
Implementation of Core Coalition on FPGAs

Kaushik Triyambaka Mysur, Mihai Pricopi, Thomas Marconi, Tulika Mitra
School of Computing

National University of Singapore
kaushik.mysur@gmail.com, {mihai,tulika,marconi}@comp.nus.edu.sg

Abstract—Embedded systems increasingly need to sup-
port dynamic and diverse application landscape. In response,
performance asymmetric multi-cores, comprising of identical
instruction-set architecture but micro-architecturally distinct set
of simple and complex cores, have emerged as an attractive
alternative to accommodate software diversity. Dynamic hetero-
geneous multi-core architectures take this concept forward by
allowing on-demand formation of virtual asymmetric multi-cores
through coalition of physically symmetric simple cores and thus
adjust better to workload variation at runtime. In this paper,
we present the first hardware implementation of a core coalition
architecture and synthesize its functional prototype on FPGAs.

I. INTRODUCTION

Traditionally embedded systems were designed to support
only a few dedicated applications. Thus customized hardware-
software co-designed solutions were ideal platforms. Current
generation embedded systems — especially in the consumer
electronics domain — are expected to accommodate a wide
range of applications with very distinct characteristics. Con-
sider smartphone as a canonical example of high-performance
embedded system with strict power, area, and time-to-market
constraint. The computing system of such a device needs
to include some customized ASIC components for specific
kernels such as audio, video, and image processing leading
to a heterogenous multiprocessor system-on-chip (MPSoC)
design [5]. However, the easy availability of App Store or
Android Market implies that the user can download a diverse
range of applications during the lifetime of a device, of which,
MPSoC designers have no a-priori knowledge. Cores in the
MPSoC are thus increasingly responsible for a wide variety of
workloads starting from texting and email to compute-intensive
tasks such as speech recognition and AI for gaming.

The first response to this issue has been the inclusion of
symmetric multi-cores in the MPSoC following the same trend
in general-purpose computing (e.g., dual-core and quad-core
ARM Cortex-A9 processors [1]). Such multi-core solutions are
perfect match for easily parallelizable applications that can
exploit task-level or thread-level parallelism (TLP).

But most applications still comprise of a significant frac-
tion of sequential workload. Amdahl’s Law [3] states that
such application will suffer from limited exploitation of
instruction-level parallelism (ILP) in the simple cores. Sin-
gle ISA (instruction-set architecture) but performance (micro-
architecturally) asymmetric multi-cores [8] comprising of both
simple and complex cores have recently been proposed as a
promising alternative. Indeed, ARM has recently announced
Big.LITTLE processing [11] for mobile platforms where high-
performance, triple-issue, out-of-order dual-core Cortex A-15
processor is integrated with energy-efficient in-order dual-core
Cortex A-7 processor in the same architecture on chip.

Even though asymmetric multi-cores are positioned to
accommodate software diversity (mix of ILP and TLP work-
load) much better than symmetric multi-cores, they are still
not the ideal solution as the mix of simple and complex
cores has to be freezed at design time. The next logical step
forward is to support diverse and dynamic workload with an
adaptive multi-core that can, at runtime, tailor itself according
to the applications. Such adaptive architectures are physically
fabricated as a set of simple, identical cores. At runtime, two
or more such simple cores can be coalesced together to create
a more complex virtual core [4], [7], [13], [14]. Similarly, the
simple cores participating in a complex virtual core, can be
disjoined at any point of time. Thus we can create asymmetric
multi-cores on-demand through simple reconfiguration.

Even though quite promising, the lack of acceptability of
dynamic heterogeneous multi-cores arises from the complexity
of the glue logic (either hardware or software) required to
coalesce the simple cores together. The open question therefore
remains whether dynamic heterogeneous multi-cores is a fea-
sible alternative for high-performance, low-power embedded
mobile platforms. In this paper, we attempt to answer this
question through a concrete, functionally correct implemen-
tation of a core coalition architecture in hardware. To the best
of our knowledge, ours is the very first hardware prototype of
a dynamic heterogeneous multi-core architecture.

We have recently proposed a core coalition architecture
called Bahurupi [12]. Our architecture offers a simple yet ele-
gant approach towards coalition through a hardware-software
cooperative solution. A high-level architecture of Bahurupi and
an evaluation of its performance with cycle-accurate simulation
appeared in [12]. However, a high-level simulation model
cannot capture all the challenges involved in designing an
architecture in hardware. In this paper, we design, implement,
synthesize and place a micro-architecturally accurate prototype
of Bahurupi on Xilinx Virtex 6 platform and report the area
and latency overhead of core coalition.

Our implementation serves as a proof-of-concept prototype
to confirm the feasibility of core coalition and adaptive multi-
core architectures. Our FPGA prototype can also serve as
a test-bed for future research in design and evaluation of
dynamic heterogeneous multi-cores as it enables a faster emu-
lation environment compared to slow software-only simulation.

II. RELATED WORK

A number of adaptive multi-core architectures have been
proposed recently. The Core Fusion [4] architecture employs
a reconfigurable, distributed front-end, and instruction cache
organization that can leverage individual cores front-end struc-
tures to feed an aggressive fused back-end, with minimal over-

provisioning of individual front-ends. TFlex processor [7] uses
no physical shared resources among the cores. Instead, TFlex
is dependent on a special distributed microarchitecture (EDGE)
which is configured to implement the composable lightweight
processors. Federation [13] is an alternative approach that
makes a pair of scalar cores to act as a 2-way out-of-order core
by adding additional complex stages to their internal pipelines.
Voltron [14] uses multiple homogeneous cores that can be
adapted for single and multi-threaded applications. Voltron
relies on a complex compiler to perform code parallelization.

In MorphCore [6] architecture, an adaptive core is cre-
ated by starting with a traditional high performance out-of-
order core and making internal changes to allow it to be
transformed into a highly-threaded in-order SMT core when
necessary. Composite Cores [10] architecture reduces switch-
ing overheads by creating heterogeneity within a single core.
The proposed architecture pairs simple and complex pipeline
engines together inside a single chip.

To the best of our knowledge, there has been no attempt to
implement hardware prototype of any of these architectures.

III. CORE COALITION: HIGH LEVEL ARCHITECTURE

Our core coalition design is based on Bahurupi [12] micro-
architecture. Bahurupi, a dynamic heterogeneous architecture,
uses a hardware-software co-operative design with minimal
additions to the ISA and the underlying architecture. It is
fabricated as a shared memory clustered architecture, where
each cluster consists of four simple, 2-way, out-of-order (ooo)
cores. These simple cores can run threads individually to
exploit TLP as shown in the left-hand side of Figure 1. When
required to execute a sequential application, 2–4 cores within
a cluster form a coalition to create the illusion of a 4-way to
8-way complex ooo core. Thus the sequential application can
now transparently exploit ILP through the virtual core. The
right-hand side of Figure 1 shows an example configuration
created on-demand comprising of one 8-way ooo core, one
4-way ooo core, and two 2-way ooo cores. The architecture
can generate any multi-core configuration on-demand within
the cluster. As ILP is fairly limited beyond 8-way superscalar
processors, a cluster is restricted to four cores.

CORE
0

CORE
1

CORE
2

CORE
3

Coalition Logic

CORE
4

CORE
5

CORE
6

CORE
7

Coalition Logic

Shared L2 Cache

L1
Cache0

L1
Cache1

L1
Cache2

L1
Cache3

L1
Cache4

L1
Cache5

L1
Cache6

L1
$Cache7

CORE
0

CORE
1

CORE
2

CORE
3

Coalition Logic

CORE
4

CORE
5

CORE
6

CORE
7

C o a l i t i o n L o g i c

Shared L2 Cache

L1
Cache0

L1
Cache1

L1
Cache2

L1
Cache3

L1
Cache0

L1
Cache1

L1
Cache2

L1
Cache3

2 core
coalition

4 core
coalition

Fig. 1: Bahurupi Dynamic Heterogeneous Multi-core.

When running in coalition mode, participating cores co-
operatively execute a single thread in a distributed fashion.
They execute basic blocks of the sequential thread in parallel
and fall back to a centralized unit for synchronization and
dependency resolution. Dependency comes in the form of
control flow and data dependence. Bahurupi handles these with
compiler support and minimal additional hardware.

A new instruction called sentinel instruction is added to
the ISA, which is the first instruction of each basic block.
Basic blocks are constructed at compile time along with the
information about live-in and live-out registers for each basic
block. This information along with length of the basic block
and whether it ends with a branch instruction, is encoded in the
corresponding sentinel instruction to capture the dependency
and control flow among the basic blocks. The same binary is
used for both cases — in coalition mode or when the core is
running alone. For the latter case, the sentinel instructions are
dropped at the decode stage or directly skipped when predicted
by the local branch predictor.

When not in coalition, each core has private direct mapped
L1 instruction and data caches. When participating in a coali-
tion, the private caches are reconfigured into a set associative
cache shared among the cores in coalition. To add a new core
into an already existing coalition, the system needs to migrate
out all the tasks from the new core and write back the content
of the L1 cache. Eventually the new core connects to the
coalition bus and is ready to fetch a basic block. Note that the
cores existing in the coalition do not need to be halted when
a new core is added. The reconfiguration time, as described in
[12], is 100 cycles.

A key aspect of Bahurupi is its execution model. It empha-
sizes on operating in a distributed way with only a few essential
global structures. As a result, no core is aware of the existence
of other cores in the coalition. This is important because any
combination of cores can potentially become a coalition and
the number of cores in the coalition does not change the way
each core operates individually. The reader may refer to [12]
for details on high-level architecture of Bahurupi.

IV. HARDWARE IMPLEMENTATION

We now present the implementation of core-coalition
through minimal modification of a 2-way ooo pipeline em-
phasizing on architectural additions in order to fully realize
Bahurupi on a hardware platform.

A. Baseline 2-way out-of-order core

We select synthesizable ooo core generated by Fabscalar
[2], a parametric micro-architecture generation tool chain as
the baseline simple cores. The cores use ARM-like ISA. We
custom generate a 2-way ooo core with 5 in-order front end
pipeline stages and an ooo backend. Figure 2 depicts the
pipeline structure along with the coalition logic. The non-
striped region is the baseline core.

FE
TC

H
 1

FE
TC

H
 2

D
EC

O
D

E

R
EN

A
M

E

D
IS

PA
TC

H

LIVE-IN
MAP

LIVE-OUT
MAP

GPC CTRL DECODE

BROADCAST
CLIENT

EXECUTION
ENGINE

ACTIVE LIST

COMMIT CTRL

REGISTER
FILE

GLOBAL REGISTER FILE

Live-In Data Path

Broadcast Bus

Live-Out Data Path

LOCAL
RENAME

GLOBAL
RENAME

Fig. 2: Pipeline in coalition mode.

The critical component for coalition is the register file
implementation and its renaming logic. The renaming structure
consists of a Register Map Table (RMT) and an Architectural
Map Table (AMT). The live uncommitted mapping between
the architectural registers and physical registers is maintained
in the RMT. A dedicated FIFO buffer maintains the list of free
registers. Once in-order renaming is complete, instructions are
dispatched to the ooo execution engine. As instructions retire
in program order from the active list, the logical-to-physical
mapping of the destination registers are committed in the AMT.
In case of mis-speculation, the renamed mappings in RMT
is replaced with functionally correct mappings from AMT.
As instructions retire, the physical register corresponding to
the old mapping in AMT is disassociated from the logical
register and is added back to the free list buffer. A physical
register is busy (indicated by a busy bit in the physical
register file) between the rename cycle, where it gets mapped
to a destination register, and the write-back cycle for the
corresponding instruction when the data is ready.

B. Core Coalition Logic

CORE 2 CORE 3

Global
Reg File

Broadcast
Client

Broadcast
Client

Broadcast
Manager

Global Sync
Unit

Live Out
Map

Live In
Map

Live Out
Map

Live In
Map

Global
AMT

Global
Rename

Live-In Data Bus

Broadcast Bus

CORE 0 CORE 1 CORE 2 CORE3

Core Coalition Logic

Fig. 3: Coalition logic per cluster.

Figure 3 shows the coalition logic required for a cluster
of four 2-way cores. We add three new hardware units inside
the core, apart from which there is no other significant modi-
fication to the existing core. One of key challenge is to make
sure that the new hardware units are not in the critical path
of existing core. The responsibility of these unit, Live-In Map,
Live-Out Map and the Broadcast Client, are discussed next.

1) Sentinel Instruction Processing: We first describe the
modifications required in the pipeline to support the sentinel
instructions. Recall that the sentinel instruction precedes the
normal instructions in each basic block. It encodes the live-
in, live-out register information. Bahurupi architecture recom-
mends using at most 3 live-in and 3 live-out registers. If the
number of live-in or live-out registers in a basic block exceeds
this number, it has to be split into two or more basic blocks
at compile time.

The cores within a coalition uses a new register, global PC,
to synchronize fetching of basic blocks. Each participating core
requests for the global PC through the global synchronization
unit. We use Least Recently Used (LRU) policy to grant the
lock for the global PC. The core that gets the lock proceeds to
fetch the sentinel instruction. Assuming that we have L1 cache
hit, it takes 2 clock cycles to fetch and decode the sentinel
instruction. We decode it in Fetch-2 stage, one cycle before the
actual decode stage so that the lock can be released earlier. If
the basic block ends with a branch (this information is encoded
in the sentinel instruction), we calculate the branch address
(as the length of the basic block is known from the sentinel

instruction) and index into the branch target buffer and branch
prediction unit in Fetch-2 stage.

In the third clock cycle, we access global rename module to
rename the live-out registers. We also get the existing mapping
of the live-in registers. In parallel, the global PC is updated
with the address of the next sentinel instruction, that is, a
pointer to the next basic block. This will be a speculated
address in case of a basic block ending with conditional
branch. Otherwise, the next address is calculated by simply
adding the length of the basic block to the current global PC.
The lock is released at the end of the third clock cycle. The
global rename module signals the global synchronization unit
to free the lock and any other core is eligible to grab the lock.

After the lock is released, the core continues with sentinel
instruction processing. The live-in register values reside in the
global physical register (GPR) file — a new structure for each
coalition cluster. To operate on these values, we need to create
a local copy. Thus we rename each live-in register within the
core to get a corresponding local physical register (LPR). If
the data in the GPR is ready, it is directly copied into the
corresponding LPR. However, if the data is not ready, the
GPR-LPR mapping is maintained in the Live-In Map. With
current design, the number of entries in the Live-In Map is
equal to the number of entries in the global physical register
file. An alternative approach is to carefully choose a smaller
working set based on some heuristics and implement the Live-
In Map as a Content Addressable Memory (CAM). We leave
this optimization as part of future work.

Figure 4 provides an illustration. We have two basic blocks
executing on two different cores. We only show the portion
of the code that corresponds to the live-in, live-out registers.
Each basic block is preceded by a sentinel instruction. We
show the status of the various global structures (global RMT
or GRMT, global physical registers or GPRs) and the local
structures required for coalition in core 1 at the time instant
when sentinel instruction (SI1) from Basic block 1 (BB1) is to
be dispatched. We assume that at this point, live-in register R6
is ready in the GPR; however, instruction I02 is yet to complete
execution and hence live-in register R5 is not yet ready. As the
data in the GPR corresponding to live-in register R6 (GRP7)
is ready, it is directly copied into LPR9. However, as GPR5
corresponding to R5 is still busy, GPR-to-LPR mapping (GRP5
- LPR2) is maintained in the Live-In Map.

Similarly, while dispatching the sentinel instruction, the
mapping of live-out registers to GPR are stored temporarily
in Live-Out Map. In the example, SI1 stores the live-out
register R8 in Live-Out Map (R8-GPR3). Unlike Live-In Map,
Live-Out map only consists of 3 entries corresponding to 3
live-out registers. Live-Out Maps are maintained until all the
instructions in the basic block have been renamed. We only
broadcast the result of the last instruction in the basic block
that writes to a particular live-out. Significance of Live-Out
Maps will be discussed during normal instruction processing.

2) Normal Instruction Processing: The coalition design is
transparent to the processing of the normal instructions. It
is visible in only two stages of the pipeline: Live-Out Map
module in the dispatch stage and commit control logic in the
active list module. Figure 2 shows the seamless integration of
coalition logic into the base pipeline.

Assertions:
SI0 - Completed renaming and execution
I01 - Completed execution
I02 - Waiting on R2

SI0: live-in = R2 live-out = R5, R6
I01 : addiu R6 R0 #10
I02 : addu R5 R6 R2

Basic block 0

SI1: live-in = R5, R6 live-out = R8, R14
I11 : addu R8 R6 R5
I12 : addiu R14 R0 #32 …

Basic block 1

LRMT
Arch reg GPR Index

R5 LPR2
R6 LPR9
R8 LPR4

R14 LPR17

LPR File
Arch reg Busy

2 1
4 1
9 0

17 1

Live-in map
GPR Index LPR Index

GPR5 LPR2
GPR7 -

Live-out map
Arch reg GPR Index AL Index Result

R8 GPR3 AL7 -
R14 GPR12 AL8 32

GRMT
Arch reg GPR Index

R5 GPR5
R6 GPR7
R8 GPR3

R14 GPR12

GPR File
Arch reg Busy

3 1
5 1
7 0

12 1

Core 0

Core 1

Global rename logic

GPR5(R5)

GPR7(R6)

Fig. 4: Flow of register values across cores: An illustration.

As instructions in the basic block are dispatched, the
destination registers are searched for a match in the Live-
Out Map (implemented as a CAM). If matched, the active list
entry of the corresponding instruction is updated with the GPR
index from the Live-Out Map. In our example, first instruction
in BB1, I11, finds register R8 in the Live-Out Map and adds
GPR3 into its active list entry (AL7). This is to ensure that
when the instruction I11 completes execution, it will broadcast
the value. Also the Live-Out Map is updated with the active list
ID (R8-GRP3-AL7) of the instruction. This happens in parallel
to dispatching instructions to the ooo execution engine.

While the basic block is being renamed, if an instruction
with live-out register destination completes execution, the
result is stored in Live-Out Map. To illustrate, consider that
the instruction I12 in BB1, completes execution while the
following instructions in BB1 are still being renamed. As the
system is not in a position to determine if I12 is indeed the
last instruction in BB1 to write to the live-out register R14, it
is illegal to broadcast the result on the Global Broadcast Bus
(GBB). Hence, the result of I12 is temporarily stored in Live-
Out Map (value 32). When the last instruction of a basic block
is renamed, we have the final list of instructions that need to
broadcast their result onto the GBB. At this point, if some
live-out register values are ready in the Live-Out Map, we
broadcast them through the Broadcast Client. In our example,
I12 has completed execution and assuming no other instruction
after I12 writes to R8, we can now broadcast the result on the
GBB. Live-Out register results produced after this point are
broadcast as and when they are ready.

In our example, I02 would eventually complete and broad-
cast the result (GPR5) in its write-back stage through Broad-
cast client. Broadcast client module is the third significant
addition inside the core. It is a simple FIFO buffer and has
the logic to obtain broadcast bus access. The broadcast bus is
monitored by a global module called Broadcast Manager. The
access is given to one core at a time using LRU policy. Once
the client gets the lock, a live-out value is broadcast on GBB.

Live-In Map module passively snoops all the data on the
GBB. If an active Live-In Map for the broadcasted tag is found,
the data is internally re-broadcasted to wake up the instructions
waiting on that live-in operand. I11 of BB1 waits in the issue
queue for the availability of live-in register (R5). When I02

of BB0 broadcasts the result (GPR5), Live-In Map module
of Core 1 (running BB1) finds a match (GPR5-LPR2) and
latches the result for internal broadcast. We moved the internal
broadcast to the next cycle, which helps reduce the wire length
for GBB. The cost of one additional cycle is amortized by the
pipelined architecture.

A key thing to note here is that, though coalition logic is
exposed at two stages of normal instruction processing, it does
not alter the control path of the normal instructions. Coalition
logic does not even appear in the critical path for normal
instructions apart from searching for destination registers in
the Live-Out Map. As there could be a maximum of only 3
live-out registers per basic block, this CAM search of 3 entries
does not impact the clock cycle length. The one cycle access to
GBB is not altered by the number of cores in the coalition, as
we have split the broadcast into two cycles: global and internal.
Increasing number of cores can create contention on the global
broadcast bus. However, [12] shows that even for high ILP
code, the number of broadcast requests per cycle is below 1.0
for 2-core coalition and below 1.6 for 4-core coalition.

3) Committing a Basic Block: A simple ticketing system
is used for program order commit of the basic blocks. A
core can commit instructions of a basic block if the serving
ticket number is equal to the ticket number obtained for the
basic block during sentinel instruction processing. Another
implicit constraint is that all the instructions in the basic block
must be renamed before the basic block can start commit.
First the sentinel instruction needs to be committed. Though
it is internally a NOP for the execution engine, it has the
responsibility of committing the new mapping of live-out
registers to GPR in the global AMT (architecture map table).

Another role of the sentinel instruction in commit stage is
to release the mapping of the LPRs to the live-in registers. This
simplifies our recovery mechanism a great deal as discussed
next. All other instructions in the basic block commit normally.
Finally, the serving ticket number is incremented when the last
instruction in the basic block in committed.

4) Speculative Execution and Recovery Model: The base-
line core employs a simple 2-bit predictor and a branch target
buffer (BTB) to predict the control flow. In coalition mode,
the prediction is distributed as each core individually predicts
when it encounters a control flow. The prediction is performed
at the time of decoding the sentinel instruction in the second
cycle. As a basic block can have at most one branch instruc-
tion, we need only 1 read port for branch predictor and BTB. In
comparison, a 2-way (4-way) ooo core needs 2 (4) read ports.
We believe, the prediction algorithm could be tailor made
considering the atomicity of basic blocks and by studying the
distribution pattern of basic blocks with conditional branches
in coalition mode. Additional control information could be
encoded in the Sentinel instruction including type of control
instruction and static predictions from compile time analysis
for better accuracy.

When a branch is mispredicted, the recovery mechanism
employed in coalition mode is similar to the model used in
single core mode. When the prediction is incorrect, the core
waits for all the instructions in that basic block to commit.
When the last instruction is committed, all the cores in the
coalition are flushed, global PC is updated, and a recovery of

register maps is triggered from Global AMT to Global RMT.

The out-of-order address calculation of the load-store in-
structions in different cores may lead to a hazard. As an
illustration, consider a load instruction following a store to the
same address. If the address of the load is calculated before
the store, the load-store disambiguation logic fails to perform
store-to-load forwarding as it is unaware of the hazard. Such
a load gets stale data from cache or memory. This is referred
to as load-violation. We handle this problem in two steps.

When a store commits and detects a violating load, it
marks a dirty bit corresponding to that load. When the load
retires, the dirty bit is read and a recovery is triggered.
The baseline core employs a pipeline flush plus register map
recovery and restarts execution from the problematic load.
However, in coalition mode, the recovery is complicated. As
load instructions can be present anywhere in the basic block,
part of the basic block including sentinel instruction might
have been already committed. A step-by-step procedure for
load violation recovery in coalition mode is shown below.

• Set the PC of the core where load violation is detected
to the address of the violated load.

• For every basic block, maintain the next global PC that
is updated at time of holding the global lock. When
a load violation occurs, set the global PC to this next
global PC.

• Flush all the other cores in the coalition.
• Trigger a recovery from local AMT to RMT in the

core where load violation is detected.
• Trigger a recovery from Global AMT to Global RMT

to recover the machine state to a clean state.

The decision to let sentinel instructions commit live-out,
live-in mapping, is the key idea to achieve load violation
recovery with minimal modifications to the base pipeline.

C. Modifications to Bahurupi Architecture

In order to fully realize core coalition on a hardware
platform, we had to make some changes to the original pro-
posal. Although Bahurupi architecture provides the design to
communicate live-in and live-out registers across the baseline
cores using Global Physical Register File and Global Broadcast
Bus, it does not elaborate recovery handling due to load vio-
lation and branch mis-prediction. We provide two designs for
recovery: (a) handling branch misprediction during the commit
of the last instruction in the basic block and (b) handling
load violation, which can happen anywhere in the basic block.
The nature of such events are significantly different and need
different approaches for recovery as presented earlier.

Another assumption made in Bahurupi is that decoding
and renaming are performed in back-to-back cycles, so that
the Global Lock can be released after renaming. However,
with current state-of-the-art OOO cores, pipelines are deeper
with many stages in between decode and rename stages.
A classic example is an instruction buffer. Hence, we re-
designed Sentinel instruction processing by splitting its register
renaming stage into Global and Local rename stages.

In addition, we introduce a new structure to the baseline
core called Live-In map. It maintains a list of maps (Global

Physical Register of live-in to a correspondingly renamed
Local Physical Register) for Live-Ins whose data are not
available from Global Physical Register File at the time of
global renaming of Sentinel instructions. The core snoops on
the bus for broadcasts of these registers and then internally
broadcasts it. This design was crucial to realize Live-in/ Live-
out communication across cores and load-violation recovery
mechanism with a deeply pipelined baseline core.

V. PROTOTYPE SYNTHESIS AND EVALUATION

We implement our prototype on Xilinx Virtex 6
(XC6VLX240T-1FF1156) platform. In [12], we presented a
preliminary evaluation of the impact of only the global register
file and its renaming logic on the clock period. However,
there was no attempt to integrate the coalition logic inside
the base processor pipeline. This work presents a full-fledged
implementation that brings out the challenges involved.

A. Additional Resources for Core Coalition

Table I shows additional read/write ports required in exist-
ing components and Table II shows block memories required
to implement sentinel instruction processing within cores.

Component AMT RMT Free List LPRF Issue Queue
Write Ports 1 1 1 2 0
Read Ports 1 1 1 0 2

TABLE I: Additional ports within the baseline core.

Module RAM/CAM Component Bits R/W Ports

Active List

RAMS

Ticket Number 128*9 2R/2W
Live-Out Map 128*7 3R/3W

Sentinel Commit Map 16*90 1R/1W
Broadcast Client Broadcast FIFO Buffer 16*46 1R/4W
Live-In Map GPR-to-LPR Mapping 96*7 1R/2W

Live-Out Map
Live-Out-Map 3*46 3R/3W

CAMS GPR Search 3*7 2R/3W
Active List ID Search 3*7 3R/2W

TABLE II: Additional RAMs/CAMs for coalition per core.

The global structures added are independent of the number
of cores participating in the coalition. The only exception is
the global physical register file for which number of read ports
increases linearly with the number of cores in the coalition.
The placement of these global resources is a key to achieve
good clock frequency. For two 2-way core and four 2-way
core coalition, default placement strategies in Xilinx’s Place
and Route tool with no optimizations enabled could give us
the desired clock frequency. Table III lists the global resources
required for core coalition.

Module Component RAM in Bits RAM Ports
Global AMT Logical-to-GPR Mapping 34*7 3R/3W
Global RMT Logical-to-GPR Mapping 34*7 3R/3W
Global Free List Free GPR List Buffer 62*7 3R/3W
GPRF Global PRF 96*32 NR/1W

TABLE III: Global resources for coalition. N is # of cores.

B. Handling multiple ports in FPGAs

A major challenge in synthesizing out-of-order cores in
FPGAs is the multi-ported RAMs as most FPGA vendors only
support 2-port memories. Many different solutions have been
proposed for this problem [9]; but no single technique can
fully provide our desired behavior from the RAMs. So we have

used three different techniques: Replication to provide multiple
read ports; Live-Value-Table (LVT) implementation for multiple
write ports; and Virtual Cycle implementation to mitigate the
one cycle delay due to Synchronous block RAMs.

As the block RAMs are synchronous, data from RAM reads
are only available in the following clock cycle. However, our
baseline core requires asynchronous read logic in some stages,
i.e., data needs to be read in the same cycle in which the
address is sent. We use Virtual Cycles to achieve this. A global
virtual cycle generator unit connects to all the components
and alternatively generates virtual stall signal for the entire
core apart from the RAMs itself. This single cycle stall
helps mitigate the asynchronous read problem. However, this
effectively halves the frequency achieved; but as this applies to
all the core configurations, we consider this a fair comparison.

C. Area Evaluation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Slice Registers Slice LUTs RAMs Occupied Slices

2-Way 4-Way 2-Core-Coalition 4-Core-Coalition

Fig. 5: Area Utilization (8-way core equivalent in performance
to 4-core coalition could not be synthesized).

Figure 5 presents the area required for different core
configurations including the baseline 2-way ooo core. Note that
2-core (4-core) coalition has similar performance to a native
4-way (8-way) ooo core. Our 2-core coalition requires less
area than a native 4-way ooo core for most critical resources.
We could successfully synthesize and perform place-and-route
of a 4-core coalition on Virtex-6 board. However, we could
not even synthesize an 8-way core on the same board. Thus
Bahurupi has an area advantage over conventional ooo cores.

Figure 6 shows the break-up of area required for core
coalition logic in comparison to a baseline 2-way core. The
results show the utilization of the slice registers, LUTs and
BRAMs. Core-coalition logic consumes additional 13% of
Slice Registers, 26% of BRAMs and 27% of Slice LUTs
compared to the the baseline core. Note that in our evaluation,
the multi-core is directly connected to the rest of the system
without any cache memory hierarchy. Still the results are
encouraging with minimal additional resource requirement.

781

2875

22

1104

6056

14

12431

23944

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Slice Registers

Slice LUTs

BRAMs (No. of instances)

Global logic Additional Internal logic Baseline core

Fig. 6: Area breakup of coalition logic w.r.t baseline core.

D. Clock Frequency

The synthesis result concretely supports the simplicity and
efficiency of Bahurupi architecture. We observe that core coali-

tion logic has no impact on clock frequency of the baseline
core. Figure 7 shows that the clock frequency remains almost
same for 2-core (84.4 MHz) and 4-core (83.3 MHz) coalition
as baseline 2-way core (84.8 MHz). In contrast, a 4-way core
synthesizes to a much lower frequency (62.67 MHz) and an
8-way core could not even be synthesized. The high clock
frequency of our prototype coalition architecture (83 MHz)
makes it an ideal emulation tool for further research in dynamic
heterogeneous multi-core architectures compared to extremely
slow cycle-accurate software-only simulation. 0%

Slice Registers

Clock Frequency (MHz)

0 10 20 30 40 50 60 70 80 90

4-Core Coalition

2-Core Coalition

4-Way

2-Way

Clock Frequency (MHz)

Fig. 7: Clock frequency for various core configurations.

VI. CONCLUSION

We have presented the first prototype implementation of
a core coalition architecture in FPGAs. We can successfully
create a virtual 4-way (8-way) out-of-order core from two
(four) 2-way out-of-order cores. The area of the virtual core
is slightly smaller while the clock frequency is significantly
higher compared to the equivalent native core.

Acknowledgements: This work was partially sup-
ported by Singapore Ministry of Education Academic Research
Fund Tier 2 MOE2009-T2-1-033.

REFERENCES

[1] The ARM Cortex-A9 Processors. Technical report, ARM, 2009.
[2] N. K. Choudhary et al. Fabscalar: Composing Synthesizable RTL

Designs of Arbitrary Cores within a Canonical Superscalar Template.
ISCA, pages 11–22, 2011.

[3] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era.
Computer, 2008.

[4] E. Ipek et al. Core Fusion: Accommodating Software Diversity in Chip
Multiprocessors. ISCA, pages 186–197, 2007.

[5] A. Jerraya and W. Wolf. Multiprocessor Systems-on-Chip. Elsevier
Morgan Kaufmann, 2005.

[6] Khubaib et al. MorphCore: An Energy-Efficient Microarchitecture for
High Performance ILP and High Throughput TLP. MICRO, pages
305–316, 2012.

[7] C. Kim et al. Composable Lightweight Processors. MICRO, pages
381–394, 2007.

[8] R. Kumar et al. Single-ISA Heterogeneous Multi-Core Architectures
for Multithreaded Workload Performance. ISCA, pages 64–, 2004.

[9] C. E. LaForest and J. G. Steffan. Efficient Multi-Ported Memories for
FPGAs. FPGA, pages 41–50, 2010.

[10] A. Lukefahr et al. Composite Cores: Pushing Heterogeneity Into a Core.
MICRO, pages 317–328, 2012.

[11] G. Peter. Big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7.
Technical report, ARM, 2011.

[12] M. Pricopi and T. Mitra. Bahurupi: A Polymorphic Heterogeneous
Multi-Core Architecture. TACO, 8(4), 2011.

[13] D. Tarjan et al. Federation: Repurposing Scalar Cores for Out-Of-Order
Instruction Issue. DAC, pages 772–775, 2008.

[14] H. Zhong et al. Extending Multicore Architectures to Exploit Hybrid
Parallelism in Single-thread Applications. HPCA, pages 25–36, 2007.

