
Estimating the Worst-Case Energy Consumption of Embedded Software

Ramkumar Jayaseelan Tulika Mitra Xianfeng Li
School of Computing

National University of Singapore
{ramkumar,tulika,lixianfe}@comp.nus.edu.sg

Abstract

The evolution of battery technology is not being able to
keep up with the increasing performance demand of mobile
embedded systems. Therefore, battery life has become an
important design constraint. As battery-operated embedded
devices are deployed in mission critical systems, designers
should ensure that the energy constraints are satisfied in
addition to the timing constraints — the battery should not
drain out before a critical task completes execution. Giving
these guarantees requires the knowledge of the worst-case
execution time and energy of a task. Significant progress
has been made in estimating the worst-case execution time
through static analysis. In contrast, existing energy esti-
mation techniques use average-case execution profile of a
program and as such cannot guarantee the satisfiability of
energy constraints. In this paper, we present a static analy-
sis technique to estimate the worst-case energy consump-
tion of a task on complex micro-architectures. Estimating a
bound on energy is non-trivial as it is unsafe to assume any
direct correlation with the bound on execution time. Exper-
imental evaluation with a number of benchmark programs
indicates the accuracy of our worst-case energy consump-
tion estimates.

1 Introduction

The proliferation of battery-operated embedded devices
has made energy consumption one of the key design con-
straints. Increasingly, mobile devices are demanding im-
proved functionality and higher performance. Unfortu-
nately, the evolution of battery technology is not being able
to keep up with the performance requirements. Therefore,
significant research effort has focused on conserving energy
to prolong battery life. All these techniques are targeted to-
wards the average-case energy consumption of a task. On
the other hand, designers of mission critical systems, op-
erating on limited battery life, have to ensure that both the
timing and the energy constraints are satisfied under all pos-

sible scenarios — the battery should never drain out before
a task completes its execution. Conventional schedulability
analysis techniques can guarantee the satisfiability of timing
constraints for hard real-time systems. One of the key inputs
required for this schedulability analysis is the worst-case
execution time (WCET) of the tasks. A decade of research
in static timing analysis has solved the WCET estimation
problem to a large extent. The related problem of estimat-
ing the worst-case energy consumption (WCEC) remains
largely unexplored even though it is considered highly im-
portant [21] especially for mobile devices. In this paper,
we take the first step towards understanding and estimating
the worst-case energy consumption of a task executing on a
particular processor for all possible inputs.

Estimating WCEC is in particular important for remotely
deployed embedded systems such as nodes of wireless sen-
sor networks that depend on environmental energy (e.g., so-
lar power) for battery recharge. The sensor nodes should
run perpetually on ambient energy without manual recharg-
ing or replacement of batteries. Often such sensor net-
works are deployed for mission critical applications (e.g.,
defense applications) and must satisfy timing and energy
constraints. Recently, scheduling algorithms [10] have been
proposed for distributed sensor networks that take into ac-
count the spatio-temporal profile of the available energy re-
sources at the different nodes. These algorithms can ex-
ploit accurate timing analysis results for sensor network
nodes [17]. But they assume energy consumption of a task
corresponding to some “representative” inputs. As a result,
they cannot guarantee that the task, when scheduled on a
particular sensor node, will complete its execution before
the battery drains out. The knowledge of WCEC is crucial
in this scenario. Similarly, reward-based scheduling algo-
rithms [19] that attempt to satisfy both timing and energy
constraints can benefit from the WCEC estimates. It is also
important for battery-operated embedded systems catering
to a mix of critical and non-critical tasks. Given a critical
task τ and a non-critical task τ ′, the operating system may
not schedule τ ′ if the summation of the WCEC values of τ
and τ ′ exceeds the remaining battery power.



13000

14000

15000

16000

17000

18000

19000

20000

21000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115
Program Inputs

E
ne

rg
y(

na
no

 J
ou

le
s)

4500

4600

4700

4800

4900

5000

5100

E
xe

cu
tio

n 
Ti

m
e(

cy
cl

es
)

Total Energy
Execution Time

Figure 1. Variations in execution time versus total
energy for different inputs of insertion sort.

Clearly, simulating the execution of a task for all possible
inputs so as to bound its energy consumption is not feasible.
Also, the complexity of current micro-architectures makes
it highly improbable that the critical execution path can be
determined without the help of analytical methods. Thus,
we propose a static analysis technique to estimate safe and
tight bounds for the worst-case energy consumption.

A natural question that may arise is the possibility of
using the WCET path to compute a bound on the worst-
case energy consumption. As energy = average power×
execution time, this may seem like a viable solution and
one that can exploit the extensive research in WCET analy-
sis in a direct fashion. Unfortunately, the path correspond-
ing to the WCET may not coincide with the path consuming
maximum energy. Figure 1 plots the variation in execution
time and total energy corresponding to all possible inputs of
an insertion sort program (for a 5-element array)1. The in-
puts for this program are plotted along the x-axis according
to increasing execution time. There are a large number of
points in this plot where the energy consumption decreases
with increasing execution time. This happens because dy-
namic energy (due to switching activity in the circuit) need
not necessarily have a correlation with the execution time.
So, the input that leads to WCET may not be identical to the
input that leads to WCEC.

How can we then compute the worst-case energy for
a code fragment? Traditional power simulators, such as
Wattch [2] and Simple Power [23], perform cycle-by-cycle
power estimation and then add them up to obtain total en-
ergy consumption. Clearly, we cannot use cycle-accurate
estimation to compute worst-case energy bound as it would
essentially require us to simulate all possible scenarios
(which is too expensive). The other method [22, 20] is
to use fixed per-instruction energy; but it fails to capture
the effects of cache miss and branch prediction. Instead,

1Details of the experimental setup are given in Section 6.

our WCEC analysis technique is based on the key obser-
vation that the energy consumption of a program can be
separated out into the following time-dependent and time-
independent components.

Instruction-specific energy The energy that can be at-
tributed to a particular instruction (e.g., energy con-
sumed due to the execution of the instruction in the
ALU, cache miss, etc.). Instruction-specific energy
does not have any relation with the execution time.

Pipeline-specific energy The energy consumed in the vari-
ous hardware components (clock network power, leak-
age power, switch-off power etc.) that cannot be at-
tributed to any particular instruction. Pipeline-specific
energy is roughly proportional to the execution time.

Thus, we avoid cycle-accurate simulation by estimating the
two energy components separately. Pipeline-specific energy
estimation can exploit the knowledge of WCET. However,
as we will see later, the definition of switch-off power and
clock network power makes the energy analysis much more
involved — we cannot simply multiply the WCET by a
constant power factor. Moreover cache misses and overlap
among basic blocks due to pipelining and branch prediction
adds significant complexity to our analysis. In summary,
the contributions of our work are as follows

• To the best of our knowledge, this is the first work that
attempts to derive bound on worst-case energy con-
sumption of a task through static analysis.

• We propose a safe but tight worst-case energy con-
sumption estimation method. Experimental evalua-
tion shows that our analysis derives quite accurate es-
timates for a large number of benchmarks.

Organization The rest of the paper is organized as fol-
lows. Section 2 briefly introduces the power-related termi-
nologies used in the paper. We review the previous work in
energy estimation and timing analysis in Section 3. Sec-
tions 4 and 5 present our core technique to estimate the
worst-case energy consumption of a program. We evaluate
the accuracy of our estimation method through experimen-
tal evaluation in Section 6. Section 7 concludes the paper
and outlines possible future directions.

2 Background

Power and energy are two different terms that are often
used interchangeably as long as the context is clear. For
battery life, however, the important metric is energy rather
than power. The energy consumption of a task running on a
processor is defined as Energy = P ×t, where P is the av-
erage power and t is the execution time. Energy is measured
in Joules whereas power is measured in Watts (Joules/sec).



Power consumption consists of two main components: dy-
namic power and leakage power P = Pdynamic +Pleakage.

Dynamic power is caused by the charging and discharg-
ing of the capacitive load on each gate’s output due to
switching activity. It is defined as Pdynamic = 1

2AV 2
ddCf

where A is the switching activity, Vdd is the supply volt-
age, C is the capacitance and f is the clock frequency. For
a given processor architecture, Vdd and f are constants.
The capacitance value for each individual component of
the processor can be derived through RC-equivalent circuit
modeling [2].

Switching activity A is dependent on the particular pro-
gram being executed. For circuits that charge and discharge
every cycle, such as double-ended array bitlines, an activity
factor of 1.0 can be used. However, for other circuits (e.g.,
single-ended bitlines, internal cells of decoders, pipeline
latches etc.), an accurate estimation of the activity factor re-
quires examination of the actual data values. It is difficult,
if not impossible, to estimate the activity factors through
static analysis. Therefore, we conservatively assume an ac-
tivity factor of 1.0 (i.e., maximum switching) for each ac-
tive processor component. However, most processors have
some form of clock gating (which we do model) that dis-
ables unused components and effectively lowers the activity
factor. Moreover, previous research [22] has shown that the
switching activity (so called “circuit-state effect”) does not
have significant impact on total power consumption.

Modern processors employ clock gating to save power.
This involves switching off clock signals to the idle com-
ponents so that they do not consume dynamic power in the
unused cycles. We assume three different clock gating op-
tions following the model in [2].

Simple clock gating: This simplest gating style assumes
that peak power will be consumed by a component if there
is at least one access in a given cycle, and zero power oth-
erwise. For example, peak power will be consumed in a
multi-ported register file even if only one port is accessed.

Ideal clock gating: This gating style is most aggres-
sive in that a multi-ported structure consumes power pro-
portional to the number of ports accessed in a given cycle.

Realistic clock gating: Realistic clock gating is similar
to ideal clock gating except that idle units/ports dissipate
10% of the peak power. This is a more realistic modeling
as it may be impossible to totally shut-off power to an idle
hardware unit/port. We refer to the power consumed in the
idle cycles as switch-off power.

Clock distribution network consumes a significant frac-
tion of the total energy. Without clock gating, clock power
is independent of the characteristics of the applications.
However, clock gating results in power savings in the clock
distribution network. Whenever the components in a por-
tion of the chip are idle, the clock network in that portion of
the chip can be disabled reducing clock power.

Leakage power captures the power lost from the leakage
current irrespective of switching activity. In this work, we
use the leakage power model proposed in [24]: Pleakage =
Vdd × N × kd × Ileakage, where Vdd is the supply voltage
and N is the number of transistors. Ileakage is a constant
specifying the leakage current corresponding to a particular
process technology. kd is an empirically determined design
parameter obtained through SPICE simulation correspond-
ing to a particular device.

3 Related Work

In this section, we review related work in two differ-
ent areas: architectural-level power/energy estimation tech-
niques and static analysis techniques to estimate the worst-
case execution time (WCET).

To the best of our knowledge this is the first work that
attempts to estimate the worst-case energy consumption of
a program. Many researchers have proposed methods to es-
timate the average-case power/energy consumption. Power
consumption in a processor can be estimated at various lev-
els; see [11] for a detailed survey. Low-level power estima-
tion techniques are suitable to evaluate circuit-level tech-
niques for saving power. Architectural-level power esti-
mation techniques can be broadly classified into two cat-
egories: cycle-accurate power simulators and instruction-
level energy estimations.

Cycle-accurate power simulators, such as Wattch [2] and
SimplePower [23], are used to evaluate micro-architectural
and compiler-based techniques to save power. Wattch has
two main components: the parametrized power models and
the architectural simulator. It works in association with
SimpleScalar [1], a cycle-accurate micro-architectural sim-
ulator. The parameterized power models are used to esti-
mate the power consumed per access for each component.
The architectural simulator is used to determine the usage
counts of the various components. The usage counts are
multiplied by the power per access to obtain total energy.

Instruction-level power estimation methods have been
presented in [22, 20]. In [22], a fixed energy cost is associ-
ated with each instruction. [20], on the other hand, only dis-
tinguishes between power consumption of different classes
of instructions. Instruction-level energy estimation tech-
niques are quite accurate for simple processor architectures.
However, in the presence of complex architectural features,
such as cache, pipeline, and speculation, instruction-level
energy estimation is not sufficient. The key difference be-
tween our approach and instruction-level energy estimation
techniques is that we have to be inherently conservative to
derive a bound on the worst-case energy consumption.

Even though we are not aware on any work on estimating
worst-case energy consumption, static analysis techniques
to estimate worst-case execution time (WCET) is a well-



researched area [21]. Current research on WCET analysis
takes the effect of micro-architectures into consideration.
These include cache modeling [15, 5], pipeline modeling [4,
7, 9, 12] and branch prediction modeling [3, 13]. In fact,
commercial WCET analysis tools that can model complex
processor architectures (e.g., Motorola ColdFire, PowerPC
755) are currently available in the market [6].

4 Estimation of Worst Case Energy

The starting point of our analysis is the control flow
graph of the program. The first step of our analysis is to es-
timate an upper bound on the energy consumption of each
individual basic block. Once these bounds are known, we
can estimate the worst case energy of the entire program.

4.1 Processor Model

For an architecture without pipeline, cache, and other
performance enhancing features, there is no variation in the
energy consumption of a basic block. Thus, a variety of
techniques can be employed to compute the energy con-
sumption of a basic block including cycle-accurate simu-
lation [2, 23] and software-level power estimation [22, 20].
Estimating a tight bound on the energy consumption of a
basic block gets difficult as the complexity of the micro-
architecture increases. However, in the embedded domain,
many recent processors employ out-of-order pipelines,
cache and branch prediction; examples include Motorola
MPC 7410, PowerPC 755, PowerPC 440GP, AMD-K6 E
and NEC VR5500 MIPS. Sensor network nodes are in-
creasingly employing complex processors (e.g., Intel XS-
cale PXA255 processor based Stargate sensor gateway) and
even out-of-order execution [18].

In this section, we first assume a simplified processor
model that has out-of-order pipeline but perfect instruction
cache and branch prediction. Integration of the effects of
cache miss and branch misprediction are discussed in the
next section. The processor model we use is a slightly mod-
ified version of the SimpleScalar [1] sim-outorder sim-
ulator processor model. It has a standard 5-stage pipeline
consisting of Instruction Fetch (IF), Instruction Decode &
Dispatch (ID), Instruction Execute (EX), Write Back (WB)
and Commit (CM). Instruction fetch, decode, and commit
occur in program order. However, instructions can proceed
out-of-order in execute and write-back stages based on de-
pendency and resource contention. A central structure in
this pipeline is a circular buffer, called the re-order buffer
(ROB). Instructions remain in the ROB from the time they
are dispatched to the time they are committed. After decod-
ing, instructions are dispatched to ROB in program order.
But instructions can be issued from the ROB to execution
units out-of-order.

4.2 Energy Estimation for a Basic Block

Our goal here is to estimate a tight upper bound on the
total energy consumption energyBB of a basic block BB
through static analysis. From the discussion in Section 2

energyBB = dynamicBB + switchoffBB

+ leakageBB + clockBB (1)

where dynamicBB is the instruction-specific energy com-
ponent, i.e., the energy consumed due to switching ac-
tivity as an instruction goes through the pipeline stages.
switchoffBB , leakageBB , and clockBB are defined as
the energy consumed due to the switch-off power, leak-
age power, and clock power, respectively during wcetBB

where wcetBB is the worst case execution time of the basic
block BB. The worst case execution time(wcetBB) is esti-
mated using the static analysis technique in [12]. Now we
describe how to define bounds for each individual energy
component.

4.2.1 Instruction-specific Energy

The instruction-specific energy of a basic block is the dy-
namic power consumed due to the switching activity gener-
ated by the instructions in that basic block.

dynamicBB =
∑

instr ∈ BB

dynamicinstr (2)

where dynamicinstr is the dynamic power consumed by an
instruction instr. Now, let us analyze the energy consumed
by an instruction as it travels through the pipeline. The es-
timation model below assumes ideal/realistic clock gating
(see Section 2). Both these clock gating styles assume that
dynamic power consumed in multi-ported structure is pro-
portional to the number of accessed ports. Later we will
modify it to support simple clock gating.

Fetch and decode: The energy consumed here is due to
fetch, decode and instruction cache access. As we assume
perfect instruction cache, we do not need to model cache
misses. Refinement of the analysis to account for instruc-
tion cache misses is discussed in the next section.

Register access: The energy consumed for the register
file access due to reads/writes can vary from one class of in-
structions to another. Assuming ideal/realistic clock gating,
the energy consumption in the register file for an instruction
is proportional to the number of register operands.

Branch prediction: The energy consumption is fixed as
we assume perfect branch prediction here. In the next sec-
tion, we discuss modeling of branch misprediction.

Wakeup logic: When an operation produces a result, the
wakeup logic is responsible to make the dependent instruc-
tions ready and the result is written onto the result bus. An



instruction places the tag of the result on the wakeup logic
and the actual result on the result bus exactly once and the
corresponding energy can be easily accounted for. The en-
ery consumed in the wakeup logic is proportional to the
number of output operands.

Selection logic: Selection logic is interesting from the
point of view of energy consumption. The selection logic is
responsible to select an instruction to execute from a pool of
ready instructions. Unlike the other components discussed
earlier, an instruction may access the selection logic more
than once. This is because an instruction can request for a
specific functional unit and the request might not be granted
in which case it makes a request in the next cycle. However,
we cannot accurately determine the number of times an in-
struction would access the selection logic. Therefore, we
conservatively assume that the selection logic is accessed
every cycle.

Functional units: The energy consumed by an instruc-
tion in the execution stage depends on the functional unit
it uses and its latency. For variable latency instructions,
we assume the maximum energy consumption. We as-
sume a perfect data cache and hence energy consumption
for load/store units is also constant and equal to the energy
consumption of the data cache.

Now, Equation 2 corresponding to dynamic energy con-
sumed in a basic block BB is redefined as

dynamicBB = selection powercycle × wcetBB

+
∑

instr ∈ BB

dynamicinstr (3)

where selection powercycle is a constant defining the
power consumed in the selection logic per cycle. wcetBB

is the worst case execution time of BB. Note that
dynamicinstr is redefined as the power consumed by instr
in all the pipeline stages except for selection logic.

Modifications for simple clock gating style The previ-
ous discussion assumes ideal/realistic clock gating where
the energy consumption in a multi-ported structure is pro-
portional to the number of accesses per cycle. In con-
trast, for simple clock gating, a multi-ported structure con-
sumes peak power even if there is only one access in that
cycle. Therefore, we need to modify the dynamic en-
ergy component corresponding to multi-ported hardware
structures, namely caches, register file etc. Correspond-
ing to each multi-ported hardware structure C, we com-
pute the total number of accesses to that structure by the
instructions in basic block BB called accessBB(C). As
we cannot determine the distribution of these accesses
over the execution period of BB, we simply assume
that full power will be consumed in component C for
min(accessBB(C), wcetBB) cycles. Note that such an as-

sumption is conservative and hence the estimated dynamic
energy of basic block (dynamicBB) is an upper bound.

4.2.2 Pipeline-specific Energy

As mentioned before, pipeline-specific energy consists of
three components: switch-off energy, clock-energy and
leakage energy. All three energy components are influenced
by the execution time of the basic block.

Switch-off Energy The switch-off energy refers to the
power consumed in an idle unit when it is disabled through
clock gating. Switch-off energy is zero for ideal clock gat-
ing and simple clock gating styles (see Section 2). How-
ever, we need to model switch-off power for realistic clock
gating. Let accessBB(C) be the total number of accesses
to a component C by the instructions in basic block BB.
Let ports(C) be the maximum number of allowed ac-
cesses/ports for component C per cycle. Then, we define
switch-off energy for component C in basic block BB as

switchoffBB(C) =
(
wcetBB − accessBB(C)

ports(C)

)
× full powercycle(C)× 10% (4)

where full powercycle(C) is the full power consumption
per cycle for component C. The switch-off energy corre-
sponding to a basic block can now be defined as

switchoffBB =
∑

C∈components

switchoffBB(C) (5)

where components is the set of all hardware components.

Clock Network Energy In order to estimate the energy
consumed in the clock network, we should take clock gat-
ing into account. As we evaluate the accuracy of our estima-
tion technique against Wattch [2], we use their approxima-
tion for clock gating. Our modeling of conditional clocking
power can be easily adapted to accurately reflect the under-
lying clock distribution scheme.

clockBB = non gated clockBB×
(

circuitBB

non gated circuitBB

)
(6)

where non gated clockBB is the clock energy without gat-
ing and can be defined as

non gated clockBB = clock powercycle × wcetBB (7)

where clock powercycle is the peak power consumed per
cycle in the clock network. circuitBB is defined as the
power consumed in all the components except clock net-
work in the presence of clock gating. That is,

circuitBB = dynamicBB + switchoffBB + leakageBB

(8)



non gated circuitBB , on the other hand, is the power con-
sumed in all the components except clock network in the
absence of clock gating. It is simply defined as

non gated circuitBB = circuit powercycle × wcetBB

(9)
circuit powercycle is a constant defining peak dynamic
plus leakage power per cycle excluding the clock network.

Leakage Energy The leakage energy is simply define as
leakageBB = Pleakage × wcetBB where Pleakage is the
power lost per processor cycle from the leakage current re-
gardless of the circuit activity. This quantity, as defined
in Section 2, is a constant given a processor architecture.
wcetBB is as usual the worst-case execution time of BB.

4.3 Estimation for the whole program

Given the energy bounds for the basic blocks, we can
now estimate the WCEC of a program using an Integer Lin-
ear Programming (ILP) formulation. The ILP formulation
is similar to the one originally proposed by Li and Ma-
lik [15] to estimate the WCET of a program. We replace
the execution time of the basic blocks with the correspond-
ing energy consumptions. We briefly describe the ILP for-
mulation here for the sake of completeness.

The input to the ILP formulation is the control flow graph
(CFG) of the program. The vertices of the CFG are the ba-
sic blocks with their corresponding energy bounds. An edge
Bi → Bj denotes the flow of control from basic block Bi

to Bj . We assume that the CFG has a unique start node
(Bstart) and a unique end node (Bend) such that all pro-
gram paths originate at the start node and terminate at the
end node. For programs with procedures and functions (re-
cursive or otherwise), we create a separate copy of the CFG
of a procedure P for every distinct call site of P . Each call
of P transfers control to its corresponding copy.

Flow constraints and loop bounds Let countBi de-
note the number of times basic block Bi is executed, and
countBi→Bj

denote the number of times control flows
through the edge Bi → Bj . As inflow equals outflow for
each basic block (except for the start and end nodes)

countBi
=

∑
Bj

countBj→Bi
=

∑
Bj

countBi→Bj

As the start and end blocks are executed exactly once:

countBstart
=

∑
Bi

countBstart→Bi
= 1

countBend
=

∑
Bi

countBi→Bend
= 1

B1 B2

BB

B3

20

50

50

30 B1

B3

BB

Time
t1

t2

t3

t4
t5

WCETBB

Figure 2. Illustration of overlap.

Of course, we need bounds on the maximum number of it-
erations for loops and maximum depth of invocations for
recursive procedures. These bounds can be user provided,
or can be computed off-line for certain programs [8].

Objective function Let energyBi
be the upper bound on

the energy consumption of a basic block Bi. Then the total
energy consumption of the program is given by

Total energy =
N∑

i=1

energyBi
× countBi

(10)

where the summation is taken over all the basic blocks in
the program. The worst-case energy consumption of the
program can be derived by maximizing the objective func-
tion under the flow constraints through an ILP solver.

4.4 Execution overlap among basic blocks

So far, for the simplicity of exposition, we have not dis-
cussed the issue of overlap among the basic blocks due to
the pipelined nature of execution. A major difficulty in es-
timating WCEC, however, arises from the overlapped exe-
cution of basic blocks. Let us illustrate the problem with
a simple example. Figure 2 shows a small portion of the
CFG. Suppose we are interested in estimating the energy
bound for basic block BB. The annotation for each ba-
sic block indicates the maximum execution count. This is
just to show that the execution counts of overlapped basic
blocks can be different. As the objective function (defined
by Equation 10) multiplies each energyBB with its execu-
tion count countBB ,we cannot arbitrarily transfer energy
between overlapping basic blocks. Clearly, instruction spe-
cific energy of BB should be estimated based on only the
energy consumption of its instructions. However we can-
not take such a simplistic view for pipeline specific energy.
Pipeline-specific energy depends critically on wcetBB .



If we define wcetBB without considering the overlap,
i.e., wcetBB = t5 − t2, then it results in excessive over-
estimation of the pipeline-specific energy values as the time
intervals t3−t2 and t5−t4 are accounted for multiple times.
To avoid this, we can re-define the execution time of BB
as the time difference between the completion of execution
of the predecessor (B1 in our example) and the completion
of execution of BB, i.e., wcetBB = t5 − t3. Of course,
if BB has multiple predecessors then we need to estimate
wcetBB for each predecessor and then take the maximum
value among them.

This definition of execution time, however, cannot be
used to estimate the pipeline-specific energy of BB in a
straightforward fashion. This is because, switch-off energy
(for realistic clock gating) and thus clock network energy
depend on the idle cycles for hardware ports/units. As we
are looking for worst-case energy, we need to estimate an
upper bound on idle cycles. Idle cycles estimation (see
Equation 4) requires an estimate of accessBB(C), which
is defined as the total number of accesses to a component C
by the instructions in basic block BB. Now, with the new
definition of wcetBB as the interval t5 − t3, not all these
accesses fall within wcetBB and we run the risk of under-
estimating idle cycles. To avoid this problem, we replace in
Equation 4 accessBB(C) with accessWCETBB

BB (C), which
is defined as the total number of accesses to a component C
by the instructions in basic block BB that are guaranteed to
occur within wcetBB . Note that we do not change the defi-
nition of accessBB(C) for calculating the dynamic energy
for simple clock gating. This is because we are interested
on the upper bound on the number of accesses in that case.

To estimate the accesses according to this new definition,
we take a closer look at the WCET estimation technique
for each basic block which is based on [12]. Basically, it
is an interval-based iterative technique that estimates earli-
est/latest start and completion time for the different pipeline
stages of each instruction in the basic block. Due to space
constraints, we refer interested readers to [12] for more de-
tails. Now, let t3 be the latest commit time of the last in-
struction of the predecessor node B1 and t5 be the earliest
commit time of the last instruction of BB. Then, for each
pipeline stage of the different instructions in BB, we check
whether its earliest or latest start time falls within the in-
terval t5 − t3. If the answer is yes, then the accesses cor-
responding to that pipeline stage are guaranteed to occur
within wcetBB and are included in accessWCETBB

BB (C).
We now estimate the pipeline-specific energy w.r.t. each
of BB’s predecessors and take the maximum value.

5 Integrating cache and branch prediction

In the previous section, we computed worst-case energy
by assuming perfect instruction cache and branch predic-

tion. In this section, we integrate the modeling of cache
miss and branch misprediction. The modeling of these
micro-architectural features exploits our previous work in
the context of WCET analysis [14]. Our previous work
presents an integrated ILP-based modeling where program
path analysis as well as branch prediction/ instruction cache
behavior are formulated as linear constraints; an ILP solver
is used to maximize the objective function denoting pro-
gram’s execution time. In this paper, we directly use the
ILP formulation of [14] to capture flow analysis, instruction
cache and branch prediction effects. But we modify the esti-
mation of the constants denoting the energy values of basic
blocks. Due to space consideration, we will only mention
the modifications required for energy analysis.

The basic idea is to define different scenarios for a basic
block corresponding to cache miss and branch mispredic-
tion. If these scenarios are defined suitably, then we can
estimate a constant that bounds the energy consumption of
a basic block corresponding to each scenario. Finally, the
execution frequencies of these scenarios are defined as ILP
variables and are bounded by additional linear constraints.

Scenarios corresponding to cache misses are defined as
follows. Given a cache configuration, a basic block BB
can be partitioned into a fixed number of memory blocks,
with instructions in each memory block being mapped to the
same cache block (cache accesses of instructions other than
the first one in a memory block are always hits). A cache
scenario of BB is defined as a mapping of hit or miss to
each of the memory blocks of BB. We now compute upper
bounds on energy of BB w.r.t. each of the possible cache
scenarios. Basically, for each cache scenario, we need to
add the dynamic energy due to cache misses defined as

mem energyω
BB = missω

BB × access energy (11)

where mem energyω
BB is the main memory energy for BB

corresponding to cache scenario ω, missω
BB is the number

of cache misses in BB corresponding to cache scenario ω,
and access energy is a constant defining the energy con-
sumption per main memory access. Of course, we need to
re-estimate the pipeline-specific energy for each cache sce-
nario by taking into account the WCET corresponding to
that scenario.

Similarly, the scenarios for branch prediction are defined
as the two branch outcomes (correct prediction and mis-
prediction) corresponding to each of the predecessor basic
blocks. Branch misprediction results in additional dynamic
energy consumption due to the the execution of additional
instructions along the mispredicted path. In addition, mis-
prediction may increase the WCET of a basic block result-
ing in additional pipeline-specific energy. We follow the
modeling proposed in [14] that estimates the WCET for
each scenario. This takes care of the additional pipeline-
specific energy due to misprediction.



BB’

BB

BB’
BX

BB

Time
t1

t2

t3

BX

Figure 3. Illustration of branch misprediction.

We estimate the additional instruction-specific energy
due to the execution of speculative instructions as follows.
Let BB be a basic block with BB′ as the predecessor
(see Figure 3). If there is a misprediction for the control
flow BB′ → BB, then instructions along the basic block
BX will be fetched and execution. The executions along
this mispredicted path will continue till the commit of the
branch in BB′. Let t3 be the latest commit time of the mis-
predicted branch in BB′. For each of the pipeline stages of
the instructions along the mispredicted path (i.e., BX), we
check if its earliest start time is before t3. If the answer is
yes, then the dynamic energy for that pipeline stage is added
to the branch misprediction energy of BB. In this fashion,
we estimate the WCEC of a basic block BB correspond-
ing to all possible scenarios, where a scenario consists of a
preceding basic block BB′, correct/wrong prediction of the
conditional branch in BB′ and the cache scenario of BB.

We now redefine our ILP formulation to integrate our
analysis of pipelining, instruction cache and branch predic-
tion. Let B1, . . . , BN be the set of basic blocks of the pro-
gram whose WCEC we are estimating. Now the execution
of Bi is associated with its cache scenarios and the predic-
tion of its preceding branch. We denotes the set of possi-
ble cache scenarios at Bi as Ωi. Considering the possible
cache scenarios and correct/wrong prediction of the preced-
ing branch for a basic block, the ILP objective function de-
noting a program’s total energy is now written as follows.

Energy =
∑N

i=1

∑
j→i

∑
ω∈Ωi

energyc,ω
j→i ∗ countc,ω

j→i

+ energym,ω
j→i ∗ countm,ω

j→i (12)

where energyc,ω
j→i is the WCEC of Bi executed under the

following scenario: (1) Bi is reached from a preceding
block Bj , (2) the branch prediction at the end of Bj is cor-
rect or Bj does not have a conditional branch, and (3) Bi is
executed under a cache scenario ω ∈ Ωi. Also, countc,ω

j→i

is the number of times that Bi is executed under this con-
text. Similarly, energym,ω

j→i is the WCEC of Bi executed
under the following scenario: (1) Bi is reached from a pre-
ceding block Bj , (2) the branch at the end of Bj is mis-
predicted, and (3) Bi is executed under a cache scenario

ω ∈ Ωi. Again, countm,ω
j→i is the number of times that Bi is

executed under this context.
We have already estimated energyc,ω

j→i and energym,ω
j→i

as constants. We use the constraints developed in [14] to
bound the ILP variables countc,ω

j→i and countm,ω
j→i. Finally,

we maximize the objective function under these constraints.

6 Experimental Results

In this section we evaluate the accuracy of our estima-
tion technique using some benchmarks commonly used for
WCET analysis. 2 We use the SimpleScalar [1] framework
for our experiments. We model a processor with out-of-
order pipeline, instruction cache and branch prediction. Our
estimator can be parameterized w.r.t to the cache configu-
ration, branch predictor configuration, the number of en-
tries in the instruction window, the latency of the functional
units etc. The processor model for these experiments has
8-entry instruction window, 4-entry fetch queue and the fol-
lowing functional units: a single-cycle integer ALU, an in-
teger multiplier with 1 ∼ 4 cycle latency, a floating-point
adder with 1 ∼ 2 cycle latency and a floating-point multi-
plier with 1 ∼ 12 cycle latency. We assume a single-cycle
load/store unit (i.e., perfect data cache). We model a 4KB
instruction cache with 4-way associativity, 32-byte block
size and LRU replacement policy. The cache hit latency is
one cycle and cache miss latency is 10 cycles. We assume
a gshare branch predictor with 2-bit branch history register
and 16-entry branch prediction table. The clock frequency
of the processor is assumed to be 600 MHz and the supply
voltage is 2.5 V.

We use the parameterized power models of Wattch [2],
a micro-architectural level power simulator, to estimate the
energy consumed per access for the hardware components.
Our power models differ from Wattch in certain aspects.
First, Wattch does not model the main memory energy cor-
responding to cache misses. We use the energy per access
for a 256MB DDR RAM obtained from the micron system
power calculator [16]. Second, Wattch does not distinguish
among different integer and floating-point operations as far
as the energy consumption is concerned. For example, it
uses the same energy value for integer addition and multi-
plication. We fix this problem in our power models. Finally,
we model leakage power for array based structures such as
register files and cache [24] but Wattch does not.

Given the binary executable of a program, we first con-
struct the control flow graph. Procedure calls are handled by
replicating the control flow graph associated with the proce-
dure for each call and adding edges appropriately at the call
and return sites. Next, our analyzer estimates the energy at

2The insertion sort program here sorts 100-element array as opposed to
5-element array used for the plots in Figure 1.



basic block level using the power models. Finally, it formu-
lates the objective function and constraints for instruction
cache, branch prediction as well as the flow constraints for
the ILP solver. We use CPLEX, a commercial ILP solver
to obtain the estimated WCEC by maximizing the objective
function under the constraints.

Table 1 presents the accuracy of our WCEC estimation
technique for three different clock gating styles (see Section
2). Est represents the WCEC value returned by our esti-
mation technique. For comparison purposes, we also need
the actual WCEC (Actual) where Est ≥ Actual. Unfor-
tunately, we cannot find the actual WCEC for most bench-
marks due to the large number of possible inputs. Instead,
we use human guidance to select certain program inputs
which we hope will lead a value that is close to the ac-
tual WCEC. We then use Wattch (with suitably modified
power models for leakage and main memory energy) to sim-
ulate the program with these selected inputs and report the
maximum observed energy. This maximum energy value
obtained through simulation of a limited number of pro-
gram inputs is called Observed WCEC (Obs). Clearly, Obs
represents a lower bound of the actual WCEC. Therefore,
Est ≥ Actual ≥ Obs. That is, the accuracy of our esti-
mation technique is at least as good as the results shown in
Table 1, but could possibly look even better had we known
the actual WCEC .

Table 1 shows that the estimated WCEC value is quite
close to the observed WCEC value for all the benchmarks.
Ideal clock gating assumes zero switch-off energy for all
idle units/ports. That is why it has the lowest energy value
among the three clock gating styles. Simple clock gating is
less aggressive in that it considers a unit idle only if there is
no access for any port of the unit. Realistic clock gating as-
sumes idle units/ports consume 10% of the peak power and
hence it has the highest energy values. Notice that our esti-
mation for ideal clock gating is also more accurate than that
of realistic, simple clock gating. In case of realistic clock
gating, a unit/port consumes switch-off energy during idle
cycles. As idle cycles are estimated from the WCET, any
over-estimation in the WCET results in over-estimation of
switch-off energy. For simple clock gating style, the source
of inaccuracy is different. In this case, idle units do not
consume any switch-off energy. However, for multi-ported
units, we now require the distribution of the accesses to that
unit over the execution period in order to identify idle cycles
for that unit. Unfortunately, we cannot determine this dis-
tribution accurately so we conservatively assume that every
access occurs in a different clock cycle

Another source of inaccuracy is due to the fact that we
only use minimal flow constraints in our ILP formulation
and these flow constraints do not take into account infea-
sible path information. The execution counts of the basic
blocks returned by the ILP solver are often higher than the

Benchmark WCET×AvgPower Observed
(µJ) (µJ)

isort 489.92 525.88
fft 12106.49 10260.86
fdct 138.20 105.57
ludcmp 131.76 119.33
matsum 972.03 1154.31
minver 93.612 80.80
bsearch 3.84 3.07
des 724.05 643.75
matmult 178.12 166.88
qsort 54.79 43.73
qurt 23.80 17.65

Table 2. Problem of WCEC estimation using WCET.

actual execution counts during simulations. That is, the ex-
ecution counts returned by the ILP solver may not match
with the execution profile of any feasible program path.

As discussed in Section 1, estimating the WCEC of a
task as WCET×AvgPower may lead to under-estimation,
i.e., it is unsafe. This is shown in Table 2 where for the
highlighted benchmarks, the Est WCET ×AvgPower is
less than even the observed worst case energy consumption.

Finally, we note that our estimation technique is quite
fast. For estimating the WCEC corresponding to the realis-
tic clock gating style (as it is the most time consuming), it
takes only 0.15 ∼ 2.88 seconds to formulate the ILP prob-
lems for the benchmark programs. ILP solver is even faster
and completes under 1.8 seconds for all the benchmarks.
All the experiments have been performed on a Pentium IV
1.3 GHz PC with 1 GB of memory.

7 Conclusions

We have presented a static analysis technique to estimate
the worst-case energy consumption of a program on a com-
plex processor architecture with out-of-order pipeline, in-
struction cache, and branch prediction. The worst-case en-
ergy consumption can help designers give power guarantees
for battery-operated embedded devices just as designers of
conventional real-time systems provide timing guarantees.
Experimental results indicate that our estimation is quite
accurate. In future, we would like to validate our estima-
tion results against commercial embedded processors. We
would also like to explore the possibility of extending our
technique to provide thermal guarantees.

8 Acknowledgments

This work was partially supported by NUS research
grant R252-000-171-112.



Benchmark Simple Clock Gating Ideal Clock Gating Realistic Clock Gating
Est(µJ) Obs(µJ) Ratio Est(µJ) Obs(µJ) Ratio Est(µJ) Obs(µJ) Ratio

isort 524.95 455.94 1.15 468.85 422.76 1.11 596.93 525.88 1.14
fft 11057.50 9185.39 1.20 9600.66 8586.49 1.12 13631.21 10260.86 1.33
fdct 99.31 88.78 1.11 89.92 83.63 1.08 121.65 105.57 1.15
ludcmp 115.39 100.32 1.15 98.75 92.77 1.06 139.75 119.33 1.17
matsum 1227.37 994.11 1.23 1012.83 929.74 1.09 1397.72 1154.31 1.21
minver 74.91 64.15 1.17 63.66 59.61 1.07 90.95 80.80 1.13
bsearch 3.51 3.07 1.14 2.537 2.40 1.06 3.81 3.07 1.24
des 613.16 553.74 1.10 546.415 518.22 1.05 715.58 643.75 1.11
matmult 172.39 136.93 1.26 149.706 132.08 1.13 212.94 166.88 1.28
qsort 39.50 33.84 1.17 34.90 31.16 1.12 49.84 43.73 1.14
qurt 16.36 12.97 1.26 13.98 11.91 1.17 21.95 17.65 1.24

Table 1. Accuracy of our worst-case energy estimation technique.

References

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An in-
frastructure for computer system modeling. IEEE Com-
puter, 35(2), 2002.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In Proceedings of the Annual International Sympo-
sium on Computer Architecture (ISCA), 2000.

[3] A. Colin and I. Puaut. Worst case execution time analysis
for a processor with branch prediction. Journal of Real time
Systems, 18(2/3), 2000.

[4] J. Engblom. Processor Pipelines and Static Worst-Case Exe-
cution Time Analysis. PhD thesis, Uppsala University, Swe-
den, 2002.

[5] C. Ferdinand and R. Wilhelm. Fast and Efficient Cache Be-
havior Prediction for Real-Time Systems. Real-Time Sys-
tems, 17(2/3), 1999.

[6] A. A. I. GmbH. aiT: Worst case execution time analyzer,
2004. http://www.absint.com/ait/.

[7] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Har-
mon. Bounding pipeline and instruction cache performance.
IEEE Transactions on Computers, 48(1):53–70, 1999.

[8] C. Healy et al. Supporting timing analysis by automatic
bounding of loop iterations. Journal of Real-Time Systems,
18(2/3), 2000.

[9] R. Heckmann et al. The Influence of Processor Architecture
on the Design and the Results of WCET Tools. Proceedings
of the IEEE, 91(7), 2003.

[10] A. Kansal, D. Potter, and M. B. Srivastava. Performance
aware tasking for environmentally powered sensor net-
works. In Proceedings of the Joint International Conference
on Measurement and Modeling of Computer Systems (SIG-
METRICS), 2004.

[11] P. Landman. High-level power estimation. In Proceedings
of the 1996 International Symposium on Low Power Elec-
tronics and Design, 1996.

[12] X. Li, T. Mitra, and A. Roychoudhury. Modeling out-of-
order processors for software timing analysis. In Proceed-
ings of the IEEE Real-Time Systems Symposium (RTSS),
2004.

[13] X. Li, T. Mitra, and A. Roychoudhury. Modeling control
speculation for timing analysis. Real-Time Systems Journal,
29(1), 2005.

[14] X. Li, A. Roychoudhury, and T. Mitra. Modeling out-
of-order processors for WCET analysis. Technical Re-
port TRC9/05, National University of Singapore, September
2005.

[15] Y.-T. S. Li, S. Malik, and A. Wolfe. Performance estima-
tion of embedded software with instruction cache modeling.
ACM Transaction on Design Automation of Electronic Sys-
tems (TODAES), 4(3), 1999.

[16] Micron. The micron system-power calculator.
http://www.micron.com/products/dram/
syscalc.html.

[17] S. Mohan, F. Mueller, D. Whalley, and C. Healy. Timing
analysis for sensor network nodes of the Atmega processor
family. In Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), 2005.

[18] L. Nazhandali et al. A second-generation sensor net-
work processor with application-driven memory optimiza-
tions and out-of-order execution. In CASES, 2005.

[19] C. Rusu, R. Melhem, and D. Mossé. Maximizing rewards
for real-time applications with energy constraints. ACM
Transactions on Embedded Computing Systems, 2(4), 2003.

[20] A. Sinha and A. P. Chandrakasan. Jouletrack: A web based
tool for software energy profiling. In Proceedings of the
Design Automation Conference (DAC), 2001.

[21] L. Thiele and R. Wilhelm. Design for timing predictability.
Real-Time Systems Journal, 28(2/3), 2004.

[22] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of em-
bedded software: A first step towards software power mini-
mization. IEEE Transactions of VLSI Systems, 2(4), 1994.

[23] W. Ye et al. The design and use of simplepower: A cycle-
accurate energy estimation tool. In Proceedings of the
ACM/IEEE Design Automation Conference (DAC), 2000.

[24] Y. Zhang et al. Hotleakage: A temperature-aware model
of subthreshold and gate leakage for architects. Technical
Report CS-2003-05, University of Virginia, 2003.


