
Customized MPSoC Synthesis for Task Sequence
Liang Chen

Department of Computer Science
National University of Singapore

chenliang@nus.edu.sg

Nicolas Boichat
Department of Computer Science
National University of Singapore

nboichat@nus.edu.sg

Tulika Mitra
Department of Computer Science
National University of Singapore

tulika@comp.nus.edu.sg

Abstract—Multiprocessor System-on-Chip (MPSoC) platforms
have become increasingly popular for high-performance em-
bedded applications. Each processing element (PE) on such
platforms can be tuned to match the computational demands of
the tasks executing on it, creating a heterogeneous multiprocessor
system. Extensible processor cores, where the base instruction-set
architecture can be augmented with application-specific custom
instructions, have recently emerged as flexible building blocks for
heterogeneous MPSoC platforms. However, the customization of
the different PEs has to be carried out in a synergistic manner so
as to create an optimal system. In this work, we propose a pseudo-
polynomial time algorithm to design the most resource-efficient
customized MPSoC platform for mapping linear task graphs
representing streaming applications, under deadline constraints.
Experimental validation with MP3 encoder and MPEG-2 encoder
applications confirms the efficiency of our approach.

I. INTRODUCTION

Multiprocessor System-on-Chip (MPSoC) platforms are
being increasingly deployed in high-performance embedded
systems. MPSoC platforms employ heterogeneous processing
elements (PEs) to construct a system that perfectly matches the
application requirements, leading to significant cost and power
savings. The processing elements can be diverse in nature and
may include general purpose processors, DSPs, application-
specific hardware accelerators, and others. However, system
integration and lack of flexibility are some of the major
challenges faced by the designers in creating platforms with
such disparate architectures.

Extensible processor cores (e.g., Xtensa from Tensilica [1]),
where the existing base instruction-set architecture (ISA) can
be enhanced with application-specific custom instructions, are
emerging as promising alternatives in this context. Custom
instructions encapsulate frequently executed computational
patterns in the application. They are implemented as hard-
wired datapaths (custom functional units) in the existing
processor core and help improve the power consumption and
performance of the application. A heterogeneous MPSoC may
consist of a number of extensible processor cores, where
each core has been customized according to the application
requirements. As all the PEs share the same base ISA and a
common core, application development on such platforms is
relatively straightforward.

MPSoC platforms consisting of extensible processor cores
are an excellent match for streaming applications [2], [3].
These applications can be partitioned into multiple compute-
intensive kernels or tasks and represented in the form of

an acyclic task graph. For example, Figure 1 show the task
graphs corresponding to MP3 encoder and MPEG-2 encoder
applications. As the applications are expected to process
continuous stream of data, the tasks can execute in a pipelined
fashion, where different tasks can process data from different
iterations in parallel.

The goal of our work is to synthesize an optimal customized
MPSoC platform for a given streaming application. Notice that
this optimization involves two conflicting objectives of mini-
mizing the resource requirement and minimizing the pipeline
period (or equivalently maximizing the throughput). Hence
given a period constraint imposed by the system designer (e.g.,
for MPEG-2 encoder, 30 frames per second would be the
minimum speed to provide smooth viewing experience), we
are interested in minimizing the resource requirement while
satisfying this period constraint. The area requirement includes
the base area of the processing cores as well as the area for
the custom functional units. Mapping the tasks to PEs and the
customization of each PE can dramatically influence the area
and period of the entire system. Therefore, our design space
exploration algorithms, tune the processors in a synergistic
manner to create optimal systems.

Compared to state-of-the-art approaches, we show an effi-
cient hierarchical algorithm that separates task mapping and
custom instruction sets selections, and returns optimal solu-
tions. Rather than focusing on fixed architectures with a given
number of PEs [4], [5], or performing an one-to-one mapping
of tasks to PEs [2], [3], we consider different number of PEs
and interval-based mapping policy. Observing the design space
for MP3 or MPEG-2 encoder shown in Figure 3, it should be
obvious that fixing the number of PEs can easily miss the
global optima. Most importantly, rather than using a heuristic,
we design a pseudo-polynomial time algorithm that returns
the optimal solution in a fraction of the time required by an
exhaustive approach.

II. RELATED WORK

We use a number of Tensilica LX2 [6] processor cores,
enhanced with custom instructions as the MPSoC platform,
which is similar to architectures used in [3], [5].

In terms of task mapping, Benoit et al. [7] classify the
policies to map tasks onto a fixed number of PEs into three
categories: one-to-one mapping, where each task gets its own
dedicated PE [3], [2], an interval-based policy, where only
tasks that are contiguous in the task graph can be mapped on



a single PE [5], and a fully general policy without restric-
tions [4]. In this work, we use the interval-based policy, on a
variable number of PEs.

Our interval based approach for load balancing among PEs
could be modeled as a chain-on-chain problem (CCP) [8]. The
CCP problem has been widely studied, and various efficient
polynomial time algorithms have been proposed [9], [10], [11].
However, these algorithms mainly focus on homogeneous pro-
cessors, with the goal of maximizing the throughput. Our ap-
proach focuses on heterogeneous multi-processors, enhanced
with task-specific custom instruction sets. Besides, the goal is
modified to minimize the area consumption under a designer-
imposed throughput constraint.

The simpler problem of mapping tasks onto processors us-
ing different operating frequencies is NP-complete for interval-
based policy, fully general policy and one-to-one mapping with
heterogeneous communication costs [7]. Thus several works
propose algorithms that approximate an optimal solution: [5]
proposes an iterative heuristic approach, [4] uses evolutionary
algorithms, and [3] uses heuristic approach as well. On the
other hand, [2] proposes an integer linear programming (ILP)
formulation, assisted with safe heuristics, which guarantees
an optimal solution. Although [2] also focuses on optimal
solutions, they only consider one-to-one mappings and a fixed
number of PEs. Our approach finds the optimal solution con-
sidering interval-based task mapping and various PE numbers.
Adapting our approach to a fully general mapping policy,
which should take tasks clustering into account [12], [13], is
left as future work.

III. PROBLEM DEFINITION

The input to our framework is a linear task graph modeling
the application. Let 〈T1, T2, . . . , TN 〉 be the N tasks in a linear
task graph representing a streaming application. There are
dependencies between consecutive tasks in this linear chain.
Task Ti+1 can start execution only after task Ti has completed
execution for 1 ≤ i < N . Note that our framework is not
limited to applications that can be modeled as linear task
graphs. An application that is modeled with a general task
graph can be easily transformed into a linear chain while
respecting all the dependencies in the original task graph. The
maximum tolerable period period (or minimum throughput)
requirement of the application is also provided as an input.

We assume that each task in the task graph can be acceler-
ated with the help of custom instructions. There are multiple
implementations or versions of each task corresponding to
different choices of custom instructions. We call each such
implementation a custom instruction set or CIS, which con-
sists of a set of custom instructions. Each CIS is associated
with an area requirement and an execution time. The area
requirement captures the additional area required to imple-
ment the specific function units for the custom instructions.
Increasing the area available allows more flexibility for the
implementation and thereby reduces the execution time. Let
{Ci,0, Ci,1, . . . , Ci,mi} denote the different custom instruction
sets corresponding to task Ti where mi + 1 is the number of

CISs for Ti. Let us also assume that ai,j is the additional
area required and ti,j is the execution time for the CIS Ci,j .
Moreover, we assume that Ci,0 is the software implementation
version with ai,0 = 0 and ti,0 is the software execution
time. We order the rest of the CISs according to their area
requirement. That is, ai,0 < ai,1 < · · · < ai,mi

and as we
only consider Pareto-optimal CISs, ti,0 > ti,1 > · · · > ti,mi .

The application is mapped onto an underlying architec-
ture consisting of a linear chain of P processing elements
(PE1, . . . , PEP ) where P ≤ N . The PEs form the different
pipeline stages of the application. We impose the constraint
that only a consecutive sequence of tasks from the linear task
graph can be mapped to a PE. This is known as interval-based
mapping. In other words, the linear task graph is divided into
P partitions (S1, . . . , SP ) where each partition is a consecutive
sequence of tasks in the task graph and partition Si maps to
PEi for 1 ≤ i ≤ P . The pipeline stage with the maximum
execution time determines the period and the throughput.

We start with homogeneous multi-core architecture, that
is, the base instruction-set architecture of all the P pro-
cessing elements are identical. The base area of each PE is
areaPE. However, each PE can be customized by adding
CISs according to the tasks mapped to it. So the final solution
is a heterogenous multiprocessor system-on-chip (MPSoC)
customized and optimized for the target application. The goal
of our optimization strategy is to minimize the total area
requirement of the MPSoC solution while satisfying the period
or throughput constraint of the application. Both the base area
of the PEs as well as the selected CIS versions of the tasks
determine the area requirement of an MPSoC solution. In other
words, our design space exploration need to explore (a) the
number of PEs P , (b) the partitioning of the task graph into
P partitions, and (c) the CIS choice for each of the N tasks.

So our problem definition can be formally stated as follows:
Given a linear task graph consisting of N tasks with multiple
CIS versions for each task and period constraint period, find
the number of PEs P , the CIS version for each of the N tasks,
and P partitions of the linear task graph so that the maximum
execution time of each PE is less than period and the total
area (the base area for P PEs and the additional area for all the
selected CIS versions) for the MPSoC solution is minimized.

IV. EXHAUSTIVE DESIGN SPACE EXPLORATION

We first start with a simple algorithm that exhaustively
enumerates the entire design space. This helps us to visualize
the complex tradeoff between area and performance. We will
follow it up with more efficient approaches that can identify
the resource-optimal solution under period constraint.

The exhaustive algorithm recursively enumerates all pos-
sible choices for each task. It processes the tasks in their
linear order starting with task T1. For task Ti, we enumerate
all possible choices for CIS. For each such choice of CIS,
we consider two alternative mapping choices for Ti. The first
choice is to map Ti to the current PE. The other alternative
is to map Ti to a new PE, in which case we add the base
area of a PE areaPE to our cumulative area variable area.



Algorithm 1: Exhaustive Algorithm
P = 1;
area = areaPE;
time = 0;
period = 0;
Traverse(1,P ,area,time, period);

procedure Traverse(i, P , area, time, period)
for j = 1 to mi do

/* map task Ti to old PE */
tempArea = area + ai,j ;
tempT ime = time + ti,j ;
if tempT ime > period then

tempPeriod = tempT ime;
if i < N then

Traverse(i + 1, P , tempArea, tempT ime,
tempPeriod);

else
plot {tempPeriod, tempArea};

/* map task Ti to new PE */
if i 6= 1 then

tempArea = area + ai,j + areaPE;
tempT ime = ti,j ;
if tempT ime > period then

tempPeriod = tempT ime;
if i < N then

Traverse(i + 1, P + 1, tempArea, tempT ime,
tempPeriod);

else
plot {tempPeriod, tempArea};

At each point, we keep track of the period of the application,
that is, the processing element with the maximum execution
time. Once we have reached the last task, we simply plot the
area requirement and the period of the solution.

Note that it is trivial to modify Algorithm 1 to compute the
area-optimal solution under the a particular period constraint.
In this case, we have to make sure that the execution time of
any PE is always under the period constraint. If the constraint
is violated at some point, we can simply prune away the rest
of the recursions for that partial solution. We also need to keep
track of the global optimal solution obtained so far. Once we
have reached the last task, we check if the area requirement
of the solution is better than the optimal solution and update
the optimal area accordingly.

The complexity of the exhaustive design space algorithm
is O(mN × 2N−1) where m is the average number of CIS
versions per task.

V. INTEGER LINEAR PROGRAMMING (ILP) FORMULATION

We now present an Integer Linear Programming (ILP)
formulation of the problem so that we can obtain an optimal
solution with the help of an off-the-shelf ILP solver. However,
as we will observe in the experimental evaluation section, ILP
formulation does not scale well with the number of tasks N .
So we will present an alternative scalable approach next.

Let xi,j be a binary variable that denotes whether CIS
version Ci,j is selected for task Ti.

xi,j =
{

1, ifCi,j is selected
0, otherwise

For each task Ti, only one CIS version can be selected.
mi∑
j=0

xi,j = 1

Let yi,k be a binary variable that denotes whether task Ti

is mapped to PEk.

yi,k =
{

1, if Ti is mapped to PEk

0, otherwise

Each task is mapped to exactly one PE.

N∑
k=1

yi,k = 1

In the summation term we have implicitly defined the
number of processing elements to be N . This is necessary
to keep the formulation linear. The solution may contain
processing elements which have no tasks mapped to them
and have to be eliminated. The number of valid processing
elements P can be defined as

N∑
i=1

yi,k − U × zk ≤ 0;
N∑

i=1

yi,k + 1− zk > 0

P =
N∑

k=1

zk

where U is a large constant greater than N. zk is a binary
variable which is equal to 1 if there is any task mapped to
PEk and 0 otherwise.

There is one important constraint that is imposed by
interval-based mapping approach adopted in our framework.
Two consecutive tasks Ti and Ti+1 should either be mapped to
the same PE or mapped to two adjacent PEs. In other words, if
task Ti is mapped to PEk, then task Ti+1 can only be mapped
to either PEk or PEk+1.

N∑
k=1

k · yi+1,k ≥
N∑

k=1

k · yi,k

N∑
k=1

k · yi+1,k ≤ 1 +
N∑

k=1

k · yi,k

The period constraint can be imposed as follows.

N∑
i=1

mi∑
j=0

ti,j · xi,j · yi,k ≤ period

This is a non-linear constraint. To linearize this constraint,
we define a new binary variable vi,j,k where

vi,j,k = 1⇔ (xi,j = 1) AND (yi,k = 1)

This condition can be expressed in linear form as follows.

vi,j,k ≤ xi,j ; vi,j,k ≤ yi,k; vi,j,k ≥ xi,j + yi,k − 1



Now the period constraint can be re-written as
N∑

i=1

mi∑
j=0

ti,j · vi,j,k ≤ period

Our objective function is to minimize the total area required

Total area =
N∑

i=1

mi∑
j=0

ai,j · xi,j + P · areaPE

The most area-efficient solution can be obtained by mini-
mizing the objective function under the constraints.

VI. DYNAMIC PROGRAMMING ALGORITHM

We now proceed to present a dynamic-programming based
efficient algorithm that can compute, in pseudo-polynomial
time, the area-optimal solution under a period constraint.
The algorithm proceeds in two stages. In the first stage, we
compute the minimal area required to map a subsequence of
tasks on a PE such that the period constraint is not violated. In
the second stage, we choose the best partitioning of the tasks.

A. Customization

The goal of this stage is to compute the area-optimal
solution for a sequence of tasks mapping to a single PE
under the period constraint. In other words, the total execution
time of the tasks should be less than period while the area
requirement of their selected CIS versions should be minimal.

Algorithm 2: Compute areas,e for all s, e
for s← 0 to N do

for e← s + 1 to N do
found = FALSE;
for A← 0 to AREA do

for j ← 0 to me do
if (ae,j ≤ A) then

times,e(A) = min(times,e(A),
times,e−1(A− ae,j) + te,j)

if (times,e(A) ≤ period AND !found) then
areas,e = A;
found = TRUE;

Algorithm 2 computes the area-optimal solution for each
possible subsequence Ts+1, . . . , Te mapped to a PE under
the period constraint. The execution time of the subsequence
mapped to a PE can be defined as

times,e =
e∑

i=s+1

mi∑
j=0

ti,j · xi,j

Note that according to our definition, times,e corre-
sponds to the execution time of the task subsequence
[Ts+1, Ts+2, . . . , Te]. We assume that times,s = 0, which
means that there is no task mapped to the PE. Similarly,
we have areas,s = 0. We can compute the minimum value
of times,e for all possible values of s, e under different
area constraints through dynamic programming. The recursive
equation is given as

times,e(A) = min
j=0,...,me
ae,j≤A

(times,e−1(A− ae,j) + te,j)

Basically, the dynamic programming algorithm works as
follows. When we are computing times,e(A), we go through
all the CIS versions of task Te. For each CIS version Ce,j

that requires an area not more than A, we pre-allocate the
required area and put the rest of the tasks Ts+1 to Te−1 in the
remaining area A−ae,j . The execution time for this allocation
is computed as te,j + times,e−1(A − ae,j). We then choose
the CIS version of task Te with minimal resulting execution
time value and record it as times,e(A).

We now know how to compute the minimal execution
time for the task sequence Ts+1 . . . Te under various area
constraints. For each task sequence, the algorithm increases
the area budget at every iteration, and the execution time
decreases correspondingly. Hence, the area budget of the very
first iteration where the execution time falls below the period
constraint defines the minimal area. The constant AREA is
set at a large value such that all the tasks can select their
best possible CIS version. The complexity of the algorithm is
O(N2×AREA×m), where m is the average number of CIS
versions per task.

We do not take into account the communication cost be-
tween the PEs. However, it is fairly straightforward to include
communication cost into our framework. We simply need to
add area and performance overhead of communication while
computing areas,e in Algorithm 2.

B. Partitioning

Algorithm 3: Compute AreaN |P
for e← 1 to N do

Areae|1 = area0,e;
for p← 2 to N do

for e← 1 to N do
Areae|p = min

k=1,...,e
(Areak|(p− 1) + areak,e + areaPE)

Now we focus on partitioning the tasks. We define
AreaN |P as the minimal area required to execute tasks
T1, . . . , TN on P processing elements such that the pe-
riod constraint is not violated. Again we employ dynamic
programming algorithm to compute this value. Clearly,

min
p=1,...,N

AreaN |p denotes the minimal area required to ex-

ecute the entire task sequence T1, . . . , TN on at most N
processing elements.

Algorithm 3 returns the values of AreaN |P . The algorithm
iterates over the number of processing elements p. Given a
fixed number of processing elements p, we iterate over the
number of tasks e. Note that Areae|p computes the minimal
area required to execute tasks T1, . . . , Te on p PEs such that
the period constraint is not violated. We need to create p
partitions such that each partition will be mapped to one PE.
The recursive equation is defined as

Areae|p = min
k=1,...,e

(Areak|(p− 1) + areak,e) + areaPE

When there is only one PE, all tasks are simply mapped to
it, which is the initialization statement for Areae|1. The basic



idea of the recursive step is to check all possible partition
points for the last PE. A partition point k partitions the
task chain into two parts: task subsequence [T1, . . . , Tk] and
task subsequence [Tk+1, . . . , Te]. The second task subsequence
[Tk+1, . . . , Te] is mapped to the last PE and the first task
subsequence is mapped to p− 1 processing elements. In that
case, the minimal area requirement for the last PE will be
areak,e + areaPE where areak,e is the area corresponding
to CIS versions computed using Algorithm 2. As we are
computing our solutions iteratively, we have already computed
Areak|(p−1) which corresponds to the minimal area solution
for the first task sequence on p − 1 PEs. The summation of
the two returns the minimal area with last partitioning point
at Tk. Among all the partitioning points (k = 1, . . . , e), we
select the one with the minimal area requirement.

Notice that when k = e, the second task subsequence will be
empty and areae,e = 0. This will essentially create additional
idle PE in the end, which will increase the area by areaPE
without any performance benefit. Hence this solution will be
eliminated. Similarly, if e < p, that is, the number of tasks
is less than the number of PEs, we will also get some idle
PEs. These idle PEs will add to area without contributing to
performance. Again these partial solutions with idle PEs will
not be part of the optimal solution.

The complexity of Algorithm 3 is O(N3).

VII. EXPERIMENT EVALUATION

•Read input audio
•Split channelsT1

•FilteringT2

•MDCTT3

•QuantizationT4

•Huffman
•Write outputT5

•Read input frame
•Compute activityT1

•Motion estimation
•Frame predictionT2

•DCT transformT3

•Write outputT4

•Inverse DCT 
transformT5

a) Tasks of MP3 b) Tasks of MPEG

Fig. 1. Task graphs of MP3 encoder and MPEG-2 encoder.

For the experiment evaluation, we use two popular stream-
ing applications, an MP3 encoder and an MPEG-2 encoder.
As shown in Figure 1, each application consists of a number
of tasks, which are the compute-intensive kernels.

The base processing elements used in our experiments
are the extensible Tensilica Xtensa LX2 processor cores
that can be configured for applications-specific instruction
set extension. Together with a hardware multiplier, 32KB of
data caches, and 4KB of instruction cache, each Xtensa LX2
processor requires about 231K gates, and can run at 326MHz
using 0.13µm LV manufacturing process.

For each task, we use XPRES compiler provided by Ten-
silica to generate a number of different configurations with

��

���

����

����

����

����

�� ��� ���� ���� ����

�
�	

�
��
�
�	
�	

�
��

�������������

��� ��
��
��
��
��

��

����

����

����

�����

�����

�����

�� ��� ���� ���� ���� ���� ����

�
�	

�
��
�
�	
�	

�
��

�������������

����� ��
��
��
��
��

Fig. 2. Custom instruction sets for the tasks in MP3 and MPEG-2

varying trade-offs between area and performance. The CIS
versions for each task are shown in Figure 2. The X-axis
represents the area (in gates) and the Y-axis represents the
execution time of the task. Some of the CIS versions require
almost the same area as the base PE.

MP3 MPEG2

A
re

a 
(K

 g
at

es
)

Period

0

800

1200

1600

400

0 0.2 0.4 0.6 0.8 1
0

1000

1500

2000

500

0 0.2 0.4 0.6 0.8 1

1PE
2PE

3PE
4PE

5PE

Fig. 3. Design space for MP3 encoder and MPEG-2 encoder.

We first plot the result of the exhaustive design space
exploration shown in Figure 3. There are 14,400 points in
the MP3 encoder design space and 387,072 points in the
MPEG-2 encoder design space. The X-axis represents the
period normalized with respect to the completely software
based implementation on a single PE. The Y-axis represents
the total area required by the MPSoC solution. Each color
corresponds to the number of PEs in the solution. As can be
seen from the figure, the design space is quite complex. It
is possible to meet the same period constraint either with a
small number of PEs each customized heavily or with a larger
number of PEs devoid of customization.

Now we focus on generating the area-optimal solution under
a given period constraint. For each application, we vary the
period constraints from 0 to 1.0 (in steps of 0.01) of the period
with pure software implementation on a single PE without any
customization. The software execution on a single PE without
customization is the solution with minimum area. For clarity,
we plot the results for different number of PEs though our
algorithm can easily identify the optimal number of PEs.

Figure 4 plots the results for the two applications. The
light blue region in the left of each graph corresponds to the
infeasible region where the period constraint is too small. The
white region under the curves corresponds to the infeasible
design space due to tight area budget. The third region, in
light green, is the feasible design space. The Pareto-optimal
solutions in this feasible design space are highlighted in the
figure. Given a period constraint, the corresponding optimal
point tells us how many PEs should be used and the minimal



MP3 MPEG2

0

800

1200

1600

400

0 0.2 0.4 0.6 0.8 1

1PE
2PE

3PE
4PE

5PE

0

800

1200

1600

400

0 0.2 0.4 0.6 0.8 1
A

re
a 

(K
 g

at
es

)

Period

Fig. 4. Minimal area cost versus period constraint for MP3 and MPEG-2 for different numbers of PEs

Number of tasks EA ILP DP
5 0.01 sec 1 sec 0.01 sec
7 1.18 sec 5 min 0.01 sec

10 12 min 9 min 0.03 sec
12 18 hour 2 hour 0.05 sec
15 - - 0.09 sec
20 - - 0.20 sec

TABLE 1
ANALYSIS TIME FOR EXHAUSTIVE (EA), ILP, AND THE DYNAMIC

PROGRAMMING (DP) ARPPROACH.

area cost. The vertical dashed lines indicate the maximum
accelerations that can be gained for different numbers of PEs.

Finally we compare the analysis time for exhaustive al-
gorithm (EA), ILP solver and our proposed dynamic pro-
gramming algorithm (DP) on Intel Xeon 2.53GHz processor
with 16GB memory. We used LINGO, a commercial ILP
solver [14] for our experimental evaluation. For this set of
experiments, we generate synthetic task graphs with number
of tasks varying from 5 to 20. The average number of CIS
version per task is set at 5. The performance gain of each
CIS version ranges between 1,000 to 10,000 time units. The
hardware area is between 1 to 100 units.

Table 1 shows the analysis time for the three methods. The
analysis time corresponds to finding the area-optimal solutions
given a fixed period constraint. Given an application and a
fixed period constraint, the analysis time remains unchanged
for different runs of exhaustive algorithm and dynamic pro-
gramming approach. However, for the ILP solver, analysis
time can vary; so we report the average analysis time.

As shown in the table, dynamic programming approach
improves the analysis time dramatically and still produces
the optimal solution. With 15 tasks and more, exhaustive
algorithm and ILP solver fail to return optimal solutions within
a reasonable time. However, dynamic programming approach
still manages to identify the optimal solution within short time.

The exhaustive algorithm is more powerful than ILP solver
if the designer is interested in all the Pareto-optimal solutions,
that is, the tradeoff between area and period. The exhaustive
algorithm can explore the entire design space in one go. The
ILP solver, on the other hand, needs to be invoked with
different period constraints. Even the dynamic programming
approach needs to be invoked with different period constraints.
However, our experiments show that dynamic programming

approach is way faster than exhaustive algorithm for a task
graph with 12 tasks and 100 different period constraints.

VIII. CONCLUSION

In this paper, we propose an efficient hierarchical algorithm
to design the most resource-efficient customized MPSoC plat-
form for mapping linear task graphs representing streaming
applications under deadline constraints. Using two popular
streaming applications (MP3 encoder and MPEG-2 encoder)
with Tensilica extensible processors, the experimental valida-
tion confirms the efficiency of our approach.

Acknowledgements. This work was partially supported by
MOE Singapore research grant MOE2009-T2-1-033.

REFERENCES

[1] R. E. Gonzalez, “Xtensa: A configurable and extensible processor,” IEEE
Micro, vol. 20, no. 2, 2000.

[2] H. Javaid and S., “Parameswaran. Synthe sis of heterogeneous pipelined
multiprocessor systems using ILP: JPEG case study,” in CODES+ISSS,
2008.

[3] S. Shee and S. Parameswaran, “Design methodology for pipelined
heterogeneous multiprocessor system,” in DAC, 2007.

[4] A. Tumeo et al., “Mapping pipelined applications onto heterogeneous
embedded systems: a bayesian optimization algorithm based approach,”
in CODES+ISSS, 2009.

[5] F. Sun et al., “Application-specific heterogeneous multiprocessor syn-
thesis using extensible processors,” IEEE TCAD, vol. 25, no. 9, 2006.

[6] Tensilica Inc., “XTensa LX2 Embedded Processor Core,” http://www.
tensilica.com.

[7] A. Benoit and Y. Robert., “Mapping pipeline skeletons onto hetero-
geneous platforms,” Journal of Parallel and Distributed Computing,
vol. 68, no. 6, 2008.

[8] A. Pinar and C. Aykanat, “Fast optimal load balancing algorithms for 1D
partitioning,” Journal of Parallel and Distributed Computing, vol. 64,
no. 8, 2004.

[9] P. Hansen and K.-W. Lih, “Improved Algorithms for Partitioning
Problems in Parallel, Pipelined, and Distributed Computing,” IEEE
Transactions on Computers, vol. 41, no. 6, 1992.

[10] M. A. Iqbal and S. H. Bokhari, “Efficient Algorithms for a Class
of Partitioning Problems,” IEEE Transactions Parallel and Distributed
Systems, vol. 6, no. 2, 1995.

[11] D. M. Nicol and D. R. O’Hallaron, “Improved Algorithms for Mapping
Pipelined and Parallel Computations,” IEEE Transactions on Computers,
vol. 40, no. 3, 1991.

[12] A. Gerasoulis and T. Yang, “A comparison of Clustering Heuristics for
Scheduling Directed Acyclic Grahphs on Multiprocessors,” Journal of
Parallel and Distributed Computing, vol. 16, no. 4, 1992.

[13] J. Cong, G. Han, and W. Jiang, “Synthesis of an Application-Specific
Soft Multiprocessor System,” in FPGA, 2007.

[14] Lindo System Inc., “Lingo,” http://www.lindo.com.


