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Abstract

Scratchpad memory is a popular choice for on-chip
storage in real-time embedded systems. The alloca-
tion of code/data to scratchpad memory is performed
at compile time leading to predictable memory ac-
cess latencies. Current scratchpad memory allocation
techniques improve the average-case execution time of
tasks. For hard real-time systems, on the other hand,
worst case execution time (WCET) is a key metric. In
this paper, we propose scratchpad allocation techniques
for data memory that aim to minimize a task’s WCET.
We first develop an integer linear programming (ILP)
based solution which constructs the optimal allocation
assuming that all program paths are feasible. Next, we
employ branch-and-bound search to more accurately
construct the optimal allocation by exploiting infeasi-
ble path information. However, the branch-and-bound
search is too time-consuming in practice. Therefore, we
design fast heuristic searches that achieve near-optimal
allocations for all our benchmarks.

1. Introduction

The increasing performance gap between the pro-
cessor and the off-chip memory has made it essential to
include some form of on-chip memory in real-time em-
bedded systems. Traditionally, caches have been used
extensively as on-chip memory in high-performance
computing systems. The advantage of cache is that
the allocation and deallocation of memory blocks from
the cache are managed dynamically by hardware. So,
caches are completely transparent to the programmer
and/or compiler. Unfortunately, this transparency leads
to unpredictable timing behavior for real-time software.
In real-time systems (especially safety-critical ones),
the designer must provide a guaranteed upper bound on
the worst case execution time (WCET) of the software.
This upper bound is estimated through static program
analysis called WCET analysis. The presence of caches
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Figure 1. Scratchpad memory.

(particularly data caches) in the processor adds signifi-
cant complications to the WCET analysis framework.

An alternative to caches for on-chip storage is
scratchpad memory, which is inherently more pre-
dictable. Scratchpad memories are small on-chip mem-
ories that are mapped into the address space of the
processor. Whenever the address of a memory access
falls within a pre-defined address range, the scratchpad
memory is accessed (see Figure 1). As the mem-
ory access latencies are predictable, scratchpad mem-
ories have become popular for real-time embedded sys-
tems. The other advantages of scratchpad memory in-
clude reduced area and energy consumption compared
to caches [4]. However, now the burden of allocating
code/data to scratchpad memory lies with the compiler.
In this paper, we concentrate on the allocation of data
objects to scratchpad memory with the goal of reduc-
ing the WCET of a task. Note that there is no data
cache in our memory hierarchy. We consider data ob-
jects for allocation as they are more difficult to handle
as far as timing predictability of real-time tasks is con-
cerned. Our allocation technique can also be applied to
code objects with minimal modification.

Significant research effort has been invested in de-
veloping efficient allocation techniques for scratchpad
memory [3, 12, 13]. However, all these techniques aim
to reduce the average-case execution time (ACET) by
utilizing extensive data memory access profiles. An op-
timal allocation for ACET may not necessarily be the
optimal allocation for WCET. The main difficulty in
developing optimal scratchpad memory allocation tech-



nique for WCET is the following. An ACET-guided
allocation method uses the access frequencies of vari-
ables obtained through profiling. In WCET-guided al-
location, we are interested in the access frequencies of
the variables along the worst-case path. As we allo-
cate variables along the worst-case path into the scratch-
pad memory, a new path may become the worst-case
path. This leads to a different access frequency pro-
file of the variables corresponding to the new worst-case
path. As a result, locally optimizing the current worst-
case path may not lead to the globally optimal solution.
The elegant techniques used in ACET-guided optimal
allocations, such as 0-1 knapsack are not applicable for
WCET-guided allocation.

In this paper, we propose customized optimal and
near-optimal allocation techniques that are guided by
WCET. Our first optimal allocation technique is based
on a simple Integer Linear Programming (ILP) formu-
lation. This solution does not take infeasible path infor-
mation into account. Therefore, it can potentially allo-
cate objects from a heavy (w.r.t. execution time) but in-
feasible path. To overcome this drawback, we propose
another optimal allocation technique based on branch-
and-bound search that does exploit infeasible path in-
formation. But branch-and-bound search may be ineffi-
cient for large number of variables and large scratchpad
sizes. So we also design a greedy heuristic algorithm
that is efficient, considers infeasibility information, and
produces near-optimal solutions. As we allocate vari-
ables using branch-and-bound search or greedy heuris-
tic, the current worst-case path may shift to a new one.
Therefore, our allocation techniques require repeated
search for the worst-case path and the access frequen-
cies of the variables along that path. In order for our
allocation techniques to be efficient, this search should
be quite fast. We develop a fast and accurate method for
finding the WCET path.

In summary, the main contribution of this work is in
developing efficient techniques for allocating program
variables to scratchpad memory explicitly guided by the
goal of reducing the program’s WCET.

2. Related Work

In this section, we review existing literature on
ACET-based allocation of code/data to scratchpad
memory for embedded systems as well as WCET-based
compiler optimizations in different contexts.

Panda et al. have developed a comprehensive allo-
cation strategy for scratchpad memory [12, 13] to im-
prove the average-case program performance. The ar-
chitecture they use is somewhat different from ours.
They assume the presence of data cache on top of the

scratchpad memory. Therefore, the goal of their alloca-
tion strategy is to minimize the conflict among the vari-
ables in the data cache. Avissar et. al. [3], on the other
hand, assume an architecture that is very similar to ours,
i.e., they do not assume the presence of caches. They
propose a 0-1 ILP solution to optimally allocate global
and stack variables. Their more recent work extends
this approach to heap memory [8]. Sjodin et al. [16]
also propose a 0-1 ILP solution for reducing code size
via scratchpad allocation. This is achieved by allocating
variables to appropriate memory types so that the size
of the corresponding pointers and hence the code size
can be reduced. Similarly, Steinke et al. [17] formulate
an ILP-based allocation strategy to reduce the overall
energy consumption of the program. All these works
use profile-guided optimization as their goal is to re-
duce the average-case execution time (ACET). There is
a separate body of work [10, 19] that allow the scratch-
pad contents to change dynamically based on data ac-
cess patterns; they also use scratchpad for improving
average-case program performance or energy consump-
tion.

Compiler techniques to reduce the worst case exe-
cution time of a program have started to receive atten-
tion very recently. Lee et al. [11] have developed a code
generation method for dual instruction set ARM proces-
sors to simultaneously reduce the WCET and code size.
They use full ARM instruction set along the WCET
path to achieve faster execution; the reduced Thumb in-
structions are used along the non-critical paths to re-
duce code size. Yu and Mitra [22] perform WCET-
guided selection of application-specific instruction set
extensions. Bodin and Puaut [5] design a customized
static branch prediction scheme for reducing a pro-
gram’s WCET. This work employs a greedy heuristic
to design the branch prediction scheme — all branches
appearing in the current WCET path are predicted based
on their outcomes in the WCET path. Zhao et al. [24]
use a greedy heuristic for code positioning that places
the basic blocks on WCET paths in contiguous positions
whenever possible. Their most recent work [23] reduces
WCET by forming superblocks along the WCET path.
To the best of our knowledge, there has been no work so
far on allocating variables to scratchpad memory specif-
ically to reduce the WCET. In this paper, we perform
scratchpad allocation with the explicit goal of WCET
reduction.

The work of [21] is probably closest to ours. They
use a static allocation strategy for program and data ob-
jects in scratchpad memory to reduce the average-case
energy consumption of the program. Now using the re-
sulting scratchpad allocation, they compute the WCET
of the program. Their results show that a tight WCET



bound is obtained in an architecture with scratchpad but
no data caches. Using similar sized data cache, how-
ever, leads to significant overestimation in WCET, in
particular for large cache sizes. As a result, the es-
timated WCET with scratchpad memory is much bet-
ter than the estimated WCET with the same sized data
cache. The main difference between this work and ours
is the following. Instead of using an allocation tech-
nique that has been developed to improve average-case
execution of an application, we develop customized al-
location techniques that are guided by WCET reduc-
tion. As we allocate certain variables to scratchpad,
the WCET path and hence the critical variables may
change. Therefore, obtaining optimal allocation to re-
duce WCET is inherently more challenging; the prob-
lem is further complicated due to the presence of infea-
sible program paths.

Conceptually, the works on data cache locking for
predictable program execution [18] bear similarities to
our work on allocating data variables to scratchpad
memory. In particular, [18] combines data cache lock-
ing and static cache analysis to enhance the timing pre-
dictability of program execution. Unpredictable regions
of the program are identified and for each of these re-
gions, average-case execution profile is used to deter-
mine which portions of the data memory will be locked
into the cache. One can use our WCET-guided alloca-
tion strategies to further enhance these techniques – our
allocation strategy can accurately determine the locked
cache contents for each unpredictable region.

3. ILP Formulation

In this section, we address the problem of allocat-
ing data variables to scratchpad memory so as to reduce
the WCET of a program. We do not take into account
any infeasible path information, that is, all paths in the
control flow graph are considered feasible. In the next
section, we consider optimal and near-optimal alloca-
tion of data variables to scratchpad memory by consid-
ering infeasible path information.

Assumptions Our WCET-guided allocation method
is static, i.e., the allocation of variables is fixed at com-
pile time. We consider both scalar variables and ar-
rays. An array can be allocated only if the entire ar-
ray fits into the scratchpad. We consider for allocation
the global variables and the stack variables (parame-
ters, local variables, and return variables) corresponding
to non-recursive functions. We do not consider stack
variables corresponding to recursive functions because
multiple instances of these variables may exist during
program execution. For non-recursive functions, our

method treats the stack variables just like global vari-
ables, i.e., these stack variables are allocated for the en-
tire execution of the program. This restriction can be
relaxed in a manner similar to [3] by taking into account
functions with disjoint lifetimes.

ILP Formulation We now present our allocation
method based on Integer Linear Programming (ILP).
We use names starting with capital letters for ILP vari-
ables and names starting with small letters for constants
to clearly highlight the ILP variables in the constraints.
First we develop a scheme for allocating data variables
appearing in a single program loop; later we extend the
technique to general programs. Let us consider the di-
rected acyclic graph (DAG) capturing the control flow
in the loop body (i.e., the control flow graph of the loop
body without the loop back-edge). We assume that the
DAG has a unique source node and a unique sink node.
If there is no unique sink node, then we add a dummy
sink node. Each path from the source to the sink in the
DAG is an acyclic path — a possible path in a loop iter-
ation. For each data variable v in the program we define
a 0 − 1 decision variable Sv which indicates whether v
is selected for scratchpad allocation. Thus

Sv ≥ 0 Sv ≤ 1
∑

v∈allvars

Sv ∗ areav ≤ scratchpad size

where allvars is the set of program variables, areav

is a constant denoting the scratchpad area to be occu-
pied by v if it is allocated and scratchpad size is a con-
stant denoting the total size of the scratchpad memory
available. We consider the DAG representing the loop
body’s control flow and define a variable Wi for each
basic block i in the DAG. Variable Wi denotes the cost
of the worst-case path in the DAG rooted at basic block
i under the allocation captured by the Sv variables. For
each outgoing edge i → j from basic block i in the
DAG, we have the following constraint.

Wi ≥ Wj + (costi −
∑

v∈vars(i)

Sv ∗ gainv ∗ nv,i)

where costi is a constant denoting the execution time
(in terms of cycles) of basic block i without any alloca-
tion. Furthermore, vars(i) denotes the set of program
variables appearing in basic block i, gainv is a constant
denoting the gain (in number of cycles) of a single ac-
cess of v by allocating v to scratchpad memory, and nv,i

is the number of occurrences of v in basic block i. The
sink node of the DAG has no outgoing edges. For the
sink node we define Wsink as follows.

Wsink = costsink −
∑

v∈vars(sink)

Sv ∗ gainv ∗ nv,sink



Clearly, the variable Wsrc (for the source node of the
DAG) captures the worst-case acyclic path under the al-
location given by Sv variables. So, we define the objec-
tive function as Wsrc ∗ lb where lb is a known constant
denoting the maximum number of loop iterations. The
ILP solver finds the assignment of Sv variables (i.e.,
the scratchpad allocation) which minimizes the loop’s
worst-case execution time.

Extension to full programs In the preceding, we de-
termine the optimal scratchpad allocation based on a
single program loop. To extend our formulation to
whole programs, we need to generate the constraints
for each innermost program loop as mentioned above.
Next we transform the program’s control flow graph by
converting each innermost loop to a “basic block”; the
cost of each innermost loop is given by the “objective
function” mentioned above. We can now construct the
constraints for loops in the next level of loop nesting.
We go on in this fashion until we have reached the top-
most level of loop nesting; this gives us all the ILP con-
straints. The new objective function to be minimized is
now Wentry where entry is the only entry node in the
program’s control flow graph.

4. Allocation via Customized Search

In this section, we present search algorithms for
generating optimal and near-optimal allocations by tak-
ing into account infeasible path information. We have
incorporated infeasible path detection into our WCET
analysis technique, which we describe in Section 4.3.
Here we show how the problem of variable allocation to
minimize WCET can be formulated, where the WCET
analysis takes into account infeasible path information.

Given the size of the scratchpad memory scratch-
pad size, we define an allocation as a set V ∈ 2allvars

s.t.
∑

v∈V areav ≤ scratchpad size, where the
set 2allvars denotes the power-set of allvars. Let
WCETV be the WCET after allocating the set of vari-
ables V into the scratchpad memory. We want to
choose the “optimal” allocation, that is, the allocation
V ∈ 2allvars that produces the minimum WCETV . As
before, allvars denotes the set of all variables accessed
in the program, and areav denotes the size of variable
v.

Finding the optimal variable allocation for WCET
reduction requires the contribution of each variable to-
wards the WCET. However, we cannot define the con-
tribution of a variable towards the WCET as a constant.
This is because of the following reasons. First, the con-
tribution of a variable towards the WCET is dependent
on the current WCET path. However, allocation of that

variable may result in a new WCET path. Therefore,
the reduction in WCET due to allocation of a variable
is, in general, not equal to the contribution of the vari-
able towards the current WCET. Secondly, the reduction
in WCET due to allocation of two or more variables is
not accumulative. That is, if the WCET reduction by al-
locating variables v and v′ are X and X ′, respectively,
then the WCET reduction by allocating variables v and
v′ together can be less than X + X ′.

To illustrate these two points, consider two paths
p and p′ having execution times W and W ′ assuming
no variable allocation to scratchpad memory. Suppose
WCET = W = W ′ + ε. Consider two variables v and
v′ where v is accessed in p but not in p′, while v′ is ac-
cessed in p′ but not in p. Let costv(p) = costv′(p′) > ε
where costv(p) (costv′(p′)) is the contribution of vari-
able v (v′) towards the execution time of p (p′). Al-
locating v in the scratchpad memory reduces W by
costv(p). But p′ now becomes the WCET path; thus,
the reduced worst-case execution time is W ′. The re-
duction in WCET is ε instead of costv(p). Further-
more, allocating v and v′ reduces both W and W ′. As
costv(p) = costv′(p′), the reduced worst-case execu-
tion time is W − costv(p). Here, the WCET reduction
does not involve contribution of v′.

As we cannot define the contribution of a variable
towards the WCET as a constant, the optimal allocation
problem for WCET reduction cannot be formulated as a
knapsack problem. Furthermore, as the contributions of
consecutively allocated variables do not accumulate, the
“optimal substructure” property required for dynamic
programming is absent. This rules out an optimal dy-
namic programming solution. We use a branch-and-
bound search algorithm to obtain the optimal solution.

4.1. Branch-and-Bound Search

The general paradigm of branch-and-bound deals
with optimization problems over a search space that can
be presented as the leaves of a search tree. The search
is guaranteed to find the optimal solution, but its com-
plexity in the worst case is as high as that of exhaustive
search. In our case, the search space consists of the set
of all possible allocations V ∈ 2allvars.

Each level k in the branch-and-bound search tree
corresponds to the decision of including or exclud-
ing a variable vk ∈ allvars into the solution set
V . Thus, each node m at level k corresponds to
a partial allocation allocation(m) with the decision
about the variables v1 up to vk, i.e., allocation(m) ⊆
{v1, . . . , vk} ⊆ allvars. Whenever we reach a leaf
node of the search tree, we have a complete alloca-
tion. We then calculate the reduced WCET correspond-



ing to this allocation (see Section 4.3). The reduction
in WCET is the difference between the original WCET
(without any allocation) and the reduced WCET. During
the traversal of the search tree, the maximum WCET
reduction achieved so far at any leaf node is kept as a
bound B. At any non-leaf node m in the search tree, a
heuristic function computes an upper bound, UB(m),
on the maximum possible WCET reduction at any leaf
node in the subtree rooted at m. If UB(m) < B, then
the search space corresponding to the subtree rooted at
m can be pruned. Clearly, the choice of the heuristic
function UB is crucial in deciding the amount of search
space pruning achieved.

We define the heuristic function for a node m at
level k of the search tree as follows. First, we com-
pute the WCET reduction, reduction(m), correspond-
ing to the partial allocation allocation(m) at node m.
The upper bound, UB(m), is the sum of reduction(m)
and the maximum potential reduction in WCET due to
the allocation of the variables not yet considered, i.e.,
{vk+1, . . . , v|allvars|}. An estimation of the latter is for-
mulated as a simple knapsack problem, which is solved
using dynamic programming. The inputs to the knap-
sack problem are as follows.

1. Variables vk+1, . . . , v|allvars|

2. Size of each variable areavk+1 , . . . , areav|allvars|

3. Size limit defined as the remaining space
in the scratchpad scratchpad size −∑

v∈allocation(m) areav

4. Bound on the maximum WCET reduc-
tion due to allocation of each variable
boundvk+1 , . . . , boundv|allvars| . For a variable v,
boundv is defined as the maximum contribution of
v towards the execution time of any path. Clearly,
the WCET reduction achieved by allocating v
to scratchpad memory should be bounded by
boundv . These bounds can be estimated once and
for all through a single traversal of the control
flow graph.

The 0-1 knapsack problem allocates some of the vari-
ables vk+1, . . . , v|allvars| to the remaining scratchpad
memory space so as to maximize the potential reduc-
tion in WCET. Recall that the knapsack problem simply
computes the heuristic function, which helps in pruning
the branch-and-bound search space.

Figure 2 illustrates the branch-and-bound search
process. Suppose that at one point of the search we
have constructed a complete allocation at the leaf node
m, which achieves the maximum reduction in WCET
among all complete allocations encountered so far. We

vk–1

v|allvars|

…

reduction(m) = B

vk

m

m’ UB(m’) < B

Figure 2. Pruning in the branch-and-
bound search tree

remember reduction(m) as the bound B — represent-
ing the maximum WCET reduction achieved so far.
Suppose later in the search we reach node m′ at level
k. Using the heuristic function described above, we
calculate UB(m′), an upper bound on the reduction in
WCET achieved by extending the partial allocation at
m′ to a complete allocation. At this point suppose we
find that UB(m′) < B which means that any complete
allocation we may construct by continuing from m′ will
never outperform the allocation we have constructed at
m. Clearly, in this situation the subtree rooted at m′

need not be explored further and can be pruned from
the search tree (refer Figure 2).

In order to achieve effective pruning of the unex-
plored nodes, the variables are sorted such that a vari-
able that can potentially reduce the WCET more is ex-
plored higher up in the search tree. In other words,
we measure the potential WCET reduction of a vari-
able v using its maximum contribution over all execu-
tion paths, namely boundv . The ordering is simply a
decreasing order of boundv for v ∈ allvars.

The branch-and-bound formulation as described
above yields an optimal solution for global WCET op-
timization. Unfortunately, its complexity is exponen-
tial with respect to the number of data variables to
be allocated. As such, it is not practical to run the
branch-and-bound search to generate scratchpad allo-
cation from among a large number of data variables un-
less the scratchpad size is relatively small (where the
scratchpad capacity constraint may prune out a large
portion of the search tree).

4.2. Greedy Heuristic

Since the branch-and-bound search is inefficient in
running time, we also develop and use a fast heuristic
search based on greedy approaches. This search algo-



Algorithm 1 Greedy heuristic for scratchpad allocation
to reduce WCET of a program

1: allocation := ∅; capacity := scratchpad size;
change := TRUE;

2: perform WCET analysis to obtain worst-case path π;
3: while (capacity > 0 AND change = TRUE) do
4: change := FALSE;
5: V := { v | v is an unallocated variable accessed in path

π, areav ≤ capacity };
6: if V �= ∅ then
7: find the variable v ∈ V with the maximum contri-

bution towards the execution time of π;
8: allocation := allocation ∪ {v};
9: capacity := capacity − areav ;

10: change := TRUE;
11: perform WCET analysis to compute the new worst-

case path π;
12: end if
13: end while
14: return allocation;

rithm, in general, may yield a sub-optimal allocation.
But in our experiments we found that the WCET reduc-
tion from the resultant allocation is close to the WCET
reduction from the optimal allocation found by branch-
and-bound search. In our heuristic search, we first find
the heaviest path taking into account infeasible path in-
formation; let this path be π. The heuristic then allo-
cates one program variable v appearing in π – the one
with maximum contribution to the execution time of π.
We then again run WCET analysis to find the heaviest
path after allocating v and allocate more variables. Of
course, we stop whenever the scratchpad is filled. The
skeleton of the greedy heuristic appears in Algorithm 1.

We observe that the sub-optimality of the greedy
heuristic arises from over-optimization of the first few
heaviest paths, so that the scratchpad space is exhausted
by the time we get to another relatively heavy path. We
thus attempt a more complicated heuristic which bal-
ances the allocation among the competing paths by al-
lowing backtracking in allocation. We allow backtrack-
ing when the scratchpad is filled, by removing some
variables from the existing allocation to make space for
variables in the current heaviest path. To guard against
unbounded backtracking, we require that the new worst-
case path after the replacement is not the same as any of
the previously encountered WCET paths. However, this
complicated heuristic does not always produce a bet-
ter reduction in WCET than the greedy heuristic. It is
better than the greedy heuristic when we have multiple
competing paths with only a few overlapping variables,
and the scratchpad size is very small (hence it gets filled
up quickly). In our experiments, we found that such a

situation occurs rarely. Moreover, allowing for back-
tracking adds an overhead to the running time of the
optimization. Thus, we consider the greedy heuristic to
be “better” than the complicated heuristic.

4.3. Finding WCET path

Both the branch-and-bound search as well as the
greedy heuristic employ a procedure for finding the
WCET path, that is, the path contributing to WCET; this
procedure is typically invoked many times for generat-
ing the scratchpad allocation. We now discuss a simple
and efficient calculation method for finding the WCET
path. Since the WCET computation itself is not central
to our work, we only give the general idea of the method
and refer the reader to [6] for the technical issues.

Our method proceeds in two steps. In the first step,
we find out certain infeasible path patterns. In gen-
eral, infeasible path detection involves data-flow anal-
ysis. In our work, we avoid the expense of data flow
analysis by conservatively identifying pairs of branches
and/or assignments which are guaranteed to “conflict”,
that is, can never lie in an execution trace; thus our
infeasible path information can be captured as a bi-
nary relation. We do not detect conflicts between ar-
bitrary branches and assignments to avoid an ineffi-
cient conflict detection procedure. The only conditional
branches appearing in our conflict relation are of the
form variable relational operator constant. Simi-
larly, the only assignments which appear in our conflict
relation are of the form variable := constant. For
such assignments and branches we can define and de-
tect pair-wise conflict in a natural way. For example,
x := 2 conflicts with x > 3 (with no assignment to
x appearing in between) but not with x < 3. Similarly
x > 3 conflicts with x < 2 (again with no assignment to
x appearing in between) but not with x > 5. The reader
is referred to [6] for a full discussion on pair-wise con-
flicts (between assignments and/or branches) and their
detection.

After the conflicting pairs of branches and assign-
ments are found, the second step of the method in-
volves WCET calculation. Here we only discuss the
WCET calculation for a loop; once this is done, the
WCET path of a program can be obtained by compos-
ing the WCET paths of individual loops in a manner
similar to the timing schema approach [14]. Within a
loop, we find the heaviest acyclic path in the loop body
by traversing the loop-body’s control flow DAG from
sink to source. However, to take into account the in-
feasible path information, we cannot afford to remem-
ber only the “heaviest path so far” at the control flow
merge points. This is because the heaviest path may



have conflicts with earlier branch-edges or assignment
instructions resulting in costly backtracking. Instead,
at a basic block i, we maintain a set of paths paths(i)
where each p ∈ paths(i) is a path from block i to the
sink node. In fact, paths(i) contains only those paths
which when extended from block i up to the source
node can potentially become the WCET path. For each
path p ∈ paths(i) we also maintain a “conflict list”.
The conflict list contains the branch-edges of p that par-
ticipate in conflict with ancestor nodes and edges of
block i. For any basic block i, we never maintain two
paths p, p′ ∈ paths(i) where p and p′ have the same
conflict list; if there are two such paths we maintain the
heavier among them. This greatly reduces the number
of paths to be maintained and avoids exhaustive path
enumeration (see [6]).

5. Experimental Evaluation

In this section, we present the experimental evalu-
ation of our WCET-guided scratchpad allocation.

5.1. Experimental setup

We choose six data/control intensive kernels as
benchmarks. The characteristics of these benchmarks
are given in Table 1. lingua performs language-
independent text processing [7]. statemate
and compress are benchmarks taken from [20];
statemate is a car window lift controller gener-
ated automatically from a statechart specification, while
compress is a data compression program. The
susan benchmark is taken from MiBench’s automo-
tive application suite [9]; it is a kernel performing edge
thinning in an image. Finally, des performs Data En-
cryption Standard, and fresnel computes Fresnel in-
tegrals. Both are taken from [15].

Most of our benchmarks are compute-intensive
kernels processing one or more arrays. This is evi-
dent from Table 1 that shows the total data memory
size and its division between scalar and array vari-
ables. Also, most of our benchmarks have limited num-
bers of possible paths through any loop iteration. The
only exception in this regard is statemate, a control-
intensive application with very little data manipulation.
This benchmark has a large number of possible paths
(6.55 × 1016) for one loop iteration. However, a rough
estimate shows that a large number of these paths are in-
feasible. The number of feasible paths for any loop iter-
ation is 1.09×1013, that is, less than 0.016% of the total
number of possible paths. Table 1 shows the estimated
WCET of all benchmarks both with and without infea-
sible path information. This estimation assumes that

data variables have not yet been allocated to scratchpad.
The heaviest path in fresnel is feasible, so estima-
tion with and without infeasible paths produce the same
WCET.

We use the SimpleScalar tool set [2] for the exper-
iments. The programs are compiled using gcc 2.7.2.3
targeted for SimpleScalar. As our focus is on allocation
of data variables to scratchpad memory, we assume a
simple embedded processor with single-issue in-order
pipeline and perfect branch prediction. Instructions are
accessed from off-chip memory through a perfect in-
struction cache with 1 clock cycle latency. There is no
data cache; a subset of data variables can be allocated to
on-chip scratchpad memory. We assume that scratchpad
access latency is 1 clock cycle and main memory access
latency is 10 clock cycles.

We have developed a prototype analyzer that takes
in a binary executable corresponding to a program
and disassembles it to generate the control flow graph
(CFG). The execution time corresponding to each ba-
sic block in the CFG is then easily estimated for
our simple processor architecture. For more com-
plex micro-architectures, we can use state-of-the-art
WCET estimation tools such as aiT [1]. The CFG is
then analyzed at assembly level to identify conflicting
branch/assignment pairs and this information is used to
efficiently calculate the WCET (see Section 4.3). We
assume that loop bounds required for WCET calcula-
tion are provided through manual annotation. We then
run the three different scratchpad allocation techniques
(Integer Linear Programming, branch-and-bound, and
greedy heuristic) for each benchmark to obtain the cor-
responding allocation and the reduced WCET. All the
experiments have been performed on a 3.0GHz P4 CPU
with 1MB cache and 2GB memory.

5.2. Scratchpad Allocation Results

Figure 3 shows the original and reduced WCET
due to scratchpad allocation by using ILP, branch-and-
bound and greedy heuristic methods. The original
WCET assumes that all variables are allocated in off-
chip memory, i.e., there is no scratchpad memory. This
is quite common for current real-time systems. The re-
duced WCET is the estimation returned by the different
techniques after scratchpad allocation. Note that in Fig-
ure 3 the reduced WCET is indicated by the white bars;
the difference between the original WCET and reduced
WCET is indicated by the black bars stacked on top of
the white bars. Thus the total height of each bar (black
+ white) indicates the original WCET.

We choose three different scratchpad memory sizes
for each benchmark corresponding to 5%, 10%, and



Table 1. Characteristics of the Benchmark Programs
Benchmark Data Memory Scalars Arrays WCET considering WCET w/o considering

(Bytes) (Bytes) (Bytes) infeasibility (cycles) infeasibility (cycles)

lingua 481 141 340 823,305 825,227
statemate 227 163 64 41,578 44,938
susan 36,232 96 36,136 293,989,241 485,328,185
compress 264,006 157 263,849 319,075 390,937
des 1,361 208 1,153 643,270 643,894
fresnel 536 536 0 256,172 256,172
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Figure 3. Original and reduced WCET (in terms of execution cycles) for various benchmarks
and scratchpad sizes with ILP, greedy (Grd), branch-and-bound (BnB) scratchpad allocation
techniques



20% of the total data memory size (see Table 1). The
WCET reduces by 5−80% due to allocation for the dif-
ferent benchmarks. As we increase the scratchpad size
from 5% to 10%, there is little or no additional reduc-
tion in WCET for compress, lingua and susan.
This is because these benchmarks have some large ar-
rays and increasing the scratchpad size still cannot ac-
commodate these arrays. In general, allocating only
10% of the data memory to scratchpad achieves quite
a significant reduction in WCET for all benchmarks.

Notice that the reduced WCET obtained via ILP is
typically higher than the reduced WCET with branch-
and-bound and/or greedy heuristics. This is because,
the ILP-based method cannot take into account the de-
tailed infeasibility information as exploited by our effi-
cient WCET calculation method. This result shows that
it is important to take the infeasibility information into
account when analyzing and optimizing for WCET. In
most cases there is very little or no difference between
greedy heuristic and branch-and-bound implying that
greedy heuristic achieves near-optimal solutions. Note
that for statematewith scratchpad size equal to 20%
of the data memory, the reduced WCET with ILP is
slightly better than the reduced WCET with greedy ap-
proach. Even though the greedy approach takes infea-
sibility information into account, it is still sub-optimal
and in this particular case, it performs worse than ILP.

Finally, as mentioned earlier, existing scratchpad
allocation techniques use the average-case profile infor-
mation. However, the optimal allocation for average-
case may not be optimal in reducing the worst case ex-
ecution time. Wehmeyer and Marwedel [21] investi-
gate the effect of scratchpad allocation on WCET. They
use average-case profile for determining the allocation.
Figure 4 shows experimentally that scratchpad alloca-
tion with average-case profile may not lead to optimal
reduction in WCET. The average-case data access fre-
quencies are collected by running the benchmark with
representative set of inputs. Then, we formulate a 0-1
knapsack problem to find the allocation that optimizes
the average-case execution time (ACET); we then com-
pute the reduction in WCET using this allocation. This
appears as “Avg” in Figure 4. We plot it against the
reduction in WCET using our WCET-guided allocation
techniques – ILP, branch-and-bound, and greedy meth-
ods. In the fresnel benchmark, our WCET-guided
allocation via branch-and-bound and greedy methods
produces up to 46% reduction in WCET as compared
to the allocation produced by the ACET-based tech-
nique. Other benchmarks show similar trends but less
pronounced WCET reduction. For example, in the
lingua benchmark our WCET-guided greedy allo-
cation strategy produces up to 22% WCET reduction
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Figure 4. Original and reduced WCET (in
terms of execution cycles) for different
scratchpad sizes with ILP, greedy (Grd),
branch-and-bound (BnB) and ACET based
scratchpad allocation techniques for the
fresnel benchmark.

as compared to the allocation produced by the ACET-
based technique. We also observed the effect of our
WCET-guided allocation methods on ACET in all the
benchmarks. We found that our ILP and branch-and-
bound methods achieve similar reduction in ACET as
compared to ACET-guided allocation methods.

The running time for the different allocation tech-
niques is shown in Table 2 with scratchpad memory
size equal to 10% of the data memory size. It is in-
teresting to note that even though the reduced WCET
with ILP method is typically greater than the reduced
WCET with greedy heuristic, the running time of the
greedy method is comparable to or even less than the
running time of the ILP method for all benchmarks ex-
cept statemate. For statemate, the running time
of the greedy method is substantially more than that of
the ILP method. In this benchmark, there are a large
number of program paths and hence it is more time con-
suming to estimate the WCET by taking infeasibility in-
formation into account. ILP-based allocation does not
take infeasibility information into account and hence is
much faster.

6. Discussion

In this paper, we have presented scratchpad mem-
ory allocation techniques for data variables with the ex-
plicit goal of reducing the WCET of a program. We
have proposed both optimal and heuristic allocation
techniques. The major difference between our work
and existing works on scratchpad allocation is that we
specifically target WCET reduction instead of using the
WCET path (which changes as we fix the allocation) or
the ACET path as profiles.



Table 2. Running time of allocation meth-
ods for scratchpad = 10% of data memory

Runtime (ms)
Benchmark ILP Greedy Branch-

Form’n Sol’n and-bound

lingua 3 28 16 78
statemate 4 33 12,080 36,616
susan 3 15 18 23,960
compress 3 18 15 346,740
des 3 18 5 19
fresnel 3 16 1 6

In the future, we plan to include the data cache in
the WCET analysis and optimization framework along
with the scratchpad memory. Our framework will first
identify the variables with predictable access patterns.
These variables can be allocated in the main memory
and accessed though the data cache as their access times
are easily analyzable. The allocation techniques de-
scribed in this paper can be used to determine the allo-
cation of the remaining variables to scratchpad memory.
Another possible direction of future work is WCET-
guided, software-controlled, runtime management of
scratchpad memory. This will allow us to allocate more
variables than the capacity of the scratchpad memory
through dynamic overlay.
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