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ABSTRACT

This paper describes the design, implementation, and evaluation
of an automatic application-specific file prefetching mechanism
that is designed to improve the I/O performance of multimedia
programs with complicated access patterns. The key idea of the
proposed approach is to convert an application into two thread-
s: acomputationthread, which is the original program containing
both computation and disk I/O, and aprefetchthread, which con-
tains all the instructions in the original program that are related
to disk accesses. At run time, the prefetch thread is scheduled to
run far ahead of the computation thread, so that disk blocks can
be prefetched and put in the file system buffer cache before the
computation thread needs them. A source-to-source translator is
developed toautomaticallygenerate the prefetch and computation
thread from a given application program without any user inter-
vention. We have successfully implemented a prototype of this
automatic application-specific file prefetching mechanism under
Linux. The prototype is shown to provide as much as 54% overall
performance improvement for real-world multimedia applications.

1 Introduction
The data-intensive nature of media applications requires that disk
access delays be effectively masked or overlapped with compu-
tation for good overall application performance. One solution to
masking disk I/O delay is asynchronous I/O. While easy to im-
plement from system designer’s point of view, it tends to result in
complicated program logic and possibly lengthened development
time. Also, an application written for a particular disk I/O subsys-
tem may not work well for another subsystem with different la-
tency and bandwidth characteristics. Another solution is to cache
recently accessed disk blocks in main memory for future reuse. If
there is a high degree of data reuse, file or disk caching can reduce
both read latency and disk bandwidth requirements. However, for
some applications caching is not effective either because the work-
ing set is bigger than the file system buffer, or because a disk block
is used only once.

A well known solution to this problem in any UNIX system,
including Linux, is to prefetch a disk block before it is needed [5].
Linux assumes that most applications access a file in a sequential
order. Hence, whenever an application reads a data blocki from
the disk, the file system prefetches blocksi + 1, i + 2, ... i + n
for some small value ofn. If the access pattern is not sequential,
prefetching is suspended, till the application’s disk accesses exhib-
it a sequential access pattern again. For most common application-
s, this simple sequential prefetching scheme seems to work well.
However, sequential access is not necessarily the dominant access
pattern for some other important applications, such as volume vi-
sualization, multi-dimensional FFT, or digital video playbacks. In
this paper, we propose anAutomatic Application-Specific File
Prefetching technique (AASFP) that aims to improve the perfor-
mance of those applications with non-sequential access patterns by

hiding the disk I/O delay as much as possible.
Earlier file prefetching research,predictive prefetching[3],

tries to deduce future access pattern from past history. This ap-
proach is completely transparent to application programmers. How-
ever, incorrect prediction might result in unnecessary disk access-
es and subsequent poor cache performance due to the eviction of
important data by prefetched blocks. The other line of research
is informed prefetching and caching[7, 8, 2], where the applica-
tion programmer discloses the upcoming access pattern through
a well-defined interface to the kernel. The main disadvantage of
this approach is that the application programmer needs to rewrite
the application so as to generate prefetch hints to the kernel. The
burden on the application programmer can be reduced bycompiler
directed I/O[6], where the compiler can analyze a program, and
insert the prefetch requests explicitly. However, this approach is
restricted to loop-like constructs, where the disk block addresses
usually follow a regular pattern.

The basic idea of our approach is to transform a given pro-
gram into two parts: acomputation thread, which is the original
program, and aprefetch thread, which contains all the instructions
in the original program that are related to disk I/O. At run time,
the prefetch thread is started earlier than the computation thread.
Because the computation load in the prefetch thread is typically
a small percentage of that of the original program, the prefetch
thread could remain ahead of the computation thread throughout
the application’s entire lifetime. Consequently, most I/O access-
es by the computation thread are serviced directly from the file
system buffer, which is populated beforehand by the I/O accesses
by the prefetch thread. In other words, the prefetch thread brings
in exactly the data blocks as required by the computation thread,
before they are needed. The key advantage of AASFP is thatit
eliminates the need of manual programming of file prefetch hints
by generating the prefetch thread from the original program us-
ing compile-time analysis.In addition to being more accurate in
what to prefetch, AASFP provides sufficient flexibility to the ker-
nel in decidingwhento prefetch disk blocks via a large look-ahead
window into the prefetch streams.

2 System Overview
The AASFP prototype consists of two components: asource-to-
source translator, and a run time system that includes aprefetch li-
brary, and a modified Linux kernel. The source-to-source transla-
tor generates a prefetch thread from an application program, by ex-
tracting the parts of the program that are related to disk I/O access-
es and removing all the other computation. In addition, all the disk
I/O calls in the prefetch thread are replaced by their correspond-
ing prefetch calls to the prefetch library. The original program
itself forms the computation thread. There is a one-to-one corre-
spondence between the prefetch calls in the prefetch thread and
the actual disk I/O calls in the computation thread. The prefetch
thread is executed as a Linux thread, as supported by thepthread



library [4]. All the prefetch functions are executed by AASFP’s
run time prefetch library, which generates the logical file block ad-
dress associated with each prefetch call, and inserts the prefetch
requests into auser-level prefetch queue. When the user-level
prefetch queue becomes full, the prefetch library makes a system
call to transfer the prefetch requests to the application’s kernel-
level prefetch queue. However, these prefetch hints are completely
non-binding, i.e. the kernel might ignore these hints if there is not
enough resources for file prefetching.

The other novelty of AASFP is that the computation and the
prefetch thread are automatically synchronized so that the kernel
neither prefetches too far ahead nor falls behind. This is achieved
by marking each entry in the prefetch queue with the ID of the
corresponding prefetch call. The kernel also maintains the ID of
the current I/O call of the computation thread. When the ID of an
entry in the prefetch queue is smaller than the ID of the I/O call
made most recently, the computation thread has run ahead of the
prefetch thread, and the kernel simply skips the expired prefetch
queue entries. Therefore, even if the prefetch thread falls behind, it
never prefetches unnecessary data. To prevent the prefetch thread
from running too far ahead of the computation thread, the kernel
attempts to maintain a prefetch depth ofN , based on the average
disk service time and the amount of computation the application
performs between consecutive I/O calls.

3 Generation of Prefetch Thread

3.1 Application Programmer Interface
AASFP allows programmers to invoke automatic prefetching only
on selective files. This flexibility reduces unnecessary prefetch-
ing, which potentially could adversely affect system performance.
For each file that needs the service of AASFP, the application pro-
grammer should annotate the file descriptorfp with an addition-
al declarationPREFETCH fpto indicate to the source-to-source
translator thatfp should be prefetched. These files will be referred
to asprefetchable filesfor the rest of the paper.

The goal of AASFP’s source-to-source translator is to auto-
matically generate the prefetch and computation threads from a
given application program without user intervention. The prefetch
thread consists of all disk access instructions as well as those that
the disk access instructions depend on. To derive the prefetch
thread from an application program thus requires dependency anal-
ysis, which are described in the next two subsections.

3.2 Intra-Procedural Dependency Analysis
The goal of intra-procedure dependency analysis is to identify, in-
side a procedure, all the variables and statements which disk access
statements depend on. Letio set(x) of a variablex be the set of
statements that are involved, directly or indirectly, in generating
the value ofx in a procedure. We use a simple and conservative
approach as follows to computeio set(x):

1. All the statements that directly update the variablex, i.e.,
those that definex, are included inio set(x).

2. Compute the setA that contains all the variables used in the
statements inio set(x). For each variablea ∈ A, include
io set(a) in io set(x).

The above algorithm for computingio set(x) is conservative but
simple to implement. It might include some redundant definition-
s of a variable, which never reaches the final I/O statement. S-
ince the generated source code will go through a final compilation
phase, we expect that the compiler would eliminate the redundan-
t statements by performing a detailed data flow analysis [1]. If

io set(x) includes an array element, then we include the entire
array inio set(x).

Given this algorithm to identify the I/O set, we use the follow-
ing algorithm to analyze a procedure and deduce the corresponding
prefetch thread:

1. Include the disk access call statements in the original pro-
gram that operate on prefetchable files inPT , the set of
statements that are I/O related. For each variablex that
appears in the disk access calls, mark it as I/O related, com-
puteio set(x), and include it inPT .

2. For each flow-control statement, e.g.,for, while, do-
while, if-then-else, case , if there is at least one
member ofPT inside its body, mark all the variables used
in the boolean expression of the flow-control statement as
I/O related. For each such variablea, computeio set(a),
and include it inPT . Repeat this step untilPT converges.

3. Include inPT the declaration statements of all variables
that are marked as I/O related.

This algorithm ensures that the flow-control statements that appear
in PT has at least one I/O related statement in the body.

3.3 Inter-Procedural Dependency Analysis
To generate the prefetch thread for an application program that
contains multiple procedures, inter-procedural dependency analy-
sis is required. For each procedureP , letQ(x1, x2, ..., xn) be one
of the procedures thatP calls with actual parameters(y1, y2, .., yn).
If any actual parameteryi is I/O related inP , and it is a pointer
(i.e. the value it points to can be changed insideQ), then mark
the corresponding formal parameterxi as I/O related inQ. All the
global variables inP that are I/O related are passed toQ as I/O re-
lated. Finally, ifP stores the return value forQ in variablea, and
a is I/O related inP , then the whole procedureQ is considered
I/O related.

For each procedureP (y1, y2, .., yn), let R be a caller that
makes a call toP with actual parametersP (z1, z2, ..., zn). If a
formal parameteryi is I/O related inP , its corresponding actu-
al parameterzi is considered I/O related inR. Also, if a global
variable is considered I/O related inP , it is also I/O related inR.

4 Runtime System
Figure 1 shows the overall software architecture of AASFP’s run-
time system, which consists of a user-level prefetch library and a
kernel component.
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Figure 1:Software Architecture of AASFP’s Run-Time System

4.1 Prefetch Library
The disk I/O calls that the prefetch thread makes are calls in-
to the prefetch library. The prefetch library maintains a prefetch
queue that stores the addresses of the file blocks to be prefetched.
Each prefetch queue entry is a tuple of the form[file ID,



block number, prefetch call ID] . The file ID and the
block number together uniquely identify the logical disk block
to be prefetched, and the prefetch call ID identifies the prefetch
call that initiated the corresponding disk access. The initial val-
ue of the prefetch call ID is 0. It is incremented every time a
prefetch call is made. The library also maintains a file table to
keep track of the current offset corresponding to every prefetch-
able file descriptor so that it can calculate the logical block number
for prefetch read andprefetch lseek calls.

Given a prefetch call, the library first assigns the current prefetch
call ID to this call, increments the current prefetch call ID, inserts
an entry into the prefetch queue after calculating its target logical
block ID, and finally, updates the current offset of the accessed
file in the file table. When the prefetch queue becomes full, the li-
brary makes a system call to prompt the kernel to copy the prefetch
queue entries into the kernel.

When an application makes acreate prefetch thread()
call, the library forks off a new thread as the prefetch thread, and
informs the kernel about the process ID of both the computation
and the prefetch thread using a system call. This helps the kernel to
identify the process ID of the prefetch thread given a computation
thread, and vice versa. In addition, the prefetch library registers
the file pointers of all prefetchable files with the kernel through a
new system call, so that the kernel can take appropriate action for
those file pointers.

4.2 Kernel Support
When the prefetch library of an AASFP application registers with
the kernel the process ID of the application’s prefetch and the com-
putation thread, the kernel allocates a prefetch queue for that appli-
cation in the kernel address space. When an application’s prefetch
thread informs the kernel that its user-level prefetch queue is ful-
l, the kernel copies them to the application’s kernel-level prefetch
queue. If there is not enough space in the kernel-level prefetch
queue, the prefetch thread is put to sleep. The kernel wakes up
the prefetch thread only when there are enough free entries in the
kernel’s prefetch queue. The size of the kernel prefetch queue is
larger than the prefetch library’s queue to avoid unnecessary stalls.
Note that the prefetch calls in the prefetch thread simplyprepare
disk prefetch requests, but do not actuallyinitiate physical prefetch
operations.

For prefetchable files, the AASFP kernel turns off Linux’s se-
quential prefetching mechanism and supports application-specific
prefetching. Whenever an AASFP application’s computation thread
makes a disk access call, the kernel first satisfies this access with
data already prefetched and stored in the file buffer, then perform-
s asynchronous disk read for a certain number of requests in the
kernel-level prefetch queue. That is, physical disk prefetching is
triggered by disk accesses that the computation thread makes. This
scheme works well for applications with periodic I/O calls. How-
ever, if an application performs long computation followed by a
burst of I/O, physical disk prefetch operations may be invoked too
late to mask all disk I/O delay. AASFP uses a timer-driven ap-
proach to schedule disk prefetch operations. That is, every time
Linux’s timer interrupt occurs (roughly every10ms), if there is no
entry in the kernel-level prefetch queue, the CPU scheduler will
assign a higher priority to the prefetch thread so that the prefetch
thread can get scheduled sooner in the near future. Furthermore,
the scheduler will check whether there are prefetch entries in the
kernel-level prefetch queue that should be moved to the disk queue
according to an algorithm described next.

Before a request in the kernel-level prefetch queue is serviced,
the kernel checks whether this request is still valid by comparing
its prefetch call ID with the number of disk I/O calls that the com-
putation thread has made up to that point. If the prefetch entry’s

Test Scenario # of
Case Description Page

Access
Vol Vis 1 16MB, orthonormal, 4KB-block 4096
Vol Vis 2 16MB, non-orthonormal, 4KB-block 3714
Vol Vis 3 16MB, orthonormal, 32KB-block 4096
Vol Vis 4 16MB, non-orthonormal, 32KB-block 3856

FFT 256K 2MB, 256K points, 4KB-block 512
FFT 512K 4MB, 512K points, 4KB-block 1024
Forward 16MB, read forward, 4KB stride 4096

Backward 16MB, read backward, 4KB stride 4096
Forward 2 16MB, read forward, 8KB stride 2048

Backward 2 16MB, read backward, 8KB stride 2048

Table 1:Characteristics of test applications. The last column is in
terms of 4-KByte pages.

call ID is smaller, the entry has expired and the kernel just ignores
such entries. For a non-expired entry, the kernel dynamically de-
termines whether to service that entry at that moment. To make
this decision, the kernel maintains the number of entries in the disk
queue (k), the average time taken to service a disk request (t), and
the average computation time between two I/O calls for the appli-
cation (c). Suppose, the current I/O call ID isi, and the prefetch
call ID for the entry isj. Then, the time available before the appli-
cation accesses the prefetch block is approximatelyc× (j− i). In
the worst case scenario, a prefetch request sent to the disk queue at
that moment will be completed after time(k + 1) × t. Therefore
the kernel should service the prefetch request only if

(c× (j − i))− ((k + 1)× t) ≤ T ime Threshold
(j − i) ≤ Queue Threshold

The first term ensures that the disk block is prefetched before it is
needed, and the second term ensures that there are not too many
prefetch blocks in the buffer cache. Keeping the file buffer cache
from being overflowed is essential to prevent interference between
current and future working sets. BothQueue Threshold and
T ime Threshold are empirical constants that need to be fine-
tuned based on hardware configurations and workload characteris-
tics.

5 Performance Evaluation

5.1 Methodology
We have successfully implemented an AASFP prototype under
Linux 2.2. To evaluate the prototype’s performance, we used one
micro-benchmark and two real media applications, and measured
their performance on a Pentium Pro 200 MHz machine with 32M
memory. The first real-application is a volume rendering program
with dataset size256 × 256 × 256. This dataset is divided into
equal-sized “blocks,” which is the basic unit of disk I/O opera-
tion. The block size can be tuned to exploit the best trade-off be-
tween disk transfer efficiency and computation-I/O parallelism. In
this experiment, we view that data from different viewing direc-
tions and use different block sizes: 4K (16 × 16 × 16) and 32K
(32× 32× 32). For non-orthonormal viewing directions, the disk
access pattern is quite random.

The second application is an out-of-core FFT program taken
from the bookNumerical Recipes in C. The original program uses
four files for reading and writing. We have modified it to merge
all the reads and writes into one big file. We have tested the FFT
of 256K points (2MB file) and 512K points (4MB) of complex
number. Each read/write unit is 4K bytes.



Test Linux AASFP AASFP Unmasked
Case Overhead I/O Reduced
Vol Vis 1 68.95 31.76 3.59 62.14%
Vol Vis 2 83.05 64.95 3.22 12.99%
Vol Vis 3 36.87 31.23 3.02 66.61%
Vol Vis 4 30.99 29.78 3.02 30.00%
FFT 256K 33.42 33.74 0.00 0.00%
FFT 512K 66.68 67.84 0.00 0.00%
Forward 4.78 4.76 0.00 0.54%
Backward 52.54 7.63 0.00 84.75%
Forward 2 4.61 4.84 0.00 0.00%
Backward 2 25.02 6.19 0.00 78.40%

Table 2: The run-time performance of the test cases under Linux
and AASFP. All reported measurements are in seconds.

Table 1 shows the characteristics of different application we
have used for our performance evaluation.Vol Vis1, Vol Vis 2, Vol
Vis3 , Vol Vis 4are four variations of the volume visualization ap-
plication viewed from different angles with different block sizes.
FFT 256K, FFT 512Kare the out-of-core FFT program with d-
ifferent input sizes.Forward, Backward, Forward2, Backward2
are variations of a micro-benchmark that emulates the disk access
behavior of a digital video player that supports fast forward and
backward in addition to normal playbacks.

5.2 Performance Results and Analysis
Table 2 shows the measured performance of the test cases in Table
1 under generic Linux (without AASFP) and under AASFP. Un-
der Linux, only sequential disk prefetching is supported. Under
AASFP, only application-specific disk prefetching but not sequen-
tial disk prefetching is supported. The fourth column shows the
AASFP overhead, which is due to the extra time to run the prefetch
thread. This overhead is in general insignificant because the cost
of performing computation in the prefetch thread, and the associat-
ed process scheduling and context switching is relatively small by
comparison. The last column shows the percentage reduction of
unmasked disk I/O time (i.e. I/O time that cannot be masked with
effective computation performed by the application) in AASFP as
compared to generic Linux. However, a small part of this reduc-
tion is achieved due to the overlap of the disk I/O with the extra
computation in the prefetch thread. Hence, the actual speedup is
not proportional to the percentage of disk I/O time masked.

For volume visualization applications with a 4-KByte block
size, AASFP achieves 54% and 22% overall application run-time
improvement for orthonormal and non-orthonormal viewing direc-
tions, respectively. There is not much performance gain for the
cases that use 32-KByte block size. Retrieving 32-KByte block-
s corresponds to fetching eight 4K pages consecutively. There is
substantial spatial locality in this access pattern, which detracts
the relative performance gain from AASFP. This also explains why
AASFP is comparable to generic Linux when 32-KByte blocks are
used.

For the out-of-core FFT apparently we do not see any improve-
ment. This is due to its extremely sequential accessing patterns.
Although FFT is well known by its butterfly algorithmic structure,
which suggests random disk access patterns, a more careful exam-
ination revealed that not only out-of-core FFT, but also most other
out-of-core applications exhibit sequential disk access patterns to
improve disk access efficiency. Nevertheless our results show that
even under such fairly regular access patterns AASFP can still pro-
vide as good performance as sequential prefetching. This means
that AASFP does not mistakenly prefetch something that is not
necessary and eventually hurt the overall performance.

For the micro-benchmark, we obtain 86% performance im-
provement for backward access, which represents the worst case
for the sequential prefetching scheme used in Linux. Note that
we do not lose any performance for Forward and Forward2 when
compared to Linux. This is the best case for the original kernel.
The last measurement again demonstrates that AASFP performs
as well as generic Linux for sequential access patterns.

6 Conclusion and Future Work
We have design, implemented and evaluated a Linux-based auto-
matic application-controlled file prefetching system that is partic-
ularly useful for multimedia applications. It is automatic in the
sense that the system exploits application-specific disk access pat-
tern for file prefetching without any manual programming. The
prototype implementation is fully operational and provides up to
54% overall application improvement for real world media appli-
cations. We are continuing the development of AASFP, in particu-
lar, extending the current prototype to allow multiple I/O-intensive
applications to run on an AASFP-based system simultaneously.
Also, we are planning to extend the AASFP prototype to the con-
text of Network File System (NFS), and support the concept of ac-
tive network file server, which performs application-specific pro-
cessing including prefetching at the server side.
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