Simplified Cheat Sheet Predicate Logic

Martin Henz, 15/3/2013

Bottom-up

General tactic on bottom-up reasoning: When you are proving a goal, and you think you need and can prove a hypothesis ϕ , you can add it via **assert** ϕ . Coq will then ask you to first prove ϕ . After that, you can work on your original goal, now with the additional hypothesis of ϕ . This is a special case of $\rightarrow e$, see below.

 $\top i$: trivial.

 $\wedge i$: split.

 $\wedge e_1$: Let us call the goal g. Here is how to use $\wedge e_1$ bottom-up, in case you would ever need it: assert g $\wedge \phi$. prove conjunction, destruct H1. apply H2. where H1 is the conjunction and H2 is g.

 $\wedge e_2$: Let us call the goal g. Here is how to use $\wedge e_2$ bottom-up, in case you would ever need it: assert ϕ $\wedge g$. prove conjunction, destruct H1. apply H2. where H1 is the conjunction and H2 is g.

 $\forall i_1: \texttt{left}.$

 $\forall i_2$: right.

 $\lor e$: destruct H.

 $\rightarrow i$: intro.

 $\rightarrow e$: apply H. (H is the implication)

- $\rightarrow e$: A variant of the rule allows you to prove a goal ψ , by proving first ϕ , and then $\phi \rightarrow \psi$: assert ϕ ., then prove ϕ , and finally prove goal ψ using ϕ
- $\neg e$: assert $\phi \land \neg \phi$. split. prove ϕ and $\neg \phi$ separately, then use destruct H1. contradiction H2., where H1 is the asserted conjunction, and H2 is one part of it.

 $\neg i$: unfold not. intro.

 $\perp e$: exfalso.

 $\neg \neg e$: Let us call the goal g. Here is how to use $\neg \neg e$ bottom-up, in case you would ever need it: assert (~ ~ g). prove $\neg \neg g$. Now use: tauto. equality \mathbb{H} from right to left)

Derived rule: LEM + $\lor e$: LEM (ϕ).

Top-down

Coq allows you to apply some rules within the hypotheses, which makes many proofs a lot shorter. Here are some common uses of top-down reasoning:

 $\rightarrow e$: spec H1 H2. (H1 is the implication)

 $\neg i$: unfold not in H.

 $\wedge i$: destruct H.