time interval are combined together into one
blood pressure index.

B. Fall Detection

Any wearable fall detection system typically employs phys-
ical motion sensors such as tri-axial accelerometers and gyro-
scopes. The fall detection system we examine for case study
consists of one tri-axial (3D) MEMS accelerometer plus one
gyroscope on the thigh position and another accelerometer on
the waist position. The sensitivity axes of each accelerometer
is arranged in lateral, vertical, and antero posterior directions.
The gyroscope provides 2D angular (lateral and sagittal)
motion information. Overall we have eight streams of sensor
signals coming in from the physical motion sensors (lateral,
vertical, antero-posterior for each accelerometer and lateral,
sagittal for gyroscope) to the gateway device through ZigBee
(802.15.4) wireless communication protocol. The fall detection
algorithm runs on the gateway device.

The central hypothesis of elderly fall detection approach is
that the thigh motion does not go beyond certain threshold
angle to forward (lateral) and sideways (sagittal) directions in
normal activities; the abnormal behavior occurs in the onset of
falls among the elderly. Moreover, there is a high correlation
between thigh and waist angle during fall, but low correlation
during normal activities. Thus the algorithm first needs to
transform the 3D accelerometer data to 2D angular data (lateral
and sagittal). Next, it marks an angular motion of the thigh
beyond a threshold as a “possible” onset of fall. For each such
possible onset of fall, the correlation between thigh and waist
angles as well as pattern matching of gyroscope angle (against
reference values obtained from a number of actual falls) are
used to eliminate false positives. A high-level overview of
the functionalities of the fall detection application appears in
Figure 3(c).

III. PROCESSOR CUSTOMIZATION

A quick profiling of the fall detection application revealed
the floating point arithmetic operations as the main perfor-
mance bottleneck. Table I shows the compute-intensive func-
tions in the fall detection application along with the percentage

Q

R

S
Q

R

S

filter filter

QRS
detection

PPG Peak
detection

Heart beat rate
estimation

PTT estimation

Blood pressure estimation

ECG SpO2

R Peak
detection

filter filter filter

3D 2D 3D 2D

possible fall
detection

correlation
Pattern

matching

False positive elimination

Accelerometer
(thigh)

Accelerometer
(waist)

Gyroscope
(thigh)

(a) Pulse Transmit Time [2]. (b) Blood pressure estimation. (c) Fall detection algorithm.

Fig. 3. Bio-monitoring Applications.

Function Execution Time Floating Point
muldf3 46.05% Yes

ieee754 sqrt 8.96% Yes
divsf3 8.55% Yes
adddf3 7.65% Yes
filter 6.56% No
atan 4.52% Yes
main 3.99% Yes
divdf3 2.61% Yes
subdf3 2.22% Yes

TABLE I
HOT FUNCTIONS IN FALL DETECTION APPLICATION.

of execution time spent in those functions. Most of these
functions are implementations of floating-point arithmetic op-
erations. In fact, more than 80% of the execution time of the
application is spent in floating point arithmetic operations.

More importantly, the instruction-set extensible processor
that we are targeting (i.e., Stretch) does not support floating
point arithmetic operations within custom instructions. Indeed,
most customizable processors do not support floating-point
operations inside custom instructions. Consequently, we get
at most 1.04x speedup after we generate Stretch custom
instructions for fall detection application. Therefore, we first
transform the fall detection application code to use fixed point
arithmetic instead of floating point enabling better exploitation
of instruction-set customization.

On the other hand, blood pressure estimation application
mostly uses integer arithmetic. So, we do not need to im-
plement fixed point arithmetic version for the blood pressure
estimation algorithm.

A. Conversion to Fixed Point Arithmetic

We use N-bit binary number x = xN−1xN−2 . . . x1x0 to
present a fixed-point number in the form U(a, b) [7].

x =
1
2b

N−1∑
n=0

2nxn and a = N − b

In this representation, a bits on the left correspond to the in-
teger part while b bits on the right correspond to the fractional
part. The implied binary point exists between the bth bit xb

and the bit to its right xb−1. The accuracy of the fixed point
representation and the results of the corresponding arithmetic
operations (compared to the floating point implementation)
crucially depend on the appropriate choice of values for a
and b. Therefore, we select different values of a and b for

different functions depending on the accuracy requirements in
our fixed point implementation of the applications. Moreover,
we choose N = 32 for most of functions and N = 64 for
certain functions. For our application, N = 64 is large enough
to maintain the accuracy of floating-point operations when we
convert them to fixed-point representation.

We convert each rational number or integer number to
fixed-point representation by multiplying it with 2b, where the
value of b is chosen to maintain the appropriate accuracy.
A fixed-point representation can be treated as an integer
number except that it has the implied binary point separating
integer and fractional parts. Therefore, if we ensure that two
fixed point operands of an operation (such as addition or
division) have the same values for a and b, we can use the
normal integer arithmetic operations for fixed-point numbers.
Stretch extension instruction can support integer multiplica-
tion, subtraction and addition operation but does not support
integer division and modulus operations. Therefore, we have
to implement integer and fixed-point division operation using
basic arithmetic operations (such as shift, or, etc.) [6].

B. Stretch Custom Instructions

A single custom instruction in Stretch can specify a com-
plete inner loop in the application. The developer needs to
capture the inner loops as extension instructions in Stretch C,
which is a variant of standard ANSI-C language. The Stretch
C compiler then fully unrolls any loop with constant iteration
counts. There are three main sources of performance gain
from the custom instructions in Stretch [1]: (1) Each custom
instruction can read up to three 128-bit operands and produce
up to two 128-bit operands. This allows a custom instruction
to exploit significant data parallelism as multiple data values
can be packed together in a single 128-bit operand. (2) A
custom instruction can exploit temporal parallelism through a
deeply pipelined implementation of up to 27 processor clock
cycles. (3) Each custom instruction can be specialized through
bit width optimization, constant folding, partial evaluation, and
resource sharing.

Now how do we specify and use custom instructions in
Stretch to achieve performance gain for our application?

Figure 4 shows an example of exploiting custom instructions
on Stretch processor. The original source code is shown as
Figure 4(a). It performs FIR filtering on the 16-bit elements

short coeff[9] = {578,839,1584,2706,4043,
5389,6536,7305,7576};

short* buf;
int z;
…
z = (*(coeff+8))*(*(buf+offset - 8));
for (j = 0; j < 8; j++)

z += (*(coeff+j)) * (*(buf+offset-j) +
(*(buf+offset - 16+ j)));

z = z >> 16
…

static short coeff[9] = { 578,839,1584,
2706,4043,5389,6536,7305,7576};

SE_FUNC void CI_filter (WR *A,WR B,
unsigned short offset_8)

{
se_sint<32> z;
se_sint<16> input0, input1;
int i;

z = (se_sint<32>)coeff[8] *
(se_sint<32>)offset_8;

/* unpack A and B and compute */
for(i=0;i<8;i+=16)
{
input0 = (*A)(i+15,i);
input1 = B(i+15,i);
z += (se_sint<32>)coeff[i] *
(se_sint<32>)(input0 + input1);

}

/* Pack output value to A */
*A = ((se_uint<16>)(z>>16));

}

WRPUTINIT(0,&z);
WRGET0INIT(1,buf+offset);
WRGET1INIT(0,buf+offset-16);
/* load buf from offset down to (offset–7) */
WRAGET0I(&A,16);
/* load from (offset-16) to (offset-9) */
WRAGET1I(&B,16);

CI_filter(&A,B,*(buf + offset - 8));

WRPUTI(A,2);
WRPUTFLUSH();

(a) Original C code

(b) CI_filter Custom Instruction(c) C code using Custom Instruction

Fig. 4. An example of custom instruction for Stretch processor.

in the buffer buf. The custom instruction, called CI filter
(Figure 4(b)), has two WRs, A and B, and an unsigned short
offset 8 as arguments. Each of A and B contains eight input
elements that will be multiplied and accumulated. First, input
data in A and B are unpacked to the local variables input0
and input1. Then input0 and input1 are multiplied and
accumulated to z. The Stretch C compiler, while synthesizing
the custom instruction into hardware, will unroll this for
loop within the custom instruction. Finally, z is packed into
A register as the output. After the new custom instruction is
defined, we have to change the source code of the original
loop to use the newly defined custom instruction (see Figure
4(c)).

IV. EXPERIMENTAL RESULTS

We write Stretch C instructions for each hot function to
explore speed up of bio-monitoring application. Then we used
Stretch profiler to get cycle count of each function in the bio-
monitoring application. Moreover, after generating bit stream
configuration of custom instructions, we get the hardware
area (in terms of number of arithmetic/logic units (AU) and
multiplier units (MU)) of each custom instruction for each
hot function. Different combinations of custom instructions
create different custom instruction-set versions for each hot
functions.

From custom instruction-set versions generated for hot func-
tions, we choose appropriate custom instruction-set version
for each hot function of the bio-monitoring applications. We
vary the hardware area constraint from 0 to Max Area at a
hardware unit of 0.1 x Max Area. The Max Area is simply the
summation of the maximum hardware area requirements of the
constituent bio-monitoring kernels. Bio-monitoring application
enhanced with custom instructions at Max Area explores the
limit of speedup achievable. In Figure 5, the X-axis and Y-
axis represent area constraints and speedup of the application
respectively. Recall that blood pressure estimation application
mostly uses integer arithmetic. Therefore, we only enhance
blood pressure estimation application with custom instructions
and we can get up to 1.5x speedup shown in green bar in
Figure 5, bp sw custom. Here, the speedup is the ratio of
blood pressure application execution time in software to the

5

5.5
bp_sw_custom

4

4.5
fd_sw_fixed_custom_fixed

fd_sw_float_custom_fixed

3

3.5

pe
ed

up

2

2.5Sp

0 5

1

1.5

0.5
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Area (Fraction of Max_Area)

Fig. 5. Performance Speedup with Customization.

execution time (in cycles) of the application enhanced with
custom instructions.

On the other hand, we have three implementations for
fall detection application: (1) software-fixed-point implements
fixed point arithmetic in software. (2) software-floating-point
implements floating point arithmetic in software. (3) custom-
fixed-point implements fixed point arithmetic with custom
instructions. The custom-fixed-point implementation gets up to
1.97x speedup (blue bar in Figure 5) compared to the software-
fixed-point implementation, fd sw fixed custom fixed. Perfor-
mance speedup also comes from the fixed point arithmetic
implementation instead of the floating point implementa-
tion. Red bar in Figure 5 shows final speedup of custom-
fixed-point implementation over software-floating-point one,
fd sw float custom fixed. We can get nearly 5.2x performance
speedup compared to the original floating-point implemen-
tation of fall detection application while the accuracy of
arithmetic operations is still maintained.

V. CONCLUSIONS

In this paper, we present our work on processor customiza-
tion for bio-monitoring applications. Our customization is
based on fixed point implementation and custom instruction
selection. Through customization, we can get high perfor-
mance gain (5.2x). The result of this work confirms the
efficiency of processor customization for compute-intensive
application domains such as bio-monitoring applications.

VI. ACKNOWLEDGMENTS

This work is supported by A*STAR SERC project R-252-
000-258-305. We would like to thank Francis Eng Hock
Tay and Nyan Myo Naing for sharing the bio-monitoring
application with us.

REFERENCES

[1] J. M. Arnold. S5: The Architecture and Development Flow of a
Software Configurable Processor. In ICFPT ’05.

[2] P. Fung, G. Dumont, C. Ries, C. Mott, and M. Ansermino.
Continuous Noninvasive Blood Pressure Measurement by Pulse
Transit Time. In EMBS ’04.

[3] R. E. Gonzalez. Xtensa: A Configurable and Extensible Proces-
sor. IEEE Micro, 20(2), 2000.

[4] P. Ienne and R. Leupers, editors. Customizable Embedded
Processors: Design Technologies and Applications. Systems on
Silicon. Morgan Kaufmann, 2006.

[5] I. A. Khatib, D. Bertozzi, A. Jantsch, and L. Benini. Performance
Analysis and Design Space Exploration for High-end Biomedical
Applications: Challenges and Solutions. In CODES+ISSS ’07.

[6] D. A. Patterson and J. L. Hennessy. Computer Organization &
Design. Morgan Kauffman, 1998.

[7] R. Yates. Fixed-point Arithmetic: An Introduction. Technical
report, Digital Signal Labs, 2007.

