02—Traditional Logic I

The Importance of Being Formal

Martin Henz

January 22, 2014

- Review: Agenda and Hallmarks
- 2 Traditional Logic
- Manipulating Terms and Propositions

- Review: Agenda and Hallmarks
- 2 Traditional Logic
- Manipulating Terms and Propositions

The Importance of Being Formal

First Agenda

Find out in detail how formal systems work

First Agenda

Find out in detail how formal systems work

Goal

Thorough understanding of formal logic as an example *par excellence* for formal methods

First Agenda

Find out in detail how formal systems work

Goal

Thorough understanding of formal logic as an example *par excellence* for formal methods

Approach

Study a series of logics: traditional, propositional, predicate logic

The Importance of Being Formal

Second Agenda

Explore fundamental boundaries of formal reasoning

Second Agenda

Explore fundamental boundaries of formal reasoning

Goal

Appreciate Undecidability and Gödel's incompleteness results

Second Agenda

Explore fundamental boundaries of formal reasoning

Goal

Appreciate Undecidability and Gödel's incompleteness results

Approach

Study predicate logic deep enough to understand his formal arguments

Third Agenda

Explore formal methods across fields

Third Agenda

Explore formal methods across fields

Approach

Students write essays and present their findings

Third Agenda

Explore formal methods across fields

Approach

Students write essays and present their findings

Goal

Overview of formal methods and their limitations in our civilization

Discreteness

- Discreteness
- Naming

- Discreteness
- Naming
- Abstraction (classification)

- Discreteness
- Naming
- Abstraction (classification)
- Reification

- Discreteness
- Naming
- Abstraction (classification)
- Reification
- Self-reference

- Discreteness
- Naming
- Abstraction (classification)
- Reification
- Self-reference
- Form vs content

- Discreteness
- Naming
- Abstraction (classification)
- Reification
- Self-reference
- Form vs content
- Syntax vs semantics

- Review: Agenda and Hallmarks
- 2 Traditional Logic
 - Origins and Goals
 - Categorical Terms
 - Categorical Propositions and their Meaning
 - Axioms, Lemmas and Proofs
- Manipulating Terms and Propositions

Traditional Logic

Origins

Greek philosopher Aristotle (384–322 BCE) wrote treatise *Prior Analytics*; considered the earliest study in formal logic; widely accepted as the definite approach to deductive reasoning until the 19thcentury.

Traditional Logic

Origins

Greek philosopher Aristotle (384–322 BCE) wrote treatise *Prior Analytics*; considered the earliest study in formal logic; widely accepted as the definite approach to deductive reasoning until the 19thcentury.

Goal

Formalize relationships between sets; allow reasoning about set membership

Example 1

All humans are mortal.
All Greeks are humans.
Therefore, all Greeks are mortal.

Example 1

All humans are mortal.
All Greeks are humans.
Therefore, all Greeks are mortal.

Makes "sense", right?

Example 1

All humans are mortal. All Greeks are humans. Therefore, all Greeks are mortal.

Makes "sense", right?

Why?

Example 2

All cats are predators.

Some animals are cats.

Therefore, all animals are predators.

Example 2

All cats are predators.

Some animals are cats.

Therefore, all animals are predators.

Does not make sense!

Example 2

All cats are predators.

Some animals are cats.

Therefore, all animals are predators.

Does not make sense!

Why not?

Example 3

All slack track systems are caterpillar systems. All Christie suspension systems are slack track systems.

Therefore, all Christie suspension systems are caterpillar systems.

Example 3

All slack track systems are caterpillar systems. All Christie suspension systems are slack track systems.

Therefore, all Christie suspension systems are caterpillar systems.

Makes sense, even if you do not know anything about suspension systems.

Example 3

All slack track systems are caterpillar systems. All Christie suspension systems are slack track systems.

Therefore, all Christie suspension systems are caterpillar systems.

Makes sense, even if you do not know anything about suspension systems.

Form, not content

In logic, we are interested in the form of valid arguments, irrespective of any particular domain of discourse.

Categorical Terms

Terms refer to sets

Term animals refers to the set of animals, term brave refers to the set of brave persons, etc

Categorical Terms

Terms refer to sets

Term animals refers to the set of animals, term brave refers to the set of brave persons, etc

Term

The set Term contains all terms under consideration

Categorical Terms

Terms refer to sets

Term animals refers to the set of animals, term brave refers to the set of brave persons, etc

Term

The set Term contains all terms under consideration

Examples

animals ∈ Term

brave ∈ Term

Models

Meaning

A model $\ensuremath{\mathcal{M}}$ fixes what elements we are interested in, and what we mean by each term

Models

Meaning

A model $\ensuremath{\mathcal{M}}$ fixes what elements we are interested in, and what we mean by each term

Fix universe

For a particular \mathcal{M} , the universe $U^{\mathcal{M}}$ contains all elements that we are interested in.

Models

Meaning

A model $\ensuremath{\mathcal{M}}$ fixes what elements we are interested in, and what we mean by each term

Fix universe

For a particular \mathcal{M} , the universe $U^{\mathcal{M}}$ contains all elements that we are interested in.

Meaning of terms

For a particular \mathcal{M} and a particular term t, the meaning of t in \mathcal{M} , denoted $t^{\mathcal{M}}$, is a particular subset of $U^{\mathcal{M}}$.

Example 1A

For our examples, we have

```
Term = \{cats, humans, Greeks, ...\}.
```

Example 1A

For our examples, we have

 $Term = \{cats, humans, Greeks, ...\}.$

First meaning \mathcal{M}

• $U^{\mathcal{M}}$: the set of all living beings,

Example 1A

For our examples, we have

 $Term = \{cats, humans, Greeks, ...\}.$

- $U^{\mathcal{M}}$: the set of all living beings,
- cat^M the set of all cats,

Example 1A

For our examples, we have

 $Term = \{cats, humans, Greeks, ...\}.$

- $U^{\mathcal{M}}$: the set of all living beings,
- cat^M the set of all cats,
- humans $^{\mathcal{M}}$ the set of all humans.
- ...

Example 1B

Consider the same Term = {cats, humans, Greeks, ...}.

Example 1B

Consider the same $Term = \{cats, humans, Greeks, ...\}$.

Second meaning \mathcal{M}'

• $U^{\mathcal{M}'}$: A set of 100 playing cards, *depicting* living beings,

Example 1B

Consider the same $Term = \{cats, humans, Greeks, ...\}$.

- $U^{\mathcal{M}'}$: A set of 100 playing cards, *depicting* living beings,
- cat^{M'}: all cards that show cats,

Example 1B

Consider the same $Term = \{cats, humans, Greeks, ...\}$.

- $U^{\mathcal{M}'}$: A set of 100 playing cards, *depicting* living beings,
- cat \mathcal{M}' : all cards that show cats,
- humans \mathcal{M}' : all cards that show humans,
- ...

Example 2A

Consider the following set of terms:

Term = {even, odd, belowfour}

Consider the following set of terms:

 $Term = \{even, odd, belowfour\}$

•
$$U^{\mathcal{M}_1} = \{0, 1, 2, 3, \ldots\},\$$

Consider the following set of terms:

Term = {even, odd, belowfour}

- $U^{\mathcal{M}_1} = \{0, 1, 2, 3, \ldots\},$
- ullet even $\mathcal{M}_1 = \{0, 2, 4, \ldots\},$

Consider the following set of terms:

Term = {even,odd,belowfour}

- $U^{\mathcal{M}_1} = \{0, 1, 2, 3, \ldots\},$
- even $^{\mathcal{M}_1} = \{0, 2, 4, \ldots\},$
- odd $^{\mathcal{M}_1} = \{1, 3, 5, \ldots\}$, and

Consider the following set of terms:

Term = {even,odd,belowfour}

- $U^{\mathcal{M}_1} = \{0, 1, 2, 3, \ldots\},$
- even $^{\mathcal{M}_1} = \{0, 2, 4, \ldots\},$
- odd $^{M_1} = \{1, 3, 5, \ldots\}$, and
- belowfour $\mathcal{M}_1 = \{0, 1, 2, 3\}$.

Example 2B

Consider the same Term = {even, odd, belowfour}

Consider the same Term = {even, odd, belowfour}

•
$$U^{\mathcal{M}_2} = \{a, b, c, \dots, z\},\$$

Consider the same Term = {even, odd, belowfour}

•
$$U^{\mathcal{M}_2} = \{a, b, c, \dots, z\},\$$

• even
$$\mathcal{M}_2 = \{a, e, i, o, u\},$$

Consider the same Term = {even, odd, belowfour}

•
$$U^{\mathcal{M}_2} = \{a, b, c, \dots, z\},\$$

•
$$even^{\mathcal{M}_2} = \{a, e, i, o, u\},$$

$$ullet$$
 odd $\mathcal{M}_2=\{b,c,d,\ldots\}$, and

Consider the same Term = {even, odd, belowfour}

•
$$U^{\mathcal{M}_2} = \{a, b, c, \ldots, z\},\$$

• even
$$\mathcal{M}_2 = \{a, e, i, o, u\},$$

$$ullet$$
 odd $\mathcal{M}_2=\{b,c,d,\ldots\}$, and

• belowfour
$$\mathcal{M}_2 = \emptyset$$
.

Categorical Propositions

All cats are predators

expresses a relationship between the terms cats (subject) and predators (object).

Categorical Propositions

All cats are predators

expresses a relationship between the terms cats (subject) and predators (object).

Intended meaning

Every *thing* that is included in the class represented by cats is also included in the class represented by predators.

Four Kinds of Categorical Propositions

		Quantity	
		universal	particular
Quality	affirmative	All t_1 are t_2	Some t_1 are t_2
	negative	No t_1 are t_2	Some t_1 are not t_2

Four Kinds of Categorical Propositions

		Quantity	
		universal	particular
Quality		All t_1 are t_2	Some t_1 are t_2
	negative	No t_1 are t_2	Some t_1 are not t_2

Example

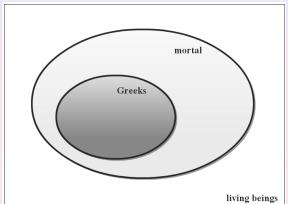
Some cats are not brave is a particular, negative proposition.

Meaning of Universal Affirmative Propositions

In a particular model \mathcal{M} , All Greeks are mortal means that Greeks $^{\mathcal{M}}$ is a subset of mortal $^{\mathcal{M}}$

Meaning of Universal Affirmative Propositions

In a particular model \mathcal{M} , All Greeks are mortal means that Greeks $^{\mathcal{M}}$ is a subset of mortal $^{\mathcal{M}}$

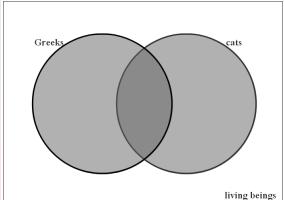


Meaning of Universal Negative Propositions

In a particular model \mathcal{M} , No Greeks are cats means that the intersection of Greeks $^{\mathcal{M}}$ and cats $^{\mathcal{M}}$ is empty.

Meaning of Universal Negative Propositions

In a particular model \mathcal{M} , No Greeks are cats means that the intersection of Greeks $^{\mathcal{M}}$ and cats $^{\mathcal{M}}$ is empty.



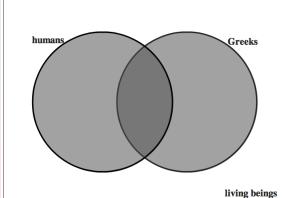
Review: Agenda and Hallmarks Traditional Logic Manipulating Terms and Propositions Origins and Goals Categorical Terms Categorical Propositions and their Meaning Axioms, Lemmas and Proofs

Meaning of Particular Affirmative Propositions

In a particular model \mathcal{M} , Some humans are Greeks means that the intersection of humans $^{\mathcal{M}}$ and Greeks $^{\mathcal{M}}$ is not empty.

Meaning of Particular Affirmative Propositions

In a particular model \mathcal{M} , Some humans are Greeks means that the intersection of humans $^{\mathcal{M}}$ and Greeks $^{\mathcal{M}}$ is not empty.

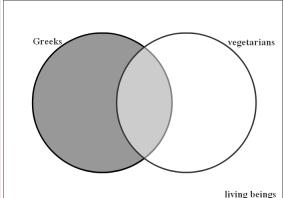


Meaning of Particular Negative Propositions

In model \mathcal{M} , Some Greeks are not vegetarians means the difference of Greeks $^{\mathcal{M}}$ and vegetarians $^{\mathcal{M}}$ is not empty.

Meaning of Particular Negative Propositions

In model \mathcal{M} , Some Greeks are not vegetarians means the difference of Greeks $^{\mathcal{M}}$ and vegetarians $^{\mathcal{M}}$ is not empty.



Axioms

Axioms are propositions that are assumed to hold.

Axioms

Axioms are propositions that are assumed to hold.

Axiom (HM)

The proposition All humans are mortal holds.

Axioms

Axioms are propositions that are assumed to hold.

Axiom (HM)

The proposition All humans are mortal holds.

Axiom (GH)

The proposition All Greeks are humans holds.

Review: Agenda and Hallmarks Traditional Logic Manipulating Terms and Propositions Origins and Goals
Categorical Terms
Categorical Propositions and their Meaning
Axioms, Lemmas and Proofs

Graphical Notation

-[HumansMortality]

All humans are mortal

Lemmas

Lemmas are affirmations that follow from all known facts.

Lemmas

Lemmas are affirmations that follow from all known facts.

Proof obligation

A lemma must be followed by a proof that demonstrates how it follows from known facts.

Trivial Example of Proof

Lemma

The proposition All humans are mortal holds.

Trivial Example of Proof

Lemma

The proposition All humans are mortal holds.

Proof.

All humans are mortal

Unusual Models

We can choose any model for our terms, also "unusual" ones.

Unusual Models

We can choose any model for our terms, also "unusual" ones.

Example

$$\mathit{U}^{\mathcal{M}} = \{0,1\}$$
, humans $^{\mathcal{M}} = \{0\}$, mortal $^{\mathcal{M}} = \{1\}$

Unusual Models

We can choose any model for our terms, also "unusual" ones.

Example

$$U^{\mathcal{M}} = \{0, 1\}$$
, humans $^{\mathcal{M}} = \{0\}$, mortal $^{\mathcal{M}} = \{1\}$

Here

All humans are mortal

does not hold.

Asserting Axioms

Purpose of axioms

By asserting an axiom A, we are focusing our attention to only those models \mathcal{M} for which $A^{\mathcal{M}} = T$.

Asserting Axioms

Purpose of axioms

By asserting an axiom A, we are focusing our attention to only those models \mathcal{M} for which $A^{\mathcal{M}} = T$.

Consequence

The lemmas that we prove while utilizing an axiom only hold in the models in which the axiom holds.

Asserting Axioms

Purpose of axioms

By asserting an axiom A, we are focusing our attention to only those models \mathcal{M} for which $A^{\mathcal{M}} = T$.

Consequence

The lemmas that we prove while utilizing an axiom only hold in the models in which the axiom holds.

Validity

A proposition is called *valid*, if it holds in all models.

- Review: Agenda and Hallmarks
- 2 Traditional Logic
- Manipulating Terms and Propositions
 - Complement
 - Conversion
 - Contraposition
 - Obversion
 - Combinations

Review: Agenda and Hallmarks Traditional Logic Manipulating Terms and Propositions Complement
Conversion
Contraposition
Obversion
Combinations

Complement

We allow ourselves to put non in front of a term.

Complement

We allow ourselves to put non in front of a term.

Meaning of complement

In a model \mathcal{M} , the meaning of non t is the complement of the meaning of t

Complement

We allow ourselves to put non in front of a term.

Meaning of complement

In a model \mathcal{M} , the meaning of non t is the complement of the meaning of t

More formally

In a model
$$\mathcal{M}$$
, $(\text{non } t)^{\mathcal{M}} = U^{\mathcal{M}}/t^{\mathcal{M}}$

Complement

Conversion
Contraposition
Obversion

Combinations

Double Complement

Axiom (NonNon)

For any term t, the term non non t is considered equal to t.

Double Complement

Axiom (NonNon)

For any term t, the term non non t is considered equal to t.

$$\cdots t \cdots$$
 \cdots
[NNI]
 \cdots non non $t \cdots$
 \cdots
[NNE]

Rule Schema

is a rule schema. An instance is:

Some
$$t_1$$
 are t_2

Some non non t_1 are t_2

Definitions

We allow ourselves to state definitions that may be convenient. Definitions are similar to axioms; they fix the properties of a particular item for the purpose of a discussion.

Definitions

We allow ourselves to state definitions that may be convenient. Definitions are similar to axioms; they fix the properties of a particular item for the purpose of a discussion.

Definition (ImmDef)

The term immortal is considered equal to the term non mortal.

Writing a Proof Graphically

Lemma

The proposition All humans are non immortal holds.

Complement Conversion Contraposition

Obversion **Combinations**

Writing a Proof Graphically

Lemma

The proposition All humans are non immortal holds.

Proof.

[HM]

All humans are mortal

[NNI]

All humans are non non mortal

[ImmDef]

humans are non immortal

Complement

Conversion Contraposition Obversion Combinations

Writing a Text-based Proof

Lemma

The proposition All humans are non immortal holds.

Writing a Text-based Proof

Lemma

The proposition All humans are non immortal holds.

Proof.

1	All	humans	are	mortal	HM
---	-----	--------	-----	--------	----

2 All humans are non non NNI 1

mortal

3 All humans are non immortal ImmDef 2

Conversion switches subject and object

Definition (ConvDef)

For all terms t_1 and t_2 , we define

```
\begin{array}{rcl} \text{convert}(\text{All } t_1 \text{ are } t_2) &=& \text{All } t_2 \text{ are } t_1 \\ \text{convert}(\text{Some } t_1 \text{ are } t_2) &=& \text{Some } t_2 \text{ are } t_1 \\ \text{convert}(\text{No } t_1 \text{ are } t_2) &=& \text{No } t_2 \text{ are } t_1 \\ \text{convert}(\text{Some } t_1 \text{ are not } t_2) &=& \text{Some } t_2 \text{ are not } t_1 \end{array}
```

Which Conversions Hold?

lf

All Greeks are humans

holds in a model, then does

All humans are Greeks

hold?

Valid Conversions

Axiom (ConvE1)

If, for some terms t_1 and t_2 , the proposition

$$convert(Some t_1 are t_2)$$

holds, then the proposition

Some
$$t_1$$
 are t_2

also holds.

Valid Conversions

Axiom (ConvE2)

If, for some terms t_1 and t_2 , the proposition

$$convert(No t_1 are t_2)$$

holds, then the proposition

No
$$t_1$$
 are t_2

also holds.

In Graphical Notation

In graphical notation, two rules correspond to the two cases.

$$convert(Some t_1 are t_2)$$

$$Some t_1 are t_2$$

$$convert(No t_1 are t_2)$$

$$No t_1 are t_2$$

$$[ConvE_2]$$

Example

Axiom (AC)

The proposition Some animals are cats holds.

Example

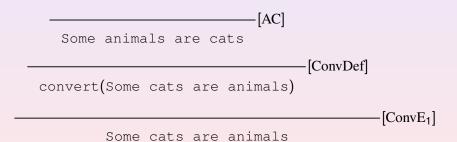
Axiom (AC)

The proposition Some animals are cats holds.

Lemma

The proposition Some cats are animals holds.

Proof



Example (text-based proof)

Proof.

1 Some animals are cats

2 convert(Some cats are animals)

3 Some cats are animals

AC

ConvDef 1

ConvE₁ 2

Contraposition switches and complements

Definition (ContrDef)

For all terms t_1 and t_2 , we define

- contrapose(All t_1 are t_2)
- = All non t_2 are non t_1 contrapose(Some t_1 are t_2)
- = Some non t_2 are non t_1 contrapose(No t_1 are t_2)
- = No non t_2 are non t_1 contrapose(Some t_1 are not t_2)
- = Some non t_2 are not non t_1

For which propositions is contraposition valid?

$$contrapose(All \ t_1 \ are \ t_2)$$
————————[ContrE₁]
All t_1 are t_2

For which propositions is contraposition valid?

Obversion switches quality and complements object

Definition (ObvDef)

For all terms t_1 and t_2 , we define

```
obvert(All t_1 are t_2) = No t_1 are non t_2
obvert(Some t_1 are t_2) = Some t_1 are not non t_2
obvert(No t_1 are t_2) = All t_1 are non t_2
obvert(Some t_1 are not t_2) = Some t_1 are non t_2
```

Examples

Obversion switches quality and complements object

Examples

Obversion switches quality and complements object

Example 1

obvert (All Greeks are humans)

= No Greeks are non humans

Examples

Obversion switches quality and complements object

Example 1

obvert (All Greeks are humans)

= No Greeks are non humans

Example 2

obvert (Some animals are cats)

= Some animals are not non cats

Validity of Obversion

Obversion is valid for all kinds of propositions.

Axiom (ObvE)

If, for some proposition p

holds, then the proposition p also holds.

Validity of Obversion

Obversion is valid for all kinds of propositions.

Axiom (ObvE)

If, for some proposition p

holds, then the proposition p also holds.

Example

Axiom (SHV)

The proposition Some humans are vegans holds.

Example

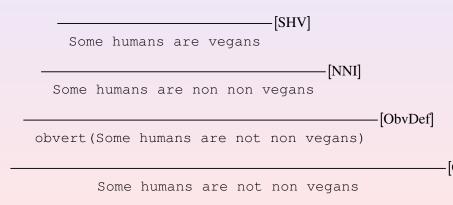
Axiom (SHV)

The proposition Some humans are vegans holds.

Lemma (NNVeg)

The proposition Some humans are not non vegans holds.

Proof



Proof (text-based)

Proof.				
1 2	Some humans are vegans Some humans are non non	SHV NNI 1		
3	vegans obvert (Some humans are not non vegans)	ObvDef 2		
4	Some humans are not non vegans	ObvE 3		

Another Lemma

Lemma (SomeNon)

For all terms t_1 and t_2 , if the proposition Some non t_1 are non t_2 holds, then the proposition Some non t_2 are not t_1 also holds.

Another Lemma

Lemma (SomeNon)

For all terms t_1 and t_2 , if the proposition Some non t_1 are non t_2 holds, then the proposition Some non t_2 are not t_1 also holds.

A lemma of the form "If p_1 then p_2 " is valid, if in every model in which the proposition p_1 holds, the proposition p_2 also holds.

Proof

Lemma (SomeNon)

For all terms t_1 and t_2 , if the proposition Some non t_1 are non t_2 holds, then the proposition Some non t_2 are not t_1 also holds.

Proof

Lemma (SomeNon)

For all terms t_1 and t_2 , if the proposition Some non t_1 are non t_2 holds, then the proposition Some non t_2 are not t_1 also holds.

Proof.

1	Some non t_1 are non t_2	premise
2	convert(Some non t_2 are non t_1)	ConvDef 1
3	Some non t_2 are non t_1	ConvE ₁ 2
4	obvert(Some non t_2 are not t_1)	ObvDef 3
5	Some non t_2 are not t_1	ObvE 4

"iff" means "if and only if"

Lemma (AllNonNon)

For any terms t_1 and t_2 , the proposition All non t_1 are non t_2 holds iff the proposition All t_2 are t_1 holds.

"iff" means "if and only if"

Lemma (AllNonNon)

For any terms t_1 and t_2 , the proposition All non t_1 are non t_2 holds iff the proposition All t_2 are t_1 holds.

All non t_1 are non t_2

All t_2 are t_1

All t_2 are t_1

All non t_1 are non t_2

