
Multimedia Systems 8: 201–211 (2000) Multimedia Systems
c© Springer-Verlag 2000

Zodiac: A history-based interactive video authoring system
Tzi-cker Chiueh, Tulika Mitra, Anindya Neogi, Chuan-Kai Yang

Computer Science Department, State University of New York at Stony Brook, Stony Brook, NY 11794-4400, USA;
e-mail: {chiueh, mitra, neogi, ckyang}@cs.sunysb.edu

Abstract. Easy-to-use audio/video authoring tools play a
crucial role in moving multimedia software from research
curiosity to mainstream applications. However, research in
multimedia authoring systems has rarely been documented
in the literature. This paper describes the design and imple-
mentation of an interactive video authoring system called
Zodiac, which employs an innovative edit history abstrac-
tion to support several unique editing features not found
in existing commercial and research video editing systems.
Zodiac provides users a conceptually clean and semantically
powerfulbranching history model of edit operations to orga-
nize the authoring process, and to navigate among versions
of authored documents. In addition, by analyzing the edit
history, Zodiac is able to reliably detect a composed video
stream’s shot and scene boundaries, which facilitates inter-
active video browsing.Zodiac also features avideo object
annotation capability that allows users to associate annota-
tions to moving objects in a video sequence. The annotations
themselves could be text, image, audio, or video.Zodiac is
built on top of MMFS, a file system specifically designed
for interactive multimedia development environments, and
implements an internal buffer manager that supports trans-
parent lossless compression/decompression. Shot/scene de-
tection, video object annotation, and buffer management all
exploit the edit history information for performance opti-
mization.

Key words: Video editor – Shot/scene detection – Object
tracking – Video annotation – Multimedia file system

1 Introduction

A complete digital video authoring environment must sup-
port two fundamental functions: capturing and generation
of raw video clips, and temporal arrangement of video seg-
ments with special inter-segment transition effects. In ad-
dition, the ability to synchronize video streams with other
media types such as audio is an essential component of non-
linear video editors. Existing video editors are based on a

Correspondence to: Tzi-cker Chiueh

data structure callededit decision list, which is a logical rep-
resentation of the composed video stream in terms of video
segments from raw clips. Unfortunately, the information in
the edit decision lists are typically thrown away once the
composite streams are instantiated, i.e., when the underlying
representation is converted from edit decisions to physical
files. The thesis of this paper is that edit history contains a
wealth of useful information and the video authoring system
should exploit it to simplify or even bypass subsequent com-
plicated pixel-level processing for advanced functionalities.

The primary goal of theZodiac project is to demonstrate
the hypothesis that recording and analyzing edit operation
history could provide useful information about the composed
video streams that would otherwise be difficult to come by.
In addition, Zodiac is meant to verify the usefulness of a
home-grown multimedia file system calledMMFS [16] in
supporting multimedia application development. Like exist-
ing video editors,Zodiac is an interactive video authoring
system that focuses mainly on the support for temporal ar-
rangement of video segments extracted from pre-captured
raw video clips. The audio support ofZodiac is beyond the
scope of this paper.Zodiac is based on the popular time-
line editing paradigm, where the thumbnail images of raw
video clips are aligned on a time axis, and frame-accurate
cut, copy, and paste operations are supported. The video
segments being manipulated are always in an uncompressed
representation to avoid quality degradation due to repeated
lossy compression/decompression.

Zodiac is built upon a noveledit history abstraction,
which enables several innovative editing features that do not
exist in most commercial or research video editing systems.
The edit history abstraction is a first-class object that is per-
sistent across edit sessions and is visible to end users. Unlike
edit decision lists, the edit history abstraction is based on a
branching history model, which keeps track of the devel-
opment paths associated with versions of video documents.
The model greatly simplifies the task of tracking document
versions, and thus facilitates interactive exploration of the
design space during the authoring process. Moreover, the
edit history, coupled with suitable analysis tools, provides a
wealth of useful information to otherZodiac modules such as
shot/scene detection, video object annotation, etc. The major

202 T. Chiueh et al.: Zodiac: A history-based interactive video authoring system

contribution of this paper is the development of the unique
edit history abstraction and the demonstration of its power
through the implementation of a fully operational video au-
thoring system.

In Sect. 2, we review previous work on digital video ed-
itors to set the contribution of this work in perspective. In
Sect. 3, we present the edit history abstraction and the sys-
tem architecture ofZodiac. Section 4 describes the storage
management support forZodiac at both user and file sys-
tem levels. Section 5 presents the techniques used inZodiac
to detect video shots and scenes from the edit history. In
Sect. 6, we describe how a unique video object annotation
capability is implemented inZodiac and how it benefits from
the edit history abstraction. Section 7 concludes this paper
with an outline of ongoing work to improve theZodiac sys-
tem.

2 Related work

Matthews et al. [13] proposed a melding of the common
direct-manipulation interfaces with a programming language
designed to manipulate digital audio and video, so that both
interactive editing and algorithm-based media-processing
operations can be performed. Meng and coworkers [14, 15]
described a network-based digital video editor that featured
compressed-domain video manipulation, and content-based
video browsing/retrieval. Baldeschwieler and Row [3] pre-
sented extensions to the Berkeley Continuous Media Toolkit
to support network-based media editors, which the authors
claimed would work over Internet. The MediaWeaver [18] is
a distributed hypermedia framework for teams of authors to
compose networked media and video streams in rich models.
It is really a middleware that sits between users and various
network multimedia services such as video databases and
filters. WAVESworld [9] is an object-oriented framework
for designing, developing, debugging and delivering three-
dimensional, semi-autonomous animated characters. The fo-
cus of this work was more on 3D animations than digital
video. Commercial video editors include Adobe’s Premier
[1] and AVID’s Media Suite [2], which do not support the
advanced shot/scene detection and video object annotation
capability inZodiac. A list of existing video editors on var-
ious platforms can be found in [17].

Zodiac is different from all previous works on video
editors in that it treats edit history as first-class objects
and uses edit history to support various important functions
such as easy navigation through the version space, accu-
rate shot/scene detection, and video object annotation. The
idea of recording design operation history to facilitate design
space exploration, and to infer useful semantic information
about data objects from design history was first proposed
and developed in [4, 5]. In that work, the focus was on
supporting VLSI design rather than on video editing. In par-
ticular, the types of metadata analysis on operation history
are completely different in two cases. Hampapur [7] pro-
posed a model-based approach for video segmentation that
exploits the semantics of high-level edit operations such as
fade and dissolve. However, this work attempts to uncover
these high-level operations, rather than to record them di-
rectly, as inZodiac. The ability of annotating moving ob-

Paste Clip2 (10-131)

Paste Clip1 (55-178)

Paste Clip2 (104-297)

Paste Clip1 (100-254)

Paste Clip3 (15-217)

**
6

5

4

3

2

1

Clip4 (10-45)Paste

*

Paste Clip1 (316-456)

(a) (b)

1

2

3

7

8

9 6

5

4Cut Stream1 (60-77)

Stream1(5)

Cut Stream1(100-106)

Node on active path Node not on active path Current Cursor

Stream1 (0)

Paste Clip X (a-b) Stream Y (p):

Stream1 (122)

Stream1 (246)

Stream1 (439)

Stream1 (593)

Stream1 (795)

Paste frames a-b from Clip X after frame p
in Compositing Stream Y

Cut frames a-b from Composite Stream YCut Stream Y (a-b):

Fig. 1. An example branching history tree for the edit history abstraction.
Edges represent the edit operations or steps and are labeled with the corre-
sponding operations. Nodes represent edit states. One of the edit states is
called the current cursor, from which the edit history grows

jects in video streams is available in IBM’s HotVideo [8]
and V-Active from Ephyx [6]. However, these systems are
not integrated with a video editor likeZodiac. Also, no lit-
erature on the design and implementation of these systems
is publicly available.

3 Overview of Zodiac

3.1 Edit history abstraction

3.1.1 Conceptual model

The most innovative aspect ofZodiac is its edit history ab-
straction, which maintains a persistent copy of the complete
edit operation history associated with the composition of
a video document. The edit history abstraction proves ex-
tremely powerful in two contexts. First, it provides a concep-
tually clean interface paradigm forZodiac users to keep track
of and navigate through multiple versions of a composed
video stream, which correspond to various design alterna-
tives during the authoring process. Second, useful metadata
about composed video streams such as shot/scene boundaries
can be easily extracted from the edit operation history with-
out resorting to time-consuming and often unreliable pixel-
level processing algorithms.

Zodiac’s edit history abstraction is a generalization of
the edit decision list data structure used in existing video
editors because it is based on abranching history model
of edit operations. Initially, the editing process proceeds lin-
early, whose corresponding edit history is shown in Fig. 1(a).
Each edit operation, such as an insert, append, and delete of
a video segment, is called anedit step. Between consecutive
edit steps we define anedit point with a correspondingedit
state, which is the cumulative effect of applying all the edit
steps from the beginning of the edit history up to the pre-
ceding step. For example, the edit state immediately after
Step 6 corresponds to a video stream that is a concatenation
of video segments from Clip 2, Clip 1, Clip 2, Clip 1, Clip

T. Chiueh et al.: Zodiac: A history-based interactive video authoring system 203

1, and Clip 3. The edit point in the edit history to which
records for new edit steps are appended is called thecur-
rent cursor. In Fig. 1(a), the current cursor is the edit point
immediately after Step 6.

Assume that at this time the author decides to try out
another composition idea starting from the edit state after
Step 3. She/he can change the current cursor to the edit
point after Step 3. The record for the next new step will
start a separate branch from the current cursor. Therefore, the
edit history starts to exhibit a branching-tree structure. The
records for new steps are appended to the new branch until
another change of the current cursor, as shown in Fig. 1(b).
Note that in this case, the edit state corresponding to the
current cursor is the result of applying Step 1, 2, 3, 7, 8, and
9.

Each edit state in the edit history essentially corresponds
to one version of the video stream being composed. Keep-
ing track of the correspondence between document versions
and high-level design alternatives during the authoring pro-
cess is tedious and error-prone. Moving the current cursor
among edit points is a powerful and intuitive paradigm to
explore the design space, because it greatly simplifies the
task of tracking versions and their corresponding design al-
ternatives. Since the document development history is ex-
plicitly represented and directly manipulable, users have a
clearer picture of the mapping between a particular design
version and the context in which it comes to existence. Cou-
pled with appropriate annotations, the edit operation history
could even be archived as a design rationale document for
future reviews.

The proposed paradigm can also be thought of as a gen-
eralization of undo/redo support, since all undo and redo op-
erations required to move the current cursor from one edit
point to another are implicitly defined without being explic-
itly issued by the user. The edit operation history abstraction,
although originally developed for VLSI design process man-
agement [5], is an even better match to the video document
editing process, because intermediate video document ver-
sions are inherently represented in a differential form, i.e.,
the edit decision list.

Because the edit operation history is expressed in terms
of high-level edit operations supported by the underlying
video editors, the edit history abstraction is applicable to
video editors that represent video sequences internally in
the compressed or uncompressed form. That is, the underly-
ing video encoding issue is completely hidden from the edit
history abstraction and the analysis built on this abstraction.
Although this work focuses only on video editing, the same
edit history abstraction is equally useful for audio editing.
As long as audio and video are properly synchronized, me-
dia editors that support both audio and video editing do not
add any complications to the edit history abstraction as pre-
sented.

3.1.2 Internal implementation

The edit operation history is physically represented as a bi-
directional tree to facilitate the traversal up and down the
tree. As edit operations are performed, the tree grows ac-
cordingly. Reconstructing the state of an edit point involves

interpreting the edit operations on the path from the tree’s
root to the edit point. Traversing the tree from the edit point
of interest back to the root uniquely identifies the path, and
edit operation interpretation proceeds from the root to the
edit point after the path is identified.

All intermediate edit states, except that of the current
cursor, are physically represented as a sequence of edit op-
erations, and thus form anoperation log of the edit history.
While this approach reduces the storage requirements for edit
states, it also incurs run-time performance overheads for re-
constructing the corresponding video document versions. To
minimize this overhead,Zodiac selectively instantiates those
edit states that are commonly used in reconstructing video
document versions. Specifically, ausage counter is associ-
ated with each edit state, and is incremented every time its
corresponding state is used in video document reconstruc-
tion. When an edit state’s usage counter exceeds a thresh-
old, Zodiac instantiates the state by explicitly performing
the associated edit operations and storing the resulting video
stream into a separate physical file. All video document re-
constructions that use an instantiated edit state do not need
to traverse beyond this state into the history, and thus reduce
the reconstruction overhead. This approach corresponds to a
value log of the edit history.

The state of the current cursor is represented as adata
map, which is similar to edit decision lists in that its logical
composition is explicitly represented with(raw clip ID,
start offset in raw clip, length) triples.

In summary,Zodiac uses the operation log as the main
edit state representation, and instantiates only selected edit
states with their value logs for performance optimization.
That is, a value-log representation is treated as a cache to
the operator-log representation of an edit state. The instan-
tiated states are stored on disks as distinct files. Zodiac’s
instantiation policy uses the edit states’ usage counters to
determine the instantiation priority among edit states in the
edit history. As a result, the states of the edit points that are
roots of a larger edit history subtree, and whose states are
thus more likely to be involved in the reconstruction of more
document versions, tend to have a higher priority of being
instantiated. The same usage counters are also used to re-
claim storage space from older and less popular instantiated
edit states to instantiate newer and more popular edit states.

In Zodiac, the physical representation of a video docu-
ment thus consists of the set of raw video segments, the edit
operation history as a tree data structure, instantiated states
as separate video files, and the current cursor as a data map
expressed in terms of triples. All these representations are
stored on persistent storage.

3.2 System architecture

The software system architecture ofZodiac is shown in
Fig. 2. At the bottom is a buffer manager that manages
various data structures used internally in the video editor,
including thumbnails, video segments, and object contours
used in video annotations. All other modules ofZodiac, ex-
cept the history manager, delegate the storage access service
to the buffer manager, which in turn exploits special service
features provided by the underlying file system, MMFS. The

204 T. Chiueh et al.: Zodiac: A history-based interactive video authoring system

Scene/Shot Boundaries
Scene Detection

Edit History Tree

Shot/Scene
Analyzer

History Manager

Buffer Manager

Interface Module

FreeBSD UnixMMFS

Compression/Decompression
Caching

Other History-based
Video Analyzers

Copy / Insert / Delete

Annotation
Video

GUI Display

Object Tracking

Annotation Map
Instantiated Edit States

Fig. 2. The system architecture of Zodiac, which consists of a front-end
interface module, an edit history manager, a shot/scene boundary analyzer,
a video object annotation module, and a buffer manager. The functions
performed and data structures maintained are labeled on each block. The
directed edges among the blocks indicate the data flows

history manager maintains the branching edit history rep-
resentation and associated data structures such as the cur-
rent cursor’s data map and the instantiated intermediate edit
states.

The interface module is responsible for the display of
video objects and the interpretation of user inputs. It trans-
parently captures all edit operations and relays them to the
history manager. The shot/scene analyzer module analyzes
the edit history and determines the shot and scene boundaries
without accessing the pixel values of the associated video
segments. The video object annotation module allows users
to annotate a video object in any frame and automatically
associates annotations with the object in every frame it ap-
pears. This video object annotation capability greatly simpli-
fies the task of annotating digital video and is the enabling
technology for the concept of digital video-based knowledge
acquisition and transfer [11]. The video object annotation
module exploits the edit history information to determine
when to stop the object-tracking algorithm.

The currentZodiac prototype, which has been opera-
tional for a year, is implemented on top of FreeBSD Unix
2.1 and MMFS, running on 200-MHz PentiumPro machines.
We are in the process of implementing the audio support of
Zodiac for public release.

4 Storage management

Because digital video takes a substantial amount of storage
space, efficient storage management is essential forZodiac
to provide interactive editing performance.Zodiac relies on
MMFS to improve the performance of individual in-place
file insert and delete operations, which are used extensively
in video editing. In addition,Zodiac includes an internal
buffer manager that manages the use and representation of
intermediate video objects in the user-level buffer area.

4.1 MMFS

General-purpose file systems such as the Unix file system
are oriented towards textual data storage and retrieval, where

files are typically small in size. Since rewrite of entire small
files takes a relatively short amount of time, support for
editing operations such as insert, delete, and update were
not considered necessary. Because multimedia editing op-
erations require frequent inserts and deletes and the data
segments being manipulated are large, special support from
the file system is essential.

To illustrate the need, consider the case in which a new
frame is to be inserted between thei-th andi + 1-th frames
of a video clip that has a total ofj frames (j > i). On
generic Unix file systems, such an insertion entails reading
the frames from thei + 1-th frame to thej-th frame, writing
the new frame as thei + 1-th frame, and then appending the
frames just read in to form the rest of the file. In the worst
case, this leads to the whole file being read and re-written.
For large video files, the response time for this simple editing
operation is unacceptably long.

MMFS [16] is derived from FreeBSD 2.1, and is de-
signed to support interactive multimedia application devel-
opment. One of the main features in MMFS is an efficient
support for inserts and deletes at a small cost of storage space
overhead, which could be further reduced by periodic com-
paction. Two new system callsmminsert andmmdelete
are provided for applications to access this service.

The key idea behind MMFS’s fast inserts and deletes
is to eliminate the constraint that all the blocks of a file,
except the last one, must be completely filled with valid
data. With this constraint, it is relatively straightforward to
compute physical block ID from logical file offsets using the
Inode data structure. However, this constraint can no longer
be upheld if inserts and deletes are to be performed with
only metadata updates, because the segments to be deleted
or inserted do not necessarily occupy an integral number
of disk blocks. Therefore, MMFS allows file blocks to be
partially full. The mnode data structure, an Inode counterpart
in MMFS, contains an additional field to record the number
of valid bytes in the file block. As a result, a file in MMFS
is physically represented as an ordered list of logical blocks,
each of which could be partially full.

Deleting data involves only a modification of the map-
pings in the mnode, followed by a release of the correspond-
ing disk blocks to the free list. An insertion would lead to
a write of the data in a freshly allocated block at the end
of the file, followed by a modification of the mnode block
mappings to indicate the actual position of the newly in-
serted block. Figures 3 and 4 show the evolution of the file
system metadata in the process of inserting and deleting file
blocks in MMFS.

4.2 History-conscious buffering

Zodiac’s internal buffer manager exploits efficient insert and
delete operation of MMFS to support direct updates to in-
stantiated edit states. In addition, it exploits the edit operation
history information to make better buffer replacement deci-
sions. Specifically, the buffer manager determines the impor-
tance of video segments currently resident in main memory
according to the following rules.

– Those video segments that are part of the current cursor’s
data map have a higher priority over others that are not.

T. Chiueh et al.: Zodiac: A history-based interactive video authoring system 205

lblk validbytes
...

10
11
12
13

8192
8192
8192

Insert

13

12

11

10

7000

11

12

13

10

11

12

13

10

14
on disk
strand

Step 1 Step 2 Step 3

lblk validbytes
...

10
11

8192
11

12

13

10

14

15

8192
14 8192
15 1808
12 8192
13 7000

block mappings in mnode

strand
on disk

the INSERT callBEFORE AFTER the INSERT call

Invalid Data or Unoccupied Region

Pre-existing Data

New Data

block mappings in mnode

Fig. 3. File data and metadata before, during and after anmminsert system call: 10,000 bytes of new data are to be inserted at an offset corresponding
to the 3000st byte of Block 11, where the block size is 8 KB. The mnode mappings and the file at the left end of the figure describe the state of the file
before the call.Step 1 inserts 5192 bytes of new data in the freshly created hole.Step 2 appends the rest (4808 bytes) of the new data at the end of the file
in a fresh block (Block 14).Step 3 appends the old data that was removed from Block 11 to the file, thus filling up Block 14 with 3384 bytes, and partially
filling up Block 15 with 1808 bytes. The mnode mappings and the file at the right end of the figure reflect the state of the file after the call

lblk validbytes
...

10
11
12
13

8192
8192
8192
8192

...

 9

10

11

12

13

 9

10

11

12

13

cu
t

 9

10

11

12

13

block mappings in mnode
on disk

BEFORE the DELETE call Step 1 Step 2 Step 3

 9

10

11

12

13

lblk validbytes
...

10
11
12
13 8192

...

3000

Rele-
-ased

8192
0

on disk

block mappings in mnode

AFTER the DELETE call

file file

Valid Data Invalid Data (or) Unoccupied Region (or) Released Block

Fig. 4. File data and metadata before, during and after ammdelete system call. The segment to be deleted is from the 4000st byte of Block 10 to the
1000st byte of Block 12, where the block size is 8 KB. The mnode mappings and the file at the left end of the figure define the state of the file before the
call. Step 1 identifies the “invalid” areas of the file.Step 2 fills the hole in Block 10 with data from Block 12.Step 3 moves data in the Block 12 to the
beginning of the block. The mnode mappings and the file at the right end of the figure reflect the state of the file after the call

– For video segments in the current cursor’s data map,
those that are closer to the current cursor have a higher
priority over those that are farther away.

– For video segments not in the current cursor’s data map,
they are ordered according to the least recently used
(LRU) policy.

Video segments of more importance are more likely to stay
memory-resident. The rationale behind these rules is that
video editor authors tend to access the parts of the video
stream being composed that they were working on recently.
By consulting the edit history, the buffer manager has a
better grip on the user’s current working set, which may be
very different from the estimate from the LRU policy, for
example, when users move the current cursor.Zodiac also
exploits the information in the data map to quickly bring in
the current working set when users move the current cursor.

Zodiac’s buffer manager also supports transparent loss-
less compression and decompression to make more efficient
use of the limited buffer space. Lossless rather than lossy
compression algorithms are chosen to prevent quality degra-
dation due to repeated compression and decompression. As
far as otherZodiac modules are concerned, they only see

uncompressed data. That is, the fact that video segments are
stored in compressed form in the user buffer during the edit-
ing process is completely hidden from otherZodiac modules.
The currentZodiac implementation is based on the GNU
gzip library [22]. Compressed frame size is 38%–65% of the
original full-size frame for typical video clips of 360× 240
resolution. For thumbnail frames of resolution 64×64, com-
pressed frame size is 67% to 87% of the original.

5 Shot/scene boundary detection

Much research effort has been invested in the detection
of shot/scene boundaries of digital video sequences. Zhang
et al. [21] has a nice summary on the recent results us-
ing image-processing techniques.Zodiac takes a completely
different approach in that it attempts to uncover high-level
structures of digital video sequences by analyzing their as-
sociated edit history. The key observation underlying this
approach is that, since video authors arrange the temporal
layout of video segments to express semantic intention, it
should be possible to recover the high-level structure of com-

206 T. Chiueh et al.: Zodiac: A history-based interactive video authoring system

Boundary
Scene

1 1 2 1 2 2 1 2 1 4 6 4 6 6 6 4 3 7 3 5 3 3 7 5 3 7 7 3 52 1

Boundary
Scene

Boundary
Scene

1

2

4

6

3

7

5

Input Shot Sequence

Accumulative
Shot Count

Fig. 5. An illustrating example for Zodiac’s scene detection algorithm. The
input is a shot sequence shown above, where each number indicates which
clip the corresponding shot comes from. Below are the accumulative shot
count curves for the participating clips. Thedouble-arrowed dashed lines
indicate the flat regions of the corresponding clip’s accumulative shot count
curve

posite video streams by analyzing the edit operations per-
formed in the authoring process. This approach has two im-
portant advantages. First, the computational effort required
is much lower, becauseit does not require pixel-value ma-
nipulation. Second, the accuracy of the analysis results is
expected to be better, because the edit history data it uses
inherently provides richer information. Of course, the pro-
posed approach only applies to video documents whose edit
operation history is available. Pixel-level video-processing
techniques are still needed for non-Zodiac video documents.

Essentially, the recorded edit history is treated as a com-
puter program. The hypothesis is that authors follow con-
ventions or rules for video editing, if not grammars. These
rules can be used to parse the edit operation history to iden-
tify higher level semantic constructs rather than individual
video frames, just as syntactic analysis of computer codes
could uncover high-level program behaviors. The grammars
of film [20] is much less rigorous than formal grammars
used to define computer languages, and actually allow for
exceptions, which typically are deemed as “novel creations.”
As a result, recognition based on film grammars would not
be 100% accurate.

Zodiac currently applies this approach to only shot and
scene boundary detection. Other more sophisticated edit his-
tory analysis modules using techniques such as those pro-
posed in [19] can be added in a modular fashion, as shown
in Fig. 2. Given a composite video stream’s data map, which
is a sequence of(raw clip ID, start-offset in
raw clip, length) triples, shot boundary detection is
straightforward. By definition, whenever there is a disconti-
nuity between adjacent video frames, there is a shot bound-
ary between the two. Therefore, by comparing each neigh-
boring pair of triples in the data mapZodiac can determine
with 100% accuracy whether they come from the same raw

clip, and thus the shot boundaries. Some video segments of
a composite stream are not copied directly from raw video
clips, but result from manipulation of multiple video seg-
ments, e.g., fading or dissolving. In this case, a special flag
in the data map representation is used to indicate specific
transition effects. These flags automatically signify the pres-
ence of shot boundaries.

Because there is no guarantee that clip IDs are glob-
ally unique, confusion may arise because distinct composite
streams manipulated in the same edit session happen to use
the same clip ID to refer to different raw clips. In particular,
there may be a portability issue aboutZodiac documents
when a composite video stream is edited at one site and
transferred to another site for further processing. To ensure
the uniqueness of raw clip ID,Zodiac relies on the message
digest algorithm MD5 to generate the clip ID, which uses
the concatenation of the editing machine name and the clip’s
file name as the input key.

The current scene detection algorithm used inZodiac
can only identify scenes that comprise video segments ex-
tracted from multiple video clips, each of which corresponds
to a particular viewpoint or camera angle towards a given
physical world. This type of scenes are characterized as a
sequence of shots that are extracted from only a subset of
video clips.

From a video shot sequence derived from the edit opera-
tion history representation of a composite stream, the scene
detection algorithm scans through the shot sequence and
counts, for each clip, the cumulative number of shots ex-
tracted from that clip versus the number of shots in the se-
quence examined so far. During such a scene-bearing shot
subsequence, the shot counts of those other than active clips
should remain unchanged. That is, the accumulative shot
count curve of a clip should be flat during a scene to which
it does not contribute. Based on this observation, the algo-
rithm to identify scene boundaries is as follows.

1. Set the current shot to be the first shot in the input se-
quence.

2. Identify all video clips that have a contiguous flat region
in their accumulative shot count curves, starting from the
current shot. The length of a contiguous flat region, in
terms of the number of shots, must exceed a minimum
threshold.

3. Intersect the flat regions identified in Step 2, and the
intersecting region corresponds to a scene.

4. Set the current shot to be the end of the scene just iden-
tified plus 1. If this is the end of the shot sequence, exit;
otherwise go to Step 2.

Figure 5 gives an example of how scenes are detected
using the above algorithm. In the beginning, the clips that
have a flat region are Clips 3, 4, 5, 6, and 7. The intersection
of these flat regions gives the first scene boundary, between
the 11th and 12th shots. Starting from the 12th shot, the clips
that have a flat region are Clips 1, 2, 3, 5,and 7. The intersec-
tion of these flat regions gives the second scene boundary,
between the 18th and 19th shots. Finally, the intersection of
the flat regions from Clips 1, 2, 4, and 6 gives the third and
final scene boundary.

We have tested the above scene detection algorithm on
a set of composite video documents generated usingZodiac

T. Chiueh et al.: Zodiac: A history-based interactive video authoring system 207

and found that the algorithm identifiesall scene boundaries
correctly. The excellent performance of this scene detection
algorithm comes from that fact that it uses not only exact
shot boundary information but also the information about
which clip each shot is extracted from. Once scenes are
identified,Zodiac stores them as metadata, together with the
original video documents.Zodiac uses the scene informa-
tion associated with video documents to support scene-based
rather than frame-based browsing, i.e., jumping from scenes
to scenes.

6 Video object annotation

6.1 Functional overview

In addition to standard video edit operations such as cut
and paste, and special-effect transformations,Zodiac also
supports a novel video object annotation capability to cre-
ate hyper-video documents.Zodiac’s video object annotation
facility allows users to annotate moving objects, such as ve-
hicles or humans, in a video stream. Users are required to
pick a frame in which the annotated object appears, trace
the object’s contour on the screen, and provide the intended
annotation.Zodiac automatically tracks the movement of the
annotated object in BOTH directions, starting from the se-
lected frame, and associates the annotation with the object’s
estimated contours in other frames. The result is that when
users click on the annotated object in any frame in which
it appears, the associated annotation would pop up accord-
ingly. Video object annotation is essentially a generalization
of the image map construct in HTML. However, it greatly
simplifies the process for integrating annotations with video
streams, because users only need to manually describe the
contour of the video object to be annotated exactly once.

Video object annotation is expected to play an important
role in applications such as electronic commerce, knowledge
transfer [11], and so on, where digital video is a much more
expressive medium than pure text and images. For exam-
ple, it is conceivable that an entire Christmas sale catalog
is put on a DVD CD, and short video clips are used to to
demonstrate the functionality of certain product items, with
annotations showing their prices, availability, or other re-
lated products.

In Zodiac, the annotations for video objects can be in the
form of text, image, audio, or even video, as shown in Fig. 6.
In the case of video, users can choose to stop or continue to
play the annotated video while playing the annotating video.
In addition, it is possible to control the relative playback
rates of the annotating and annotated video sequences to
bring out certain contrasting effects.

6.2 Object-tracking algorithm

The key technology underlying the video object annotation
capability is object tracking, which, in this context, means
estimating the annotated object’s contour in other frames
from the user-provided contour in the starting frame. How-
ever, unlike computer vision applications, video annotation
does not require 100% object-tracking accuracy, because the

results of object tracking are contours to be associated with
annotations. As long as the estimated contour of the anno-
tated object is sufficiently close to the actual contour, users
are likely to click a point inside the estimated contour and
thus be able to retrieve the associated annotation.Zodiac
uses a variant of the algorithm described in [12]. The basic
idea is to use motion estimation to arrive at a good guess
of the initial contour from one frame to the next, and rely
on active contour (snake) [10], to relax to the exact object
contour.

Assume the object contour is represented asV = [v1, v2,
..., vn], wherevi = (xi, yi) is the coordinate of thei-th ver-
tex. In addition, letvi(t) be thei-th vertex at thet-th frame.
The object-tracking algorithm estimates the object contour
at framet from the contour at framet − 1 by minimizing
the following objective function:

Esnake =
∑

i

α ∗ Econt(vi(t)) + β ∗ Ecurv(vi(t)) +

γ ∗ Eimg(vi(t)) + η ∗ Ematch(vi(t)) . (1)

The first three terms are used by the original snake algorithm
while the fourth term is introduced to account for motion.
α, β, γ andη are weighting constants, to be determined em-
pirically to adjust these terms’ relative importance.

Minimization of Econt(vi(t)), defined as|d(t) − |vi(t) −
vi−1(t)||, whered(t) is the average distance between each
pair of neighboring vertices, encourages the vertices on the
resulting contour to be equally spaced and contracting. Min-
imization of Ecurv(vi(t)), defined as|(vi−1(t) − vi(t)) −
(vi(t)−vi+1(t))|, forces the resulting contour to be smoother
by reducing the second-order derivative or curvature value
at each vertex.

The first two terms in Eq. 1 are related to the structure
of the resulting contour, but have nothing to do with the
inherent image property of the contoured object. The third
term is defined as

Eimg(vi(t)) = − gi(t) − gmin(t)
gmax(t) − gmin(t)

, (2)

wheregi(t) is the magnitude of the gradient vector computed
at thei-the vertex in thet-th frame, andgmin(t) andgmax(t)
are the maximum and minimum gradient values computed
so far. We assume that the object to be annotated has a
very different image profile compared to its surroundings.
Therefore, minimization ofEimg(vi(t)) causes the contour
points to be placed on where largest gradient values occur.

The final term,Ematch(vi(t)), evaluates the likelihood of
a candidate point ofvi(t) from the standpoint of its compat-
ibility with global and local motion estimation. The global
motion of the tracked object from thet-th frame to thet+1-th
frame,m(t), is determined by

m(t) =
1
n

(∑
i

vi(t) −
∑

i

vi(t − 1)

)
; m(1) = 0, (3)

which is the average object motion computed from all the
contour vertices. Givenm(t), the purpose of local motion
estimation is to search a 9× 9 window aroundvi(t) to iden-
tify the best local motion vector∆v∗

i (t) = (∆x∗
i (t), ∆y∗

i (t))
for each vertex and arrive at the best estimate ofvi(t + 1),
v̂i(t + 1) = vi(t) + m(t) + ∆v∗

i (t).

208 T. Chiueh et al.: Zodiac: A history-based interactive video authoring system

Each point in the 9× 9 window of given contour point
represents a candidate for local motion for that point, and is
denoted as∆vjk

i (t), wherej andk both range from -4 to 4.
Each such candidate is assigned a probability for being the
best local motion vector for thei-th vertex. These probabil-
ities are updated iteratively, and eventually the one with the
highest probability is the best local motion vector. The initial
probability for each of these candidates,P̂ 0(∆vjk

i (t)), is cal-
culated based on the difference between their corresponding
blocks to the original block.

P 0(∆vjk
i (t)) =

1
1+c0∗rjk

i
(t)∑m=4

m=−4

∑n=4
n=−4

1
1+c0∗rmn

i
(t)

, (4)

whererjk
i (t) is the block difference between the 9×9 block

centering atvi(t) and that atvi(t)+∆vjk
i (t) in the next frame,

andc0 is a constant.
At each iteration, the probabilities of these candidate

points are updated according to the probabilities of the cur-
rent vertex in the previous iteration, and of neighboring ver-
tices in the contour. That is,

P̂ l+1
(
∆vjk

i (t)
)

= P l
(
∆vjk

i (t)
)

∗ (c1 + c2 ∗
i+1∑

s=i−1

m=j+1∑
m=j−1

n=k+1∑
n=k−1

P l(∆vmn
s (t)) . (5)

The second term inside the parentheses ensures that the prob-
abilities for neighboring∆vjk

i (t)’s to be similar, and neigh-
boring contour points have similar local motion vectors.c1
and c2 are constants that control the convergence rate. Fi-
nally, a normalization is performed to ensure the estimated
probability values are between 0 and 1.

P l+1
(
∆vjk

i (t)
)

=
P̂ l+1(∆vjk

i (t))∑m=4
m=−4

∑n=4
n=−4 P̂ l+1(∆vmn

i (t))
. (6)

In the current implementation, we usec0 = 10, c1 = 0.3, c2 =
3 and run for ten iterations to obtain allP (∆vjk

i (t)), and
choose the candidate point with the highest probability as
the local motion vector for a given contour point.

Given the object contour from the previous frame,vj(t−
1)’s, j = 1, . . . , n, the previous frame and the current frame,
the object-tracking algorithm first applies local motion es-
timation to each contour vertex. Then it applies both local
and global motion estimation results to arrive at the best
estimate of each contour vertexvi(t) in the current frame,
v̂i(t). Finally, the algorithm searches a 3×3 window around
v̂i(t) to derive the best estimate forvi(t) that minimizes Eq.
1, whereEmatch(vi(t)) is defined to be−P (vi(t)−vi(t−1)).
By choosing the local motion vector with the highest proba-
bility for each contour point,Ematch(vi(t)) is automatically
minimized.

All terms in Eq. 1 are first normalized to [0, 1], and
the weighting coefficients are all set to 1. Multiple iterations
through each of the contour vertices are required until the
best estimates for all vertices stabilize, i.e., stop changing. In
each iteration, the best estimates from the previous iteration
are used as the starting points. Finally, the stabilized best

estimates for the vertices form the contour of the tracked
object in the current frame.

6.3 Implementation

Based on the object-tracking algorithm,Zodiac derives the
contour of the annotated object in all the other frames in the
video sequence, both in the forward and backward direc-
tions. Zodiac stops tracking objects when the tracking error
exceeds a certain threshold. The tracking error of an esti-
mated object contour is defined as the mean square error
(MSE) between the pixel-value histograms of the estimated
contour and the contour specified in the starting frame, i.e.,
the frame with which users describe the tracked object’s
contour. The tracking error of an estimated contour is con-
sidered unacceptable if it is more thanB times the MSE
between the histograms associated with the contours of the
start frame and of its next frame.B is an empirical constant
and is set to 3 currently. The rationale is that the tracking
error between the starting frame and its next frame should
be a reliable indicator of the true changing rate of the object
contour.

A unique aspect ofZodiac’s object-tracking algorithm
implementation is that it further exploits the shot informa-
tion derived from the edit history to perform object-tracking
across discontinuous shots. That is,Zodiac only runs the ob-
ject tracking algorithm against video subsequences that are
contiguous segments from the same raw clip. As a result,
the object-tracking algorithm is not only more efficient be-
cause it does not waste time on irrelevant frames, but also
more powerful and accurate in that it can track objects be-
tween frames that are separated by one or multiple unrelated
video shots! To the best of our knowledge, no existing video-
object-tracking system can track objects across video shots.

Once the contour of the annotated object in other frames
is estimated,Zodiac stores the object contour information
with the frame it appears. At run time, when users click on
the annotated object,Zodiac performs acontainment check
to determine whether the point coordinate of a user click
falls within the object’s contour, and if so, invokes the cor-
responding annotation (see Fig. 7). The containment check
algorithm is based on the assumption that the vertices of
the contour are ordered in aclockwise fashion. Given a
click point p, for each pair of consecutive contour vertices,
vi, vi+1, Zodiac computes the cross-product of the two vec-
tors,vi+1−vi andp−vi. If the object contour is convex and
p is inside it, the cross-product for each pair of consecutive
vertices should be positive or zero. In practice, the object
contour may not be convex everywhere or the tracking er-
rors may introduce concavity. The current implementation
acceptsp to be inside the estimated contour, if more than
85% of the cross-product tests for all consecutive vertex
pairs are positive or zero. The current implementation of the
containment check algorithm is sufficiently fast for invoking
video annotations interactively.

The total computation time required for object tracking
is proportional to the number of contour vertices. On a 32-
MB Pentium-200 MHz machine, the measurement is 0.025 s
per contour point. In other words, it takes 50 s to track a 20-
vertex contour over a 100-frame period. For all the video

T. Chiueh et al.: Zodiac: A history-based interactive video authoring system 209

Fig. 6. Zodiac interface for users to specify the
initial contour of the annotated object, in this
case the person and the motorbike, and the an-
notation text

Fig. 7. Invocation of annotation in subsequent
frames that depends on accurate object tracking

streams tested with fast-moving objects with pure transla-
tional motion, the tracking accuracy is almost 100%. Ob-
jects with rotation or camera zoom/pan during motion can
be tracked with approximately 80% accuracy, if the user
clicks on the object center. In the case of the clip taken
from “Terminator II,” as shown in Fig. 6, the moving object

with rotational and translational motion was tracked with
95% accuracy.

7 Conclusion

This paper describes the design and implementation ofZo-
diac, an interactive video authoring system based on a

210 T. Chiueh et al.: Zodiac: A history-based interactive video authoring system

unique edit operation history abstraction, which serves as
the basis for interactive document version navigation, accu-
rate shot/scene detection and simplified video object anno-
tation authoring. The major contributions of this work are
the development of the edit history abstraction as a new user
interface metaphor to support interactive exploration of the
design space in the context of video editing, and the demon-
stration of the powerful paradigm of analyzing edit history to
infer high-level metadata about digital video streams through
the Zodiac prototype implementation.

There are several promising research directions to fur-
ther improveZodiac, and we are currently pursuing some of
them. First, the disk representation of the edit operation his-
tory of Zodiac needs to be improved, so that it could be better
integrated with future digital video compression standards
such as MPEG-7. Second,Zodiac’s buffer management and
history management modules need to be re-implemented as
separate threads, so that I/O-intensive or compute-intensive
tasks could be delegated to the background to minimize the
user-perceived delay. Third,Zodiac is local disk based, and
needs to be extended to a networking environment. Basically
the buffer manager should be re-implemented as an indepen-
dent process running on a storage server that is accessible
over the network. Fourth, the object annotation subsystem
needs a high-level language to describe more precisely the
spatial and temporal arrangements of the annotating and an-
notated video streams. Such a language could significantly
enrich the ways digital video is rendered. Fifth, more sophis-
ticated history-based video analyzers based on well-known
film-editing theory should be developed to extract higher
level semantic structures of digital video streams. Along
the same line, high-level edit operation patterns should be
provided as pre-defined templates, so that ordinary video-
editing users could effortlessly apply sophisticated editing
techniques for complicated effects. Finally, there is very little
usage experience and performance data withZodiac because
of the lack of audio support. Once we incorporate the audio
support intoZodiac, we plan to carry out an extensive user
trial to collect actual usage patterns and such performance
data as scene detection accuracy, and the effectiveness of
history-conscious buffer replacement policy.

Acknowledgements. This research is supported by an NSF Career Award
MIP-9502067, NSF MIP-9710622, NSF IRI-9711635, NSF EIA-9818342,
NSF ANI-9814934, a contract 95F138600000 from Community Manage-
ment Staff’s Massive Digital Data System Program, USENIX student re-
search grants, as well as fundings from Sandia National Laboratory, Reuters
Information Technology Inc., and Computer Associates/Cheyenne Inc.

References

1. Adobe Premier. http://www.adobe.com/Apps/Premier.html
2. Avid Technology Inc. web site. http://www.avid.com
3. Baldeschwieler JE, Row LA (1996) Editing extensions to the

Berkeley continuous media toolkit. Master’s Report, Computer
Science Division, EECS, University of California at Berkeley.
http://www.bmrc.berkeley.edu/ eric14/masters

4. Chiueh T, Katz R (1993) A history approach of automatic relationships
establishment for VLSI design database. IEEE Trans Know Data Eng
5(6):987–990

5. Chiueh T, Katz R (1994) Papyrus: A history-based VLSI design pro-
cess management system. In: Proceedings of the 10th IEEE Interna-
tional Conference on Data Engineering, pp 385–392, Houston, Texas

6. Ephyx’s V-Active Technology. http://www.ephyx.com
7. Hampapur A, Jain R, Weymouth TE (1995) Production model based

digital video segmentation. Multimedia Tools Appl 1(1):9–46
8. IBM’s HotVideo. http://www4.alphaworks.ibm.com
9. Johnson MB (1995) WAVESworld: A testbed for constructing 3D semi-

autonomous animated characters. PhD thesis, Program in Media Arts
and Sciences, MIT, Cambridge, Mass.

10. Kass M, Witkin A, Terzopoulos D (1987) Snakes: Active Contour
Models. Int J Comput Vision 1(4):321–331

11. Lieberman H (1994) A user interface for knowledge acquisition from
video. In: Proceedings of the Conference of the American Association
for Artificial Intelligence, pp 527–534, Seattle, Washington

12. Lin Y, Chang Y (1997) Tracking deformable objects with the active
contour model. In: Proceedings of the IEEE International Conference
on Multimedia Computing and Systems, pp 608–609, Ottawa, Ontario,
Canada

13. Matthews J, Gloor P, Makedon F (1993) VideoScheme: A pro-
grammable video-editing system for automation and media recogni-
tion. In: Proceedings of the First ACM International Conference on
Multimedia, pp 419–426, Anaheim, CA

14. Meng HJ, Chang S (1996) CVEPS–A compressed video editing and
parsing system. In: Proceedings of the ACM International Multimedia
Conference, pp 43–53, Boston, MA

15. Meng HJ, Zhong D, Chang S (1997) A distributed system for editing
and browsing compressed video over the network. In: Proceedings of
the First Signal Processing Society Workshop on Multimedia Signal
Processing, pp 489-494, Princeton, NJ

16. Niranjan T (1996) File system support for multimedia applications.
PhD thesis, Computer Science Department, SUNY at Stony Brook,
N.Y.

17. Siglar J. Multimedia authoring systems FAQ. http://www.tiac.net/
users/jasiglar/MMASFAQ.HTML

18. Wei SX (1998) MediaWeaver – A distributed media-authoring system
for networked scholarly workspaces. Multimedia Tools Appl 6(2): 97–
111

19. Yeung M, Yeo B, Liu B (1996) Extracting story units from long pro-
grams for video browsing and navigation. In: Proceedings of the Third
IEEE International Conference on Multimedia Computing and Sys-
tems, pp 296–305, Hiroshima, Japan

20. Yoshitaka A, Ishii T, Hirakawa M, Ichikawa T (1997) Content-based
retrieval of video data by the grammar of film. In: Proceedings of the
IEEE Symposium on Visual Languages, pp 310–317, Capri, Italy

21. Zhang H, Low CY, Smoliar SW (1995) Video parsing and browsing
using compressed data. Multimedia Tools App 1(1):89–111

22. Zlib Library. http://www.cdrom.com/pub/infozip/zlib

T. Chiueh et al.: Zodiac: A history-based interactive video authoring system 211

Tzi-cker Chiueh is currently an As-
sociate Professor in Computer Science
Department of SUNY at Stony Brook.
He received his B.S. in EE from Na-
tional Taiwan University, M.S. in CS
from Stanford University, and Ph.D. in
CS from University of California at
Berkeley in 1984, 1988, and 1992, re-
spectively. He received an NSF CA-
REER award in 1995. Dr. Chiueh’s re-
search interest is on 3D graphics ar-
chitecture, scalable and secure network
routers/gateways, and high-performance
memory/storage systems.

Tulika Mitra is currently a doctorate
student in the Department of Computer
Science at State University of New York
at Stony Brook. She received her B.E.
from Jadavpur University in 1995 and
M.E. from Indian Institute of Science in
1997, both in Computer Science. Her re-
search interests include computer archi-
tecture, distributed/parallel systems, and
multimedia systems.

Anindya Neogi is in his third year
in the doctoral program of the Dept.
of Computer Science, SUNY at Stony
Brook. He received his B.E. in Com-
puter Science and Engineering from Ja-
davpur University, India in 1995 and
has an MS from Stony Brook. Before
coming to Stony Brook he was in the
R&D of Cadence Design Systems, India.
His research interests are in QoS-capable
scalable router/switch design and fault-
tolerant real-time storage systems.

Chuan-Kai Yang received the B.S.
degree in Mathematics from National
Taiwan University, Taipei, Taiwan, in
1991, and the M.E. degree in Com-
puter Science and Information Engineer-
ing from National Taiwan University,
Taipei, Taiwan, in 1993. He is currently
a graduate student in the Computer Sci-
ence Ph.D program at State University
of New York at Stony Brook. His re-
search interests include multimedia sys-
tems, computer graphics, and efficient
algorithms for volume visualization and
compression.

