02-Traditional Logic I

The Importance of Being Formal

Martin Henz

January 22, 2014

Generated on Wednesday 22nd January, 2014, 09:51

2 Traditional Logic

3 Manipulating Terms and Propositions

Review: Agenda and Hallmarks

2 Traditional Logic

3 Manipulating Terms and Propositions

The Importance of Being Formal

First Agenda

Find out in detail how formal systems work

Goal

Thorough understanding of formal logic as an example *par excellence* for formal methods

Approach

Study a series of logics: traditional, propositional, predicate logic

The Importance of Being Formal

Second Agenda

Explore fundamental boundaries of formal reasoning

Goal

Appreciate Undecidability and Gödel's incompleteness results

Approach

Study predicate logic deep enough to understand his formal arguments

The Importance of Being Formal

Third Agenda

Explore formal methods across fields

Approach

Students write essays and present their findings

Goal

Overview of formal methods and their limitations in our civilization

Hallmarks of Formal Methods

- Discreteness
- Naming
- Abstraction (classification)
- Reification
- Self-reference
- Form vs content
- Syntax vs semantics

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Review: Agenda and Hallmarks

2 Traditional Logic

- Origins and Goals
- Categorical Terms
- Categorical Propositions and their Meaning
- Axioms, Lemmas and Proofs

3 Manipulating Terms and Propositions

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Traditional Logic

Origins

Greek philosopher Aristotle (384–322 BCE) wrote treatise *Prior Analytics*; considered the earliest study in formal logic; widely accepted as the definite approach to deductive reasoning until the 19thcentury.

Goal

Formalize relationships between sets; allow reasoning about set membership

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

All humans are mortal. All Greeks are humans. Therefore, all Greeks are mortal.

Makes "sense", right?

Why?

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

All cats are predators. Some animals are cats. Therefore, all animals are predators.

Does not make sense!

Why not?

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

All slack track systems are caterpillar systems. All Christie suspension systems are slack track systems. Therefore, all Christie suspension systems are caterpillar systems.

Makes sense, even if you do not know anything about suspension systems.

Form, not content

In logic, we are interested in the form of valid arguments, irrespective of any particular domain of discourse.

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Categorical Terms

Terms refer to sets

Term animals refers to the set of animals, term brave refers to the set of brave persons, etc

Term

The set Term contains all terms under consideration

Examples

 $animals \in Term$

 $brave \in Term$

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Models

Meaning

A model $\ensuremath{\mathcal{M}}$ fixes what elements we are interested in, and what we mean by each term

Fix universe

For a particular \mathcal{M} , the universe $U^{\mathcal{M}}$ contains all elements that we are interested in.

Meaning of terms

For a particular \mathcal{M} and a particular term *t*, the meaning of *t* in \mathcal{M} , denoted $t^{\mathcal{M}}$, is a particular subset of $U^{\mathcal{M}}$.

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

For our examples, we have Term = {cats, humans, Greeks, ...}.

First meaning ${\cal M}$

- $U^{\mathcal{M}}$: the set of all living beings,
- cat \mathcal{M} the set of all cats,
- humans $^{\mathcal{M}}$ the set of all humans,
- . . .

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Consider the same $Term = \{cats, humans, Greeks, ...\}$.

Second meaning \mathcal{M}^\prime

- U^{M'}: A set of 100 playing cards, *depicting* living beings,
- $cat^{\mathcal{M}'}$: all cards that show cats,
- humans \mathcal{M}' : all cards that show humans,
- . . .

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Consider the following set of terms: Term = {even,odd,belowfour}

First meaning \mathcal{M}_1

•
$$U^{\mathcal{M}_1} = \{0, 1, 2, 3, \ldots\},\$$

•
$$even^{\mathcal{M}_1} = \{0, 2, 4, \ldots\},\$$

•
$$odd^{\mathcal{M}_1} = \{1, 3, 5, \ldots\}$$
, and

• belowfour
$$^{\mathcal{M}_1} = \{0, 1, 2, 3\}.$$

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Consider the same Term = {even, odd, belowfour}

Second meaning \mathcal{M}_2

•
$$U^{\mathcal{M}_2} = \{a, b, c, \dots, z\},\$$

• odd
$$^{\mathcal{M}_2} = \{ \pmb{b}, \pmb{c}, \pmb{d}, \ldots \}$$
, and

• belowfour
$$\mathcal{M}_2 = \emptyset$$
.

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Categorical Propositions

All cats are predators

expresses a relationship between the terms cats (subject) and predators (object).

Intended *meaning*

Every *thing* that is included in the class represented by cats is also included in the class represented by predators.

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Four Kinds of Categorical Propositions

		Quantity	
		universal	particular
Quality	affirmative	All t_1 are t_2	Some t_1 are t_2
	negative	No t_1 are t_2	Some t_1 are not t_2

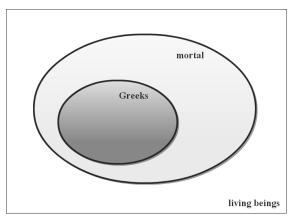
Example

Some cats are not brave is a *particular*, *negative* proposition.

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Meaning of Universal Affirmative Propositions

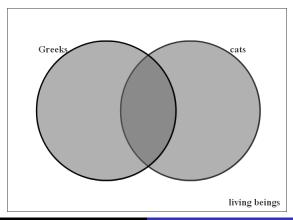
In a particular model $\mathcal{M},$ All Greeks are mortal means that ${\tt Greeks}^{\mathcal{M}}$ is a subset of ${\tt mortal}^{\mathcal{M}}$



Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Meaning of Universal Negative Propositions

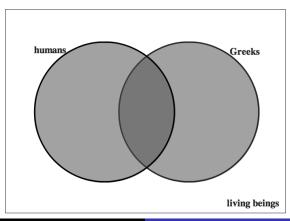
In a particular model $\mathcal{M},$ No Greeks are cats means that the intersection of ${\tt Greeks}^{\mathcal{M}}$ and ${\tt cats}^{\mathcal{M}}$ is empty.



Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Meaning of Particular Affirmative Propositions

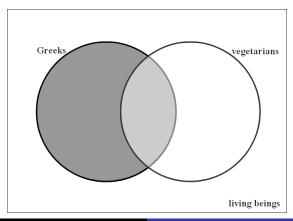
In a particular model \mathcal{M} , Some humans are Greeks means that the intersection of humans^{\mathcal{M}} and Greeks^{\mathcal{M}} is not empty.



Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Meaning of Particular Negative Propositions

In model \mathcal{M} , Some Greeks are not vegetarians means the difference of Greeks^{\mathcal{M}} and vegetarians^{\mathcal{M}} is not empty.



Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Axioms are propositions that are assumed to hold.

Axiom (HM)

The proposition All humans are mortal holds.

Axiom (GH)

The proposition All Greeks are humans holds.

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Graphical Notation

—[HumansMortality]

All humans are mortal

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Lemmas are affirmations that follow from all known facts.

Proof obligation

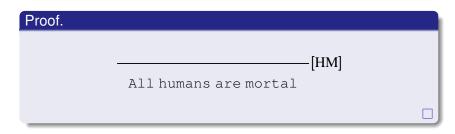
A lemma must be followed by a proof that demonstrates how it follows from known facts.

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Trivial Example of Proof

Lemma

The proposition All humans are mortal holds.



Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Unusual Models

We can choose any model for our terms, also "unusual" ones.

Example

$$U^{\mathcal{M}} = \{0,1\}, \mathtt{humans}^{\mathcal{M}} = \{0\}, \mathtt{mortal}^{\mathcal{M}} = \{1\}$$

Here

All humans are mortal

does not hold.

Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Asserting Axioms

Purpose of axioms

By asserting an axiom *A*, we are focusing our attention to only those models \mathcal{M} for which $A^{\mathcal{M}} = T$.

Consequence

The lemmas that we prove while utilizing an axiom only hold in the models in which the axiom holds.

Validity

A proposition is called *valid*, if it holds in all models.

Complement Conversion Contraposition Obversion Combinations

Review: Agenda and Hallmarks

2 Traditional Logic

Manipulating Terms and Propositions

- Complement
- Conversion
- Contraposition
- Obversion
- Combinations

Complement Conversion Contraposition Obversion Combinations

Complement

We allow ourselves to put non in front of a term.

Meaning of complement

In a model \mathcal{M} , the meaning of non t is the complement of the meaning of t

More formally

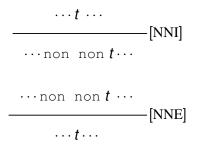
In a model \mathcal{M} , (non t)^{\mathcal{M}} = $U^{\mathcal{M}}/t^{\mathcal{M}}$

Complement Conversion Contraposition Obversion Combinations

Double Complement

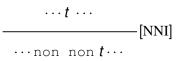
Axiom (NonNon)

For any term t, the term non non t is considered equal to t.



Complement Conversion Contraposition Obversion Combinations

Rule Schema



is a rule schema. An instance is:

Some t_1 are t_2

Some non non t_1 are t_2

Complement Conversion Contraposition Obversion Combinations

Definitions

We allow ourselves to state definitions that may be convenient. Definitions are similar to axioms; they fix the properties of a particular item for the purpose of a discussion.

Definition (ImmDef)

The term immortal is considered equal to the term non mortal.

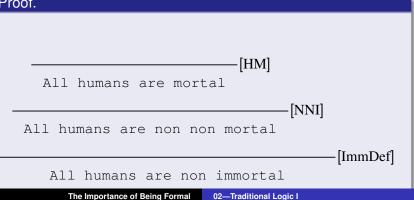
Complement Conversion Contraposition Obversion Combinations

Writing a Proof Graphically

Lemma

The proposition All humans are non immortal holds.

Proof.



Complement Conversion Contraposition Obversion Combinations

Writing a Text-based Proof

Lemma

The proposition All humans are non immortal holds.

Proof.									
1	All	humans	are	mort	al	HM			
2	All	humans	are	non	non	NNI 1			
	mort	cal							
3	All	humans	are	non	immortal	ImmDef 2			

Complement Conversion Contraposition Obversion Combinations

Conversion switches subject and object

Definition (ConvDef)

For all terms t_1 and t_2 , we define

- $convert(All t_1 are t_2) = All t_2 are t_1$
- $convert(Some t_1 are t_2) = Some t_2 are t_1$
 - $convert(No t_1 are t_2) = No t_2 are t_1$
- $convert(Some t_1 are not t_2) = Some t_2 are not t_1$

Complement Conversion Contraposition Obversion Combinations

Which Conversions Hold?

lf

All Greeks are humans

holds in a model, then does

All humans are Greeks

hold?

Complement Conversion Contraposition Obversion Combinations

Valid Conversions

Axiom (ConvE1)

If, for some terms t_1 and t_2 , the proposition

 $convert(Some t_1 are t_2)$

holds, then the proposition

Some t_1 are t_2

also holds.

Complement Conversion Contraposition Obversion Combinations

Valid Conversions

Axiom (ConvE2)

If, for some terms t_1 and t_2 , the proposition

 $convert(No t_1 are t_2)$

holds, then the proposition

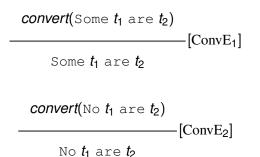
No t_1 are t_2

also holds.

Complement Conversion Contraposition Obversion Combinations

In Graphical Notation

In graphical notation, two rules correspond to the two cases.



Complement Conversion Contraposition Obversion Combinations

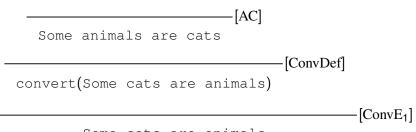
Axiom (AC)

The proposition Some animals are cats holds.

Lemma

The proposition Some cats are animals holds.

Complement Conversion Contraposition Obversion Combinations



Some cats are animals

Complement Conversion Contraposition Obversion Combinations

Example (text-based proof)

Proof.

- 1 Some animals are cats
- 2 convert(Some cats are animals)
- 3 Some cats are animals

AC ConvDef 1

ConvE₁ 2

Complement Conversion Contraposition Obversion Combinations

Contraposition switches and complements

Definition (ContrDef)

For all terms t_1 and t_2 , we define

 $contrapose(All t_1 are t_2)$

- = All non t₂ are non t₁ contrapose(Some t₁ are t₂)
- = Some non t_2 are non t_1 contrapose(No t_1 are t_2)
- = No non t_2 are non t_1
 - contrapose(Some t_1 are not t_2)
- = Some non t_2 are not non t_1

Complement Conversion Contraposition Obversion Combinations

For which propositions is contraposition valid?

$$\begin{array}{c} \textit{contrapose}(\texttt{Some } t_1 \texttt{ are not } t_2) \\ \hline \\ \texttt{Some } t_1 \texttt{ are not } t_2 \end{array} \\ \end{array}$$

Complement Conversion Contraposition Obversion Combinations

Obversion switches quality and complements object

Definition (ObvDef)

For all terms t_1 and t_2 , we define

obvert(All t_1 are t_2) = No t_1 are non t_2

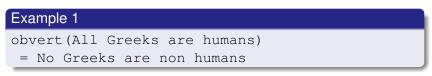
 $obvert(Some t_1 are t_2) = Some t_1 are not non t_2$

obvert(No t_1 are t_2) = All t_1 are non t_2

obvert(Some t_1 are not t_2) = Some t_1 are non t_2

Complement Conversion Contraposition Obversion Combinations

Obversion switches quality and complements object



Example 2

obvert (Some animals are cats)

= Some animals are not non cats

Complement Conversion Contraposition Obversion Combinations

Validity of Obversion

Obversion is valid for all kinds of propositions.

Axiom (ObvE)

If, for some proposition p

obvert(**p**)

holds, then the proposition p also holds.

Complement Conversion Contraposition Obversion Combinations

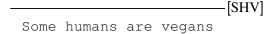
Axiom (SHV)

The proposition Some humans are vegans holds.

Lemma (NNVeg)

The proposition Some humans are not non vegans holds.

Complement Conversion Contraposition Obversion Combinations



_____[NNI] Some humans are non non vegans

obvert (Some humans are not non vegans)

Some humans are not non vegans

The Importance of Being Formal 02—Traditional Logic I

Complement Conversion Contraposition Obversion Combinations

Proof (text-based)

Proof.								
1 2	Some humans are vegans Some humans are non non	SHV NNI 1						
3	vegans obvert(Some humans are not non vegans)	ObvDef 2						
4	Some humans are not non vegans	ObvE 3						

Complement Conversion Contraposition Obversion Combinations

Another Lemma

Lemma (SomeNon)

For all terms t_1 and t_2 , if the proposition Some non t_1 are non t_2 holds, then the proposition Some non t_2 are not t_1 also holds.

A lemma of the form "If p_1 then p_2 " is valid, if in every model in which the proposition p_1 holds, the proposition p_2 also holds.

Complement Conversion Contraposition Obversion Combinations

Proof

Lemma (SomeNon)

For all terms t_1 and t_2 , if the proposition Some non t_1 are non t_2 holds, then the proposition Some non t_2 are not t_1 also holds.

Proof.

- 1 Some non t_1 are non t_2
- 2 convert(Some non t_2 are non t_1)
- 3 Some non t_2 are non t_1
- 4 obvert(Some non t_2 are not t_1)
- 5 Some non t_2 are not t_1

premise ConvDef 1 ConvE₁ 2 ObvDef 3 ObvE 4

Complement Conversion Contraposition Obversion Combinations

"iff" means "if and only if"

Lemma (AllNonNon)

For any terms t_1 and t_2 , the proposition All non t_1 are non t_2 holds iff the proposition All t_2 are t_1 holds.

All non t_1 are non t_2

All t_2 are t_1

All t_2 are t_1

All non t_1 are non t_2

The Importance of Being Formal 02—Traditional Logic I