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Abstract

Extensible processors allow addition of application-specific custom instructions to the core instruc-

tion set architecture. These custom instructions are selected through an analysis of the program’s dataflow

graphs. The characteristics of certain applications and the modern compiler optimization techniques

(e.g., loop unrolling, region formation, etc.) have lead to substantially larger dataflow graphs. Hence,

it is computationally expensive to automatically select the optimal set of custom instructions. Heuristic

techniques are often employed to quickly search the design space. In order to leverage full potential of

custom instructions, our previous work [P. Yu and T. Mitra, CASES, 2004, p.69] proposed an efficient

algorithm for exact enumeration of all possible candidate instructions (or patterns) given the dataflow

graphs. But the algorithm was restricted to connected computation patterns. In this report, we describe

efficient algorithms to generate all feasible patterns (connected and disjoint) based on our previous

algorithm. More optimization techniques are used in both connected and disjoint pattern enumeration,

resulting in further reduction of search space.

Keywords: ASIPs, customizable processors, custom instruction, instruction-set extensions, sub-

graph enumeration algorithm.

I. INTRODUCTION

The transition from desktop to embedded computing has made it crucial to design high

performance, low cost embedded software/hardware systems within very short time-to-market

window. The conventional approach of designing “hand-crafted” ASIC is too expensive and

inflexible. On the other hand, general purpose processors, while inexpensive, are yet to meet

the demanding performance requirement and usually consume too much power. These factors

have resulted in the emergence of instruction-set extensible processors that consist of an existing

processor core extended with application-specific custom instructions. These custom instructions

execute on custom functional units (CFU) implemented in reconfigurable logic (as in Stretch

S5 [4], NIOS from Altera [2] and Microblaze from Xilinx [17]) or ASIC (for example Lx [13]

and Xtensa [14]). Application-specific instructions help simple embedded processors achieve

considerable performance/energy efficiency. Moreover, the fact that the same set of custom

instructions can benefit different programs from an application domain illustrates the flexibility
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of this approach [11], [13].

A custom instruction encapsulates the computation of a frequently executed subgraph of the

program’s dataflow graph (DFG). A CFU is simply the hardwired datapath implementation of a

custom instruction. Optimized hardwired CFUs help to improve performance through parallelism

and chaining of operations. At the same time, custom instructions result in compact code size,

less number of instruction fetches and decodes and elimination of temporary registers. All

these factors reduces the total power consumption. When the same computation pattern appears

elsewhere in the program or even in other programs, it can be converted to the same custom

instruction and executed on the same CFU.

However, identifying the suitable set of subgraphs from a program’s DFG to form a set of

custom instructions that is optimal in performance, power and hardware cost (i.e., area) is not

an easy problem. This problem involves two subproblems: (1) custom instruction identification

– enumerate a set of candidate subgraphs from the program’s DFG and (2) custom instruction

selection – evaluate performance, power, area of each candidate and then select an optimal subset

of them under various design constraints. In this paper, we put our emphasis on the discussion

of the first problem. Interested readers can refer to [3], [11], [15], [21], [24] for various solutions

to the second problem.

Enumerating all possible subgraphs of a given graph is intractable and computationally ex-

pensive. The number of subgraphs or patterns for a DFG is, in general, exponential in terms of

the number of nodes in the DFG. However, some of these patterns are infeasible due to various

microarchitectural constraints. Examples of such constraints include maximum number of input

and output operands (due to restrictions on the number of register ports), area, and delay of

each custom instruction. Moreover, a custom instruction is infeasible if it cannot be executed

atomically (named as convexity constraint by [21] – see Section III-C for details).

Previous approaches either put very limiting constraints on the number of operands [12], [22]

or use heuristics [7], [11] to explore the design space quickly. However, it has been shown [6],

[24] that such approaches can significantly restrict the performance potential of using custom

instructions. There are only two works [21], [25] targeting exhaustive enumeration of feasible
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patterns1. In [21], the algorithm walks through the enumeration space represented by a binary

decision tree, and prunes unnecessary sub space effectively based on constraint violation of

patterns. However, in the worst case, it will look at 2N patterns where N is the number of

nodes in the DFG. Therefore, scalability issues may occur when it deals with very large DFGs.

Later, our previous work [25] addresses the scalability problem by presenting a fast pattern

enumeration algorithm. Although the method is more scalable, it only produces the set of feasible

connected patterns, while [21] generates the set of feasible connected and disjoint patterns. In this

report, extensions of our previous algorithm is presented to deal with disjoint patterns. Moreover,

although the algorithm structure for connected patterns remains similar, new pruning techniques

are introduced to further reduce the combination space.

II. RELATED WORK

The previous work in pattern enumeration can be classified according to the restrictions

imposed on the feasibility of patterns and properties of generation process as follows:

Number of Operands: The maximum number of input and output operands of custom

instructions is typically constrained due to length of instruction encoding and/or ports to register

files. However, these restrictions can sometime lead to very efficient enumeration algorithms. For

example, Pozzi et al. [22] has developed a linear time algorithm to identify the maximal Multiple

Inputs Single Output (MISO) patterns. J. Cong et al. [12] enumerates all possible K-feasible

MISO patterns (where K is the input operands constraint) through a single pass of the DFG. The

problem of using Multiple Inputs Multiple Outputs (MIMO) patterns is that there can potentially

be exponential number of them in terms of the number of nodes in the DFG. Arnold et al. [3]

uses an iterative technique that replaces the occurrences of previously identified smaller patterns

with single nodes to avoid the exponential blowup. Clark et al. [11] uses a heuristic algorithm

that starts with small MIMO patterns and expands only the directions that can possibly lead to

good patterns. Baleani et al. [7] uses another heuristic algorithm that adds nodes to the current

pattern in topological order till input or output constraint is violated; it then starts a new pattern

1The method in [21] is an improved version of a previous one in [6] by the same authors
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only with the node that caused the violation. All the last three algorithms only generate a subset

of the candidate patterns that meet input, output, and convexity constraints. Therefore, they may

miss opportunities to produce the globally optimal set of custom instructions. Other than ours,

Pozzi’s work [21] is the only known approach that exhaustively enumerates all possible patterns.

However, scalability becomes a major obstacle when DFGs size increases.

Connectivity: A candidate subgraph (pattern) may contain one or more disjoint components.

Including multiple components in a subgraph increases the potential to exploit parallelism and

thus may provide better performance if the base architecture does not support instruction-level

parallelism (ILP). On the other hand, doing so may not be beneficial for an ILP processor

that would have been able to exploit this parallelism anyway. Under such context, custom

instruction selection also needs to be considered carefully together with instruction scheduling

to ensure reduction of critical path. [3], [7], [11], [12], [22], [25] identify subgraphs with only

one component, while [9], [21] and [15] combine disjoint components.

Overlap: As the final set of selected custom instructions do not normally overlap in the

DFG, [7], [22] do not consider overlapped candidate patterns (e.g., patterns {1, 2, 3} and {2,

4} in Fig. 1 (a) overlap at node 2, so only one of them will be enumerated). However, other

works enumerate overlapped patterns as they may be used to produce a better optima considering

pattern reuse, especially under tight area budget.

Explicitness: Two recent works [5], [20] use ILP formulation to generate a single best

performing pattern in each iteration of their algorithms. In this way, all the patterns are potentially

enumerated in a implicit manner and evaluated by the ILP solver. However, as only one pattern

is generated, other patterns are lost. All other works identify patterns explicitly.

Order of pattern identification and selection: Most of the previous works take a two step

approach where the first step identifies the set of candidate patterns and the second step does the

selection. However, some heuristic algorithms, such as [11], combine the two steps. This way the

likely bad patterns are eliminated on-the-fly, thereby reducing the time and storage complexity

of the algorithm at the risk of missing the global optima.
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Given a set of candidate patterns, various approaches have been proposed to select the optimal

subset under different constraints. [21] proposes an optimal method to select N patterns. Both

ILP-based [19], [24] and heuristic-based methods [11], [24] have been proposed to select patterns

under area constraints. Finally, a dynamic programming approach has been proposed in [3] to

select the optimal subset if there is no constraint on area or number of patterns.

We aim to enumerate all possible patterns (connected, disjoint, and possibly overlapped)

that meet the input, output and convexity constraints. This provides the selection process an

opportunity to find the globally optimal solution. Our approach is scalable both in terms of DFG

size as well as number of input/output operands, and can be applied to large DFGs produced

after modern compiler transformation techniques.

III. CUSTOM INSTRUCTION ENUMERATION PROBLEM

In this section, we formally define the custom instruction identification problem.

A. Dataflow Graph (DFG)

Given a program, custom instructions are identified on the dataflow graphs corresponding to

the basic blocks. A DataFlow Graph G(V, E) represents the computation flow of data within a

basic block. The nodes V represent the operations and the edges E represent the dependencies

among the operations. G(V, E) is a directed acyclic graph (DAG). Node u is a predecessor of v

if there exists a directed path {u, x1, . . . , xi, v} between them, denoted as u ∈ predecessors(v).

Similarly, u is a successor of v if there exists a directed path {v, x1, . . . , xi, u} between them,

denoted as u ∈ successors(v). Note that v ∈ predecessor(v) and v ∈ successor(v).

The architectural constraints may not allow all types of operations to be included as part of

a custom instruction. For example, memory access and control transfer operations are typically

not included. Therefore, the nodes of the DFG are partitioned into valid nodes and invalid nodes.
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Fig. 1. An example dataflow graph. Valid nodes are numbered according to reverse topological order. Invalid nodes corresponding
to memory load operations (LD) are unshaded. Two regions are separated by a LD operation.

A node in the DFG is a valid node if its corresponding operation can be included as part of a

custom instruction; otherwise, it is an invalid node. An example DFG is shown in Fig. 1.

A DFG can be partitioned into multiple regions. Given a DFG G(V, E), we define a region

R(V′, E′) as the maximal subgraph of G s.t. (1) V′ contains only valid nodes, (2) there exists

a path between any pair of nodes of V′ in the undirected graph that underlies R, and (3) there

does not exist any edge between a node in V′ and a valid node in (V − V′). Invalid nodes do not

belong to any region. Fig. 1 shows a DFG divided into two regions by a memory load operation.

B. Patterns

Given a DFG, a pattern is a induced subgraph of the DFG. A pattern can be a possible

candidate for custom instruction. For convenience, we represent a pattern by its set of nodes.

A pattern P is connected if for any pair of nodes 〈u, v〉 in p, there exists a path between u

and v in the undirected graph that underlies the directed induced subgraph of p. A pattern is

disjoint if it is not connected. The number of input and output operands of P are called IN(p)
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and OUT(p), respectively. A node of p connected to an input (output) operand is called an input

(output) node, and we denote p’s input nodes and output nodes as IN SET(p) and OUT SET(p)

respectively.

The following special patterns are of interest for custom instruction identification problem.

• MISO: A pattern p with only one output operand is called a MISO (Multiple Input Single

Output) pattern. Clearly, a MISO pattern should be connected. MISO patterns are supported

by all instruction set architectures (ISA).

• Connected MIMO: A connected pattern with multiple input operands and multiple output

operands is called a connected MIMO (Multiple Input Multiple Output) pattern. MIMO

patterns may not be supported by all ISAs.

• Disjoint MIMO: A disjoint pattern with multiple input operands and multiple output

operands is called a disjoint MIMO pattern. A disjoint MIMO pattern consists of two or

more MISO or MIMO patterns. Disjoint MIMO patterns are more useful for architectures

with limited or no mechanisms to exploit instruction-level parallelism.

In addition, we define a special kind of pattern called cone. A cone is a rooted DAG in the

dataflow graph s.t. either there is a path from the root node r to every other node in the cone

(downCone(r)) or there is a path from every other node to the root node (upCone(r)). An

upCone(r) is a MISO if r is the only output node of the cone. In Fig. 1, pattern {0, 1, 2, 3}

is an upCone(0), while pattern {6, 4, 5} is a downCone(6). We also define maximal upCone

(downCone) of a node r in a DFG G, maxUpCone(r,G) (maxDownCone(r,G)), as the upCone

(downCone) in G rooted at r s.t. for any other upCone (downCone) q in G which is rooted at

r, maxUpCone(r, q) ⊃ Q.

C. Feasibility of Patterns

Given a DFG, not all patterns are feasible as custom instructions. A pattern p is convex if

there does not exist any path in the DFG from a node x ∈ p to another node n ∈ p that contains a

node l /∈ p. For example, {6, 14, 15} is a convex pattern in Fig. 1. A pattern can be implemented
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as custom instruction if it is convex as non-convex patterns cannot be executed atomically. For

example, in Fig. 1, pattern p1 with nodes {4, 6, 14} is non-convex (assuming memory load is an

invalid operation). Similarly, pattern p2 with nodes {5, 6, 15} is also non-convex. However, note

that the non-convexities of p1 and p2 arise due to different reasons. p1 is non-convex because

we cannot include the invalid node corresponding to memory load operation in the pattern, while

p2 is non-convex because we choose not to include node 7 in the pattern. We call the first case

external non-convexity and the second one internal non-convexity. A non-convex pattern p is

external non-convex if their exists a path from a node m ∈ p to another node n ∈ p, which

contains an invalid node x /∈ p. Otherwise, the non-convex pattern is internal non-convex.

In addition, restrictions on instruction length and number of ports to the register file can put

constraints on the maximum number of allowed input and output operands for a pattern. We call

these input constraint and output constraint respectively. For example, if a custom instruction

is allowed to have only one output operand, then the pattern {6, 14, 15} in Fig. 1 is infeasible.

In summary, a pattern extracted from the DFG is feasible only if it is convex and satisfies the

input and output constraints.

D. Problem Definition

Given the DFG corresponding to a code fragment, the problem is to enumerate all feasible

MISO, connected MIMO, and disjoint MIMO patterns for that code fragment. In the worst case,

the number of feasible patterns of a DFG is exponential in terms of the number of nodes of

the DFG. Therefore, the overall complexity of any exact enumeration algorithm is exponential.

However, our experience suggests that, in practice, the number of feasible patterns in a DFG is far

from exponential. Therefore, it is possible to design an efficient algorithm for exact enumeration

of feasible patterns.

IV. EXHAUSTIVE PATTERN ENUMERATION

We describe an efficient algorithm to exhaustively enumerate all feasible patterns in a DFG

under input, output, and convexity constraints. We first briefly describe the current state-of-the-art
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algorithm for exhaustive enumeration.

SingleStep: Previous Algorithm: To the best of our knowledge, method in [21] is the only

previous way that exhaustively enumerates all feasible patterns of a DFG. In this section, we

briefly describe this algorithm as we use it as the baseline for comparison purposes. We will call

this SingleStep algorithm in the rest of the paper as it enumerates all feasible MISO, connected

MIMO, and disjoint MIMO patterns through a combined design space exploration. In contrast,

we call our algorithm MultiStep algorithm as it generates MISO, connected MIMO, and disjoint

MIMO patterns in three different stages.

The SingleStep algorithm first assigns labels 0 . . . N− 1 to the valid operations (nodes) of the

DFG in reverse topological order, where N is the number of valid operations in the DFG. It then

searches an abstract binary tree containing N + 1 levels and 2N+1 − 1 nodes to generate feasible

patterns. The root node at level 0 represents the empty pattern. The two children of the root

represent the presence and absence of operation 0, i.e., an empty pattern and a pattern containing

operation 0, respectively. The nodes at level i (0 < i ≤ N) represent all possible patterns with

operations 0 . . . i− 1. Basically, the search tree visits the operations in reverse topological order

and explores the patterns corresponding to presence/absence of each operation. Clearly, the search

space is exponential. However, the algorithm uses a clever strategy to prune the search space. If

the pattern corresponding to a node s in the abstract search tree violates output and/or convexity

constraint, then there is no need to explore the subtree of s. As the operations in the DFG are

visited in reverse topological order, all the patterns corresponding to the nodes in the subtree

of s are guaranteed to violate output and/or convexity constraint. Besides, certain cases of input

violation caused by permanent inputs, which cannot be resolved in the deeper subtree, can also

be used to prune the search space.

MultiStep: Our Algorithm: In contrast to the SingleStep algorithm, our MultiStep algorithm

does not attempt to generate all feasible patterns in a single step. It breaks up the pattern

generation process into three steps corresponding to cone, connected MIMO, and disjoint MIMO

patterns. The first step generates upCones and downCones. Recall that a MISO pattern is a

downCone with only one output node. Therefore, the first step implicitly generates all the MISO
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patterns. The second step combines two or more cones to generate connected MIMO patterns,

and finally the third step combines two or more cones/MIMO patterns to generate disjoint MIMO

patterns.

The MultiStep algorithm is based on the intuition that it is advantageous to separate out

connected and disjoint MIMO pattern generation. The reason is the following. On one hand,

connected MIMO pattern generation algorithm does not need to consider nodes that are far

apart and have no chance of participating in a connected pattern together. Thus we can prune

the design space considerably. On the other hand, lots of infeasible patterns are filtered out

during connected pattern generation step and are not considered subsequently during disjoint

pattern generation step. Thus the separation of concern speeds up the algorithm substantially.

MultiStep algorithm resembles the following two theorems.

Theorem 1: Any connected MIMO pattern p can be generated by combining convex upCones

with at most IN(p) input operands or convex downCones with at most OUT(p) output operands.

Proof: Let v1, . . . , vN be the nodes of P, where N is the number of nodes in p. Clearly, in the

extreme case, maxCone(v1, p) ∪ . . .∪ maxCone(vN, p) = p, where maxCone(vi, p) can either

be maxUpCone(vi, p) or maxDownCone(vi, p). By definition, IN(maxUpCone(vi, p)) ≤ IN(p)

for any 1 ≤ i ≤ N. We prove by contradiction that pi = maxUpCone(vi, p) is convex. Let us

assume that pi is non-convex. Then, there exists at least a pair of nodes m, n ∈ pi s.t. there exists

a path from m to n that contains a node y /∈ pi. As pi is the maxUpCone of node vi in p, if

y /∈ pi, then y /∈ p. Therefore, p is also non-convex, which is a contradiction. Similarly, we can

prove the case for downCones. The case for maxDownCone(vi, p) can be proved similarly.

Loosely speaking, it is possible to generate any feasible connected MIMO patterns by com-

bining one or more cones. For example, the pattern {6, 7, 14, 15} in Fig. 1 can be generated by

combining upCone(6) = {6, 14, 15} with downCone(15) = {7, 15}. The above theorem provides

a key search space reduction by excluding combinations of any arbitrary cones. Specifically,

to generate all the connected MIMO patterns, MultiStep algorithm only needs to generate all

upCones that satisfy convexity/input constraints and all downCones that satisfy convexity/output
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constraints. This allows the algorithm to prune aggressively.

Theorem 2: Any connected component p of a feasible disjoint pattern dp must be a feasible

connected pattern.

Proof: A connected component p of a disjoint MIMO pattern dp is a maximal connected

subgraph in dp. An input of p must also be an input of dp. So IN(p) ≤ IN(dp). As dp satisfies

input constraint, p must also satisfy the input constraint. The same reasoning holds for the output

constraint.

We prove by contradiction that p is convex. Let us assume p is non-convex. Then there exists

at least a pair of nodes m, n ∈ p s.t. there exists a path from m to n that contains a node

x /∈ p. There are two cases for x. (1) x /∈ dp: In this case dp is also non-convex, which is a

contradiction; (2) x ∈ dp: As p is a maximal connected subgraph, x is not connected to p. So

there must be two nodes y, z /∈ p and connected to p on a path 〈m, y, . . . , x, . . . , z, n〉. We have

y, z /∈ dp, otherwise they will belong to p too. So now we have two paths 〈m, y, . . . , x〉 and

〈x, . . . , z, n〉 that make dp non-convex, which is again a contradiction. So p must be convex.

Theorem 2 shows that a feasible disjoint pattern can be generated from one or more feasible

connected patterns. The combination space among feasible patterns is much smaller than that of

arbitrary patterns, resulting in more efficient enumeration.

The rest of this section describes our MultiStep algorithm in detail.

A. Generation of Cones

The first step generates all the convex upCones that satisfy input constraints and convex

downCones that satisfy output constraints. Recall that a cone is a connected pattern and hence

cannot contain nodes from different regions of a DFG. Therefore, we generate cones for each

region individually. First, we traverse the nodes of each region in topological order and calculate

the set of possible convex upCones that satisfy input constraints at each node. Similarly, we

traverse the nodes of each region in reverse topological order to calculate the set of possible
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Algorithm 1: Enumeration of upCones of region R
ConeGen
begin

for all nodes v of R in topological order do1
upConeSet(v) := {{v}};2
for all possible combination of immediate predecessors of v do3

Let v1, . . . , vi be the selected immediate predecessors;4
tmpConeSet := CrossProduct(upConeSet(v1), . . . ,upConeSet(vi), {{v}});5
prune tmpConeSet for convexity and input violation;6
upConeSet(v) := upConeSet(v) ∪ tmpConeSet;7

end

CrossProduct (set1, . . . , setn)
begin

coneSet := φ;8
set := set1 × . . .× setn;9
for each s ∈ set do10

Let s = 〈s1, . . . , sn〉;11
coneSet := coneSet ∪ {s1 ∪ . . . ∪ sn};12

return coneSet;13
end

convex downCones at each node that satisfy output constraints.

Algorithm 1 details the generation of upward cones for a region R. We define upConeSet(v) as

the set of upward cones for node v satisfying both the input operands and convexity constraints.

Recall that each upward cone (pattern) in the set upConeSet(v), in turn, is again represented

as a set of nodes. Given a node v, let v1, . . . , vk be its immediate predecessors in the region.

As we are traversing the nodes in topologically sorted order, the set of upward cones of vi

(vi ∈ predecessors(v)) is known when v is visited. Therefore, we can compute all possible

upward cones of v. For example, the set of upward cones of node 14 and 15 (in Fig. 1) are

{{14}} and {{15},{15, 16}}, respectively. Therefore, the set of upward cones computed for

node 6 is {{6}, {6,14}, {6,15}, {6,15,16}, {6,14,15}, {6,14,15,16}}.

This step may generate some upward cones (e.g., {5, 6, 15} at node 5 in Fig. 1) that do

not satisfy convexity and/or input operands constraint. The algorithm eliminates such upward

cones in line 6. Such elimination is safe, i.e., all upward cones satisfying input and/or convexity

constraint can be produced, due to similar reasoning of Theorem 1. Note that the algorithm does
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Fig. 2. Form a feasible connected MIMO pattern through partial decomposition. Decomposition cones are dashed on each
step. Trivial decomposition cones, like 1 for every downward extension and 2 in pd3, is omitted, which are eliminated in the
algorithm.

not eliminate any upward cone that does not satisfy output constraint.

The generation of downward cones is similar to Algorithm 1. However, in this case, the traver-

sal is in reverse topological order. Also the cones violating convexity and/or output constraints

are eliminated.

B. Generation of Connected MIMO Patterns

1) Partial decomposition: In order to understand the mechanism of connected MIMO gen-

eration algorithm, let us first see how a feasible connected pattern can be decomposed and

reproduced. Any feasible connected pattern p can be reproduced by concatenating a series of

upward cones and downward cones. A partial decomposition is formed on each concatenation

step, which is a connected subgraph of p. Starting from a sink node vs, which we treat as

the initial partial decomposition pd0, we extend it upwards and downwards by adding upward

cones and downward cones step by step until the partial decomposition becomes p. The process

is as follows: Step 1, we extend vs upwards, which is the initial extension node, by com-

bining it with maxUpCone(vs, p), such that dp1 = vs ∪maxUpCone(vs, p); . . . ; Step (n), if

the (n− 1)th step is upward, the nth step extends downwards through extension nodes set

ext = {v|v ∈ OUT SET(dpn−1)}, and produces dpn = dpn−1 ∪ Σv∈extmaxDownCone(v, p). If

the (n− 1)th step is downward, the nth step extends upwards analogously on the reverse

direction. The extension stops until the partial decomposition becomes the same as p. Fig. 2

shows an example graph, its decomposition cones and partial decompositions, starting with node
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8.

We can get a few observations from the decomposition process. First, each constituent upward

(or downward) cone satisfies input (or output) constraint and convexity constraint. Second, each

partial decomposition after an upward (or downward) extension step satisfies input (or output)

constraint and convexity constraint, and this suggests that intermediate patterns violating the

constraints can be discarded. Third, a decomposition cone overlaps with the partial decomposition

of the previous extension step at least on the corresponding extension nodes. Fourth, extension

nodes that cannot introduce new nodes to the partial decompositions can be eliminated. For

example, node 1 is a downward extension node in every downward extension step, however,

it cannot extend to new nodes that the current partial decomposition has not reached, hence

eliminated. The last three observations can help deduce pruning strategies in the connected

MIMO generation algorithm.

Given a set of extension nodes, the set of feasible connected patterns containing all of them

can be produced by combining cones rooted from them. So, as long as all the extension nodes

are enumerated, the generation algorithm is complete. Instead of forming patterns individually,

more productively, the set of patterns that can be extended through the same set of extension

nodes can be processed together.
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Fig. 4. A recursive process of collecting patterns for the example in Fig. 3.

We illustrate the key process of connected MIMO generation algorithm by walking through

the generation of all feasible connected patterns involving node 1 in Fig. 3, assuming the graph in

the previous example is a region itself and input and output constraints are not imposed. Firstly,

we extend node 1 upwards, resulting in all the patterns in upConeSet(1). Instead of using the

partial decomposition for a single pattern, we use the notion of extended region to identify

extension nodes for a set of patterns. Extended region is a subgraph of region R that has been

extended to. An upward (or downward) extension by node v will add maxUpCone(v, R) (or

maxDownCone(v, R)) to the existing extended region. The extended region after each extension

step is shaded in the example. For now, the extended region is maxUpCone(1, R), and 2

downward extension nodes 5 and 7 are identified by taking its outputs (node 1 is a trivial

downward extension node that is omitted). All possible downward (or upward) extensions to

new nodes that have not been extended to are through the outputs (or inputs) of extended region.

Two downward extension nodes 5 and 7 produces 3 combinations {5}, {7} and {5,7}, indicating

3 extension possibilities each produces a different subset of patterns involving extension nodes

5 or 7. Extending through each combination would produce new extension nodes of its own,

resulting in different extension paths, which implies a recursive process of further extension. For

now, next step downward extension will split into three – extending through {5}, {7} or {5,7}.
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However, {7} can be eliminated due to the same extension effects through {5,7}, because any

further patterns involving node 1 and 7 must also contain node 5 for the sake of convexity. Such

predecessor and successor relation between two extension nodes can help reduce the number

of combinations greatly. Secondly, assume we take the {5} extension path (Fig. 3 (b)), all the

intermediate patterns from the previous extension step containing node 5 but not 7 are combined

with downward cones rooted from it. Further upward extension node 3 is identified from the new

extended region. Such extension goes on upwards and downwards interleavedly until no further

extension nodes are identified. Fig. 4 illustrates the recursive extension process by function calls

and patterns collected at each level. The top level obtains all the patterns involving node 1. Note

that not all the patterns (including intermediate patterns) produced are feasible if inputs and

outputs constraints are imposed, and they are deleted in the end.

2) Connected MIMO Generation Algorithm: We describe connected MIMO generation al-

gorithm formally with Algorithm 2, and discuss the pruning techniques to eliminate redundant

extension nodes combinations and subgraph combinations.

The algorithm traverses the nodes in a region R in reverse topological order (line 1). It

maintains the following invariant: when the traversal of a node v is completed, all the feasible

connected patterns involving v have been enumerated. Therefore, node v need not be considered

further and can be masked, along with existing subgraphs/cones involving v.

For each starting node v as the initial extension node, which must be a sink node for the

rest of region R, the algorithm resembles the process in the example of Fig. 3. It identifies new

extension nodes (line 2, 21) and enumerates their combinations (line 9) upwards and downwards

interleavedly, and split search recursively along each extension nodes combination with the

Extend function. Extend takes in 4 arguments: (1) direction can take values up or

down, and indicates whether the current extension step is upward or downward. (2) MIMOSet

is a set of patterns passed from the previous level, as the base set of patterns to be combined with

cones of extension nodes. (3) oldExtStats contains 3 sets of extension nodes, expressing the

status of the extension: newExt is the set of extension nodes identified from the previous level,

combinations of which will be enumerated at the current level; extAll and extCombAll are
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Algorithm 2: Generation of feasible connected MIMO patterns of region R with redundancy
reductions.
MIMOGen
begin

for all nodes v of R in reverse topological order do1
extStats.newExt := ExtIdentify(down, extendedReg :=2

maxUpCone(v,R),NODES(upConeSet(v)));
extStats.extCombAll := v;3
extStats.extAll := newExt;4
if extension 6= φ then5

connectedMIMOSet(v) := Extend(down,upConeSet(v), extStats, extendedReg);6
remove v from R;7

end

Extend (direction,MIMOSet, oldExtStats, oldExtendedReg)
begin

newMIMOSet := MIMOSet;8
for all possible combination of oldExtStats.newExt do9

Let extComb = {v1, . . . , vi} be the current combination;10
if ExtCombEli(direction, extComb, oldExtStats.newExt) then continue;11
newExtStats.extCombAll = oldExtStats.extCombAll ∪ extComb;12
P := {p|p ∈ MIMOSet

∧
p ⊇ newExtStats.extCombAll

∧
13

p ∩ (oldExtStats.extAll− newExtStats.extCombAll) = φ};
if direction = down then14

tmpMIMOSet := CrossProduct(downConeSet(v1), . . . ,downConeSet(vi),P);15
prune tmpMIMOSet for convexity and output violation;16
newExtendedReg := oldExtendedReg ∪ (

⋃
v∈extComb maxDownCone(v,R));17

else
tmpMIMOSet := CrossProduct(upConeSet(v1), . . . ,upConeSet(vi),P));18
prune tmpMIMOSet for convexity and input constraint violation;19
newExtendedReg := oldExtendedReg ∪ (

⋃
v∈extComb maxUpCone(v,R));20

newExtStats.newExt := ExtIdentify(!direction,newExtendedReg,NODES(tmpMIMOSet));21
newExtStats.extAll := oldExtStats.extAll ∪ newExtStats.newExt;22
if tmpExtension 6= φ then23

newMIMOSet := newMIMOSet ∪ Extend(!direction,24
tmpMIMOSet,newExtStats,newExtendedReg);

else
newMIMOSet := newMIMOSet ∪ tmpMIMOSet;25

prune newMIMOSet for input and output constraint violation;26
return newMIMOSet;27

end
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Algorithm 3: Auxiliary functions for the connected MIMO generation algorithm.
ExtIdentify (direction, extendedReg, wetReg)
begin

/* Identify downward extension nodes */
if direction = down then1

newExt := OUT SET(extendedReg);2
for v ∈ newExt do3

if maxDownCone(v,R) ⊆ extendedReg then remove v from newExt;4
else if v /∈ wetReg then remove v from newExt;5

else
// Upward case is analogous.6

return newExt;7
end

bool ExtCombEli (direction, extComb,newExt)
begin

for any pair u and v ∈ newExt, where u ∈ predecessor(v) do8
if direction = down

∧
u ∈ extComb

∧
v /∈ extComb then return true;9

else if direction = up
∧

v ∈ extComb
∧

u /∈ extComb then return true;10
return false;11

end

the set of all the extension nodes identified and selected respectively up to the previous level, and

are used to pick up a subset of patterns in MIMOSet to extend (line 13). (4) oldExtendedReg

is the extended region from the previous step used to identify further extension nodes (line 2,

21).

Extension nodes are identified in the ExtIdentify function depicted in Algorithm 3.

Downward extension nodes are identified as the output nodes of extended region. However,

extension nodes that can not produce new patterns are eliminated in two ways. First, extension

nodes introduce no new extended region are eliminated (line 4). Second, extension nodes falling

outside the wet region are eliminated (line 5). Wet region is a subregion of R that contains

nodes appearing in at least one partial decomposition in the nearest extension (as computed in

line 21 of Algorithm 2), which supplies the base set of patterns to be extended. Recall that in

the decomposition example, we have observed that a decomposition cone must be overlapping

with the partial decomposition of the last extension step at least on the corresponding extension

nodes. So, an extension node can be eliminated if none of the base patterns overlaps with it.
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Function ExtCombEli tests a given extension node combination and bypasses it if it is

redundant (line 11 in Algorithm 2). For two downward extension nodes u and v identified, if

u ∈ predecessor(v), the extension node combination with u but not v has the same effects with

the combination containing both, thus can be bypassed safely (line 9). The reasoning for this

is partial decompositions with node u must also contain node v, thus further extensions of two

cases will be the same. Suppose previous upward extension node e is successor of both u and

v (such e must exist obviously). So all the partial decompositions contain node e. As a result,

if a partial decomposition contains u, it must also contain v to ensure the convexity to node e.

Line 10 is the test along upward direction analogously.

C. Generation of Disjoint MIMO Patterns

Disjoint pattern enumeration algorithm produces the set of all feasible disjoint MIMO patterns

denoted as DPS. According to Theorem 2, each disjoint pattern dp ∈ DPS is composed of more

than one connected patterns and satisfy the input, output and convexity constraints. We use the

the set of all feasible connected MIMO patterns denoted as CPS as the base to produce all the

disjoint patterns.

We observed that the number of output nodes of any feasible disjoint pattern is simply the

summation of those of its constituent connected patterns. Based on this observation, we classify

the patterns according to the the number of output nodes. We define CPSi and DPSi as set of

all the feasible connected patterns and disjoint patterns with exactly i output nodes, respectively.

Note that according to our definition CPSi ∩DPSi = ∅. Feasible disjoint patterns with n output

nodes can be generated by combining feasible connected patterns with less than n output nodes.

More formally, we have to consider all possible partitions of n (a partition of a positive integer

n is a way of writing n as a sum of positive integers) except for the partition with single element

n. For example, the partitions of integer 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1. Therefore
DPS4 = (CPS3 × CPS1) ∪ (CPS2 × CPS2) ∪ (CPS2 × CPS1 × CPS1)

∪(CPS1 × CPS1 × CPS1 × CPS1)
where × and ∪ represent cross product and union operations, respectively. However, we can

simplify the disjoint pattern generation process by replacing certain parts of the above equation
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with DPSi. Following we show the equations for disjoint patterns with up to 5 output nodes.

DPS1 = ∅

DPS2 = CPS1 × CPS1

DPS3 = (CPS2 × CPS1) ∪ (CPS1 × CPS1 × CPS1)

= (CPS2 × CPS1) ∪ (DPS2 × CPS1)

DPS4 = (CPS3 × CPS1) ∪ (CPS2 × CPS2) ∪ (CPS2 × CPS1 × CPS1)

∪(CPS1 × CPS1 × CPS1 × CPS1)

= (CPS3 × CPS1) ∪ (CPS2 × CPS2)

∪ ((CPS2 × CPS1) ∪ (CPS1 × CPS1 × CPS1))× CPS1

= (CPS3 × CPS1) ∪ (CPS2 × CPS2) ∪ (DPS3 × CPS1)

DPS5 = (CPS4 × CPS1) ∪ (CPS3 × CPS2) ∪ (DPS4 × CPS1)

The above equations indicate that the disjoint patterns should be generated in increasing

order of the number of output nodes (i.e., DPS2, DPS3, ...). Also each cross product operation

is performed on two sets, i.e., each disjoint pattern is obtained by composing two previously

generated patterns (connected or disjoint), thus simplifying the generation algorithm. Note that

starting from DPS6, cross product operation on more than two sets need to be performed; for

example CPS2 × CPS2 × CPS2 cannot be resolved. However, the term CPS2 × CPS2 appears

during the generation of DPS4. By re-using these intermediate results, we can still ensure that

the cross product is always performed with two sets.

Pruning: We observe that directly computing the right side of each equation may produce

infeasible or redundant patterns. For example, if we combine two connected patterns that overlap

with each other, the resulting pattern will either be connected or will have lesser number of output

nodes than expected. Non-convex patterns may also be generated in this process. In order to

avoid this, we must ensure that each feasible disjoint pattern is generated by combining two

patterns p1 and p2 (disjoint or connected) that are (1) disjoint from each other and (2) there

is no path from p1 to p2 or p2 to p1. The second condition ensures that combining the two

patterns does not result in a non-convex disjoint pattern.

We define upward scope of a pattern p (upScope(p)) for this purpose. It is the collection
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Fig. 5. Non-connectivity/Convexity check based on upward scope. (a) p2 connects with p1. (b) p2 introduces non-convexity.

of all the predecessors of the nodes in pattern p. When combining two patterns p1 and p2, if

p1 ∩ upScope(p2) 6= φ or p2 ∩ upScope(p1) 6= φ, either non-connectivity and/or convexity

condition will be violated; thus they need not to be combined. Fig. 5 shows these two cases. In

disjoint pattern generation process, the upward scope for each pattern need to be computed and

stored to perform this check.

To further prune the design space, we first number the nodes according to reverse topologically

sorted order. Next we define CPSv
i as the set of feasible connected patterns with i output nodes

and v as the smallest numbered node. Similar definition applies to DPSv
i . Clearly,

DPSi =
⋃

v∈valid nodes

DPSv
i

DPS =
MAXOUT⋃

i=2

DPSi

where MAXOUT is the output constraint.

Algorithm 4 details the disjoint pattern generation steps. It computes DPSv
i for each valid node

v in the innermost loop (line 17) according to the corresponding equation (line 8), aggregates

them to form DPSi (line 20) and finally DPS (line 21).

DPSv
i is computed by combining pattern sets of node v with pattern sets of node u, where u

is bigger than v in reverse topologically sorted order (line 6). Non-symmetrical terms, such as

CPS1 × CPS2 should be combined twice with their place exchanged (line 18–19). Upward scope
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Algorithm 4: Feasible disjoint pattern enumeration
DPSetGen
begin

DPS := φ;1
for i = 2 to MAXOUT do2

DPSi := φ;3
for all valid nodes v of DFG in reverse topological order do4

DPSv
i := φ;5

for all valid nodes u s.t. order(u) > order(v) do6
if u ∈ upScope({v}) then continue with the next u;7
for every term T on r.h.s. of the equation of DPSi do8

Let T = T1× T2;
for all the patterns p1 in T1 with smallest node v do9

if u ∈ upScope(p1) then10
continue with the next p1;11

for all patterns p2 in T2 with smallest node u do12
if p1 ∩ upScope(p2) 6= φ or p2 ∩ upScope(p1) 6= φ then13

continue to the next p2;14
tmp := p1 ∪ p2;15
if InCheck (tmp) then16

DPSv
i := DPSv

i ∪ {tmp};17

if T1 6= T2 then18
repeat lines 9 to 17 by exchanging the place of T1 and T2;19

DPSi := DPSi ∪DPSv
i ;20

DPS := DPS ∪DPSi;21

end

check helps reduce the design space at two places. First, node u can be entirely bypassed if it

falls in upScope(v) (line 7); otherwise non-connectivity or convexity will be violated. Second,

constituent pattern p1 from pattern set of v can be bypassed if upScope(p1) overlaps with u

(line 10). These two checks bypass a set of combinations at each time and greatly reduce the

search space. A normal upward scope check between two constituent patterns is conducted before

combining them (line 13). Lastly, the resultant pattern is added to DPSv
i subject to input check

(line 16–17).
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D. Optimizations

In this section, we describe the data structures and some optimizations employed in the

implementation of our pattern generation algorithm.

Data structures: We use fixed-length bit vectors to represent each pattern. The length of the

bit vectors is equal to the number of nodes in the DFG. Given the bit vector of a pattern, each

bit simply indicates the presence and absence of a node in that pattern. Bit vector representation

provides a very natural and efficient means to combine two or more patterns (as in line 12 of

Algorithm 1 through bit-wise OR operation). Many other information related to node set, such

as max upward cone, predecessors and successors of a node, extended region, upward scope of

a pattern, and etc., are also represented with bit vectors, and inter-operate with patterns using

bit-wise operations.

Note that we need to remove duplicates while constructing a set of patterns. This step requires

both efficient search as well as insertion that cannot be achieved either with sorted array or linked

list. We maintain a set of patterns as a 2-3 Tree [1]. The patterns in a 2-3 tree are sorted by the

value of their bit-vectors; every query or insertion of a pattern can be achieved within O(log2(n))

time, where n is the total number of patterns present in the 2-3 tree. A pattern is inserted in the

2-3 tree only if it is not present already.

Checking for Input/Output constraints: Given a pattern generated by combining patterns

p1, . . . , pn, IN SET(p) ⊆ IN SET(p1) ∪ . . . ∪ IN SET(pn) (similarly for OUT SET(p)).

Therefore, in order to check for violation of input/output constraints in a pattern, we will need

to look at the input/output nodes of the constituent patterns. For this purpose, we maintain the

set of input/output nodes with each pattern.

Checking for convexity constraint: Convexity check of DPSetGen algorithm is done using

upward scope because of the specialty of non-connectivity. Here we discuss convexity check

in ConeGen and MIMOGen algorithms. In order to check for convexity of a individual pattern

p, we consider all immediate successors from the nodes in OUT SET(p). If, for one such

immediate successor u /∈ p, successors(u) ∩ p 6= φ, then p fails the non-convexity constraint.
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Recall that we also defined external non-convexity as the non-convexity caused by invalid

nodes. Convexity check for individual patterns mentioned above is efficient for both internal and

external non-convexity, however, external non-convexity can be identified even before a pattern

is formed by observing the relations among its constituent patterns. Specifically, for any node

v, there exists a external conflicting set (ECS(v), can be empty) s.t. any node within cannot

coexist with v in a valid pattern, otherwise external non-convexity will occur. This is useful

in the cross production of ConeGen (as in line 5 of Algorithm 1). As any resultant pattern

contains v, constituent patterns from upConeSet(v1), . . . , upConeSet(vi) involving any node

in ECS(v) can be filtered out before the actual cross production, which reduce the number

of combinations greatly. Similarly, in MIMOGen, because any resultant patterns contain all

the selected extension nodes (newExtStats.extCombAll), constituent patterns involving nodes

in
⋃

vi
ECS(vi) (vi ∈ newExtStats.extCombAll) are filtered out before the cross productions

(line 15 and 18).

Computing external conflicting sets involve a pre-processing step. Given a region R, we first

identify special pairs of nodes, called boundary pairs. Two nodes u and v in R are called a

boundary pair if there exists a path 〈u, x1, . . . xn, v〉 in the DFG s.t. x1, . . . xn do not belong

to R. For example in Fig. 1, 〈4, 14〉 and 〈0, 15〉 are boundary pairs. Clearly, if 〈u, v〉 is a

boundary pair, then u and v cannot coexist in any convex pattern. Moreover for any node

x ∈ maxUpCone(u, R), it cannot coexist with any node y ∈ maxDownCone(v, R) in a convex

pattern and vice versa. ECS(v) is the collection of v’s predecessors and successors that cannot

coexists with v. Such predecessor set of v can be computed as the union of such predecessors

of v’s immediate predecessors and the ones that introduced by v if v forms a boundary pair.

Hence the computation for all nodes in the region can be done through a single pass according

to topological order. Analogously, such successor sets for all nodes can be obtained through a

pass according to reverse topological order.

Refinement before cross productions: The number of temporary patterns generate from a

cross production is the product of the number of patterns of participating pattern sets. Refinement

filters away unnecessary patterns from constituent sets before the cross production, combining

which certainly produce infeasible or redundant results, decreases the value of each factor of the
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multiplication and thus reduces the combination space greatly. Refinement can be used before

cross production throughout the algorithm, according to different refine conditions. Line 13 in

Algorithm 2 is an example of refinement explicitly written in the algorithm. Also, as discussed

before, refinement can be applied according to external conflict sets. On the implementation part,

in order to traverse all the patterns (which are stored as leaf nodes of a 2-3 tree) of a pattern

set quickly, they are also linked as a linked list. Refinement is done by bypassing unnecessary

patterns on the linked list before the cross production. The refined linked list should be restored

before the set is used again, because other cross production may require different refinements.

Refinement according to selected extension nodes are used in Algorithm 2. Because ev-

ery base pattern in P involves all the extension nodes in oldExtStats.extCombAll (note that

oldExtStats.extCombAll ⊆ newExtStats.extCombAll), the resultant patterns of cross produc-

tion must also involve these nodes. In a downward extension, a downward cone from downConeSet(vi)

without a selected extension node that is a successor of vi has the same effect with a downward

cone with the extension node, so the former one can be filtered away. For example in Fig. 3 (b),

only downward cones containing node 1 are needed in downConeSet(5).

On demand downward cone set generation: The generation of downward cone sets of

each node can be pushed to the time when they are needed in MIMOGen. The full set of

downConeSet(v) is not necessary if v never becomes a downward extension node, or when it

does, some nodes in maxDownCone(v) have already been masked. For instance, for the region

in Fig. 3, downConeSet(2) is not needed because it will never become a downward extension

node. Another example is suppose we visit node 3 instead of 1 first, node 7 is not a downward

extension node for node 3. Node 7 will only become a downward extension node when MIMOGen

visits other nodes (e.g., 1 or 8) after node 3 is done and masked. At that time, we only generate

downConeSet(7) without the presence of node 3.

More pruning in DpSetGen: In DPSetGen, when combining p1 and p2 fails upScope

check (line 13–14), p2 is skipped. Besides, some patterns which are super graphs of p2 that

contain all the nodes in p2 and other nodes reverse topologically ordered greater than all those

in p2 will also fail upScope check if combining with p1, thus they can be skipped altogether
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0011 0100 0101 01100000 0001 0010 1010 1100 1101 1110 11110111 1000 1001 1011 END

Fig. 6. Bypass pointers (dashed arrows) on a linked list of patterns.

with p2 2. Similar reasoning applies to line 10–11 for p1. Recall that a set of patterns are sorted

on a 2-3 tree. We also link the patterns as a sorted linked list. The order is according to the

value of the bit vector representing each pattern. We suppose node i occupies the ith bit (i.e.,

node 0 is represented as the leftmost bit). Under such representation, the patterns can be safely

skipped with p2 are those whose bits to the left side of p2’s rightmost “1” are the same with

p2. For example, if p2 is 0101000, at most 8 patterns can be bypassed whose values range from

0101000 to 0101111. So we can safely jump to the first pattern with bit vector value larger than

0101111 (this pattern may not be 0110000 because patterns in the set may not be continuous). In

order to make use of this, we add a bypass pointer to each pattern, pointing to the next pattern

that can be skipped to if upScope check is failed. Fig. 6 illustrates a list of patterns with their

bypass pointers. To compute the bypass pointers, we traverse the linked list once sequentially

while maintaining a stack. We define bypass value as the largest value that can be skipped for

each pattern (e.g., for 0101000, the bypass value is 0101111). When we are at pattern p, we pop

out all the patterns on the top of the stack whose bypass value is less than p’s bit vector value

and set their bypass pointers to p, and then we push p onto the stack. At the end of the list, we

set the bypass pointers of remaining patterns on the stack to the END of the linked list.

Miscellaneous: In coneGen, for two immediate predecessors of node v – v1 and v2, if

v1 is predecessor of v2, v1 can be eliminated from all immediate predecessor combinations.

Similar elimination holds when generating downward cone sets along the reverse direction. This

elimination is very helpful to reduce combinations in some benchmark programs.

2In fact, all the patterns in the set which are super graphs of p2 are sure to fail upScope check. However, they are scattered
discretely in the pattern list and unable to be skipped efficiently.
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Benchmark Domain BB Size of % of Total
Size Regions Exec. Time

rijndael† Encryption 894 {562,68,4,4,4,4,1} 61%
blowfish† Encryption 334 {133,120,2} 46%

sha(unroll)† Encryption 1468 {1367,1} 54%
cjpeg† Encoding 154 {92,40,1,1,1} 7%
MD5§ Encryption 943 {667,1×56} 67%

TABLE I

BENCHMARK CHARACTERISTICS. THE SIZE OF BASIC BLOCK AND REGION ARE GIVEN IN TERMS OF NUMBER OF NODES

(INSTRUCTIONS).

V. EXPERIMENTAL EVALUATION

We compare the efficiency of our MultiStep algorithm against SingleStep algorithm in this

section. Since designers may have different concerns on connected patterns and disjoint patterns,

both cases will be compared.

A. Experiment Setup

Table I shows the characteristics of the benchmarks used in our experiments. Benchmarks

marked with † are taken from MiBench [16], and § from the internet3. These benchmarks fall

into encryption and multimedia encoding domains, which are typically computation oriented and

involve very large DFGs. We choose one frequently executed basic block from each benchmark

for the DFG. The regions for the DFGs are also shown in Table I. For example, the DFG in

rijndael consists of seven regions with 562, 68, 4, 4, 4, 4, 1 nodes, respectively. Note that a

large portion of time is spent in executing the chosen basic block for each benchmark, and this

justifies the effort in selecting patterns from there large basic blocks.

The benchmarks are compiled and evaluated under SimpleScalar tool set using SimpleScalar

ported gcc-2.7.2.3 with -O3 optimization [10]. We have run all the experiments on a 3.0GHz

3http://sourceforge.net/projects/libmd5-rfc by L. Peter Deutsch
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Pentium 4 machine with 1GB memory. We have measured the time taken by the enumeration

algorithms using the Pentium time-stamp cycle counter.

B. Comparison on Connected Pattern Enumeration

The first two steps of our MultiStep algorithm generate all the feasible connected patterns.

Note that the original SingleStep algorithm enumerates both connected and disjoint patterns,

therefore works on the entire DFG as opposed to individual regions in a DFG. To enumerate

connected patterns, we invoke SingleStep algorithm for each region separately for comparison

purpose. Also, for each generated pattern, we do an additional check to see if it is connected.

We perform a depth first search of the pattern subgraph starting with the most recently added

node. If the depth first search reaches all the nodes, then the pattern is connected. Experimental

results indicate that the overhead for this additional check is minimal.

Table II contains the results for all the benchmarks under different input/output constraints.

Two algorithms produce the same sets of feasible connected patterns for each benchmark (under

“No. of Feasible Connected Patterns” column). Compared to the size of the regions, the number of

feasible connected patterns is quite small. Therefore, it is possible to apply an optimal selection

method, such as ILP formulation [19], [24], in the later stage for an optimal set of custom

instructions.

The “Search Space” columns are the number of patterns subjected to different constraint

checks by the two algorithms. In general, as SingleStep algorithm produces connected patterns

by extending existing ones with neighbors, it is far more effective in pruning infeasible patterns.

The last two columns presents the actual execution time of the two algorithms. Our MultiStep

algorithm takes at most seconds to get connected feasible patterns in all cases, while SingleStep

algorithm sometimes require thousands of seconds (e.g., 5-input 3-output cases of Rijndael

and Sha). Compared to the previously reported results of our algorithm [25], efficiency of

the current one is greatly improved due to various new pruning techniques and optimizations

discussed.
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Search Search No. of Feasible Time Time
Benchmark IN OUT Space Space Connected SingleStep MultiStep

SingleStep MultiStep Patterns (sec) (sec)

Rijndael

3 1 322218 1926 437 0.339 0.012
3 2 25988184 3450 619 27.10 0.021
3 3 372627758 3744 619 427.2 0.030
4 1 330585 2425 675 0.361 0.015
4 2 33908883 13125 1177 35.35 0.041
4 3 1031215148 63051 1495 1121 0.143
5 1 338948 2885 714 0.357 0.018
5 2 37153534 19989 1680 37.89 0.053
5 3 1597049641 72771 2910 1702 0.202

Blowfish

3 1 32080 823 177 0.024 0.003
3 2 189252 1378 252 0.149 0.004
3 3 344635 1528 252 0.359 0.006
4 1 34419 1163 279 0.026 0.004
4 2 275745 3923 554 0.204 0.008
4 3 743840 4683 704 0.670 0.016
5 1 35120 1527 307 0.026 0.005
5 2 314981 9582 894 0.230 0.014
5 3 1205486 11916 1594 1.000 0.016

Sha(unroll)

3 1 6390037 12029 1222 11.32 0.047
3 2 91239564 17682 2270 211.2 0.105
3 3 355703427 20545 2987 1282 0.147
4 1 7834675 35680 2343 13.83 0.121
4 2 147686544 57246 5019 320.6 0.281
4 3 824924965 81255 7931 2508 0.525
5 1 8994322 90456 3997 15.91 0.297
5 2 208654630 146414 8717 437.1 0.642
5 3 1486041112 321797 16122 4086 1.935

Cjpeg

3 1 19782 717 166 0.015 0.001
3 2 891973 970 249 0.541 0.003
3 3 7223032 998 249 4.624 0.003
4 1 21242 1537 306 0.016 0.003
4 2 1476434 2985 511 0.890 0.008
4 3 26641228 3391 633 16.68 0.011
5 1 22321 3789 387 0.017 0.006
5 2 1938275 9221 834 1.168 0.020
5 3 61492729 14118 1191 38.08 0.039

MD5

3 1 795706 3142 606 0.874 0.019
3 2 3349367 4399 948 4.217 0.031
3 3 5761443 4525 979 8.258 0.034
4 1 957428 5584 1200 1.040 0.028
4 2 4133343 7593 2132 5.200 0.045
4 3 8038476 8245 2360 11.38 0.054
5 1 1015344 9156 1613 1.120 0.041
5 2 5367195 11936 3472 6.625 0.062
5 3 11380619 15215 4124 15.90 0.090

TABLE II

COMPARISON OF ENUMERATION ALGORITHMS – CONNECTED PATTERNS
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C. Comparison on All Feasible Pattern Enumeration

All three steps of MultiStep algorithm generate all the feasible patterns, including disjoint

ones. Meanwhile, for the SingleStep algorithm, the overhead of ensuring pattern connectivity in

previous experiments no longer exist. However, its search space increases because it works on

the entire DFG instead of single regions.

The results are shown in Table III. The “Additional Combination MultiStep” is the total number

of pattern pairs subject to various checks in the third step of MultiStep algorithm. When output

constraint is 1, no additional combination is required because the third step is not performed.

The reason is each valid node has at least 1 output, thus a 1-output pattern must be a connected

one. The “No. of Feasible Patterns” column is obtained by summing up the total number of

connected patterns and disjoint patterns. As can be seen, the number of all the feasible patterns

is far greater than that of connected ones in most cases. For example, Rijndael explodes 179

times and Sha 120 times in 5-input, 3-output cases, respectively. The large number of feasible

patterns renders optimal custom instruction selection methods seemingly infeasible, and one

should probably seek resort from high quality heuristics. As to the execution time, MultiStep

outperforms SingleStep on orders of 10X to 1000X, due to reasons discussed in Section IV.

VI. CONCLUSION

In this paper, we have introduced an efficient algorithm to enumerate all feasible candidate

patterns under various architectural constraints. Compared with a previously proposed approach

targeting the same problem, the running time of our algorithm achieves orders of magnitude

speedup. This gives us the opportunity to explore large DFGs. We believe that it is important to

explore large DFGs as compilers for ILP processors now routinely employ if-conversion, loop

unrolling and region formation to work on bigger DFGs. The efficiency of our algorithm makes

it possible to be integrated into state-of-art ASIP tool chains to perform design space exploration

even in the early stage of the design.
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Search Additional No. of Time Time
Benchmark IN OUT Space Combination Feasible SingleStep MultiStep

SingleStep MultiStep Patterns (sec) (sec)

Rijndael

3 1 412567 0 437 0.446 0.012
3 2 33014612 116666 3612 36.99 0.021
3 3 434738397 812455 3612 518.7 1.102
4 1 424929 0 675 0.754 0.015
4 2 44573604 169762 54203 54.85 0.486
4 3 1280116614 13599267 66785 1564 18.54
5 1 437287 0 714 0.475 0.018
5 2 49440953 176534 115434 56.75 0.722
5 3 2095522364 26956483 520993 2296 43.93

Blowfish

3 1 65226 0 177 0.063 0.003
3 2 430665 3354 522 0.547 0.009
3 3 751917 11634 522 2.297 0.018
4 1 70145 0 279 0.168 0.004
4 2 645364 4580 2577 0.769 0.018
4 3 1671412 44452 2937 5.534 0.062
5 1 71550 0 307 0.069 0.005
5 2 746739 4608 4728 1.662 0.027
5 3 2876509 73442 8428 7.498 0.126

Sha(unroll)

3 1 6391404 0 1222 11.41 0.047
3 2 94121024 79072 6172 217.6 0.331
3 3 365542922 515750 9796 1328 1.135
4 1 7836042 0 2343 13.93 0.121
4 2 152320527 116723 38728 331.5 0.704
4 3 866118119 3905462 78566 2616 6.359
5 1 8995689 0 3997 15.91 0.297
5 2 215044666 166911 82022 449.8 1.360
5 3 7577280675 7487850 280809 4312 15.44

Cjpeg

3 1 34715 0 166 0.020 0.001
3 2 2571515 39945 911 1.507 0.037
3 3 37250374 228304 960 22.53 0.192
4 1 37343 0 306 0.022 0.003
4 2 4234944 84718 13590 2.485 0.113
4 3 122703827 4771054 18180 73.35 4.662
5 1 39406 0 387 0.223 0.006
5 2 5571468 116771 37603 3.277 0.210
5 3 271219380 15162301 142348 161.4 17.68

MD5

3 1 996513 0 606 2.632 0.019
3 2 4489507 75841 1255 17.58 0.155
3 3 8210790 118955 1328 37.92 0.247
4 1 1124690 0 1200 3.186 0.028
4 2 7006628 110519 43106 27.36 0.354
4 3 13460076 6703984 46028 60.60 9.745
5 1 1194981 0 1613 4.030 0.041
5 2 9730310 134698 79737 34.27 0.543
5 3 21367000 9921718 119155 90.94 15.38

TABLE III

COMPARISON OF ENUMERATION ALGORITHMS – DISJOINT PATTERNS
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