03—Propositional Logic I

The Importance of Being Formal

Martin Henz

February 5, 2014

Generated on Wednesday 5th February, 2014, 09:37

The Importance of Being Formal 03—Propositional Logic I

- 2 Semantics of Propositional Logic
- Outlook: Natural Deduction for Propositional Logic

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Atoms and Propositions

- Motivation
- Propositional Atoms
- Constructing Propositions
- Syntax of Propositional Logic
- 2 Semantics of Propositional Logic
- Outlook: Natural Deduction for Propositional Logic

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic

Beyond Traditional Logic

Not just sets

How to express this using traditional logic?

- "1 + 1 = 3"
- "The sun is shining today."
- "Earth has more mass than Mars."

Arguments as Propositions

How to formalize a proposition of the form

If p_1 then p_2 ?

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic

Atoms

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Anything goes

We allow any kind of proposition, for example "The sun is shining today".

Convention

We usually use p, q, p_1 , etc, instead of sentences like "The sun is shining today".

Atoms

More formally, we fix a set A of propositional atoms.

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic

Meaning of Atoms

Motivation **Propositional Atoms** Constructing Propositions Syntax of Propositional Logic

Models assign truth values

A model assigns truth values (F or T) to each atom.

More formally

A model for a propositional logic for the set A of atoms is a mapping from A to $\{T, F\}$.

How do you call them?

Models for propositional logic are called valuations.

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic

Motivation **Propositional Atoms** Constructing Propositions Syntax of Propositional Logic

Example

Some valuation Let $A = \{p, q, r\}$. Then a valuation v_1 might assign p to T, q to F and r to T.

More formally

$$p^{v_1} = T, q^{v_1} = F, r^{v_1} = T.$$

write $v_1(p)$ instead of p^{v_1}

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic

Building Propositions

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

We would like to build larger propositions, such as arguments, out of smaller ones, such as propositional atoms. We do this using *operators* that can be applied to propositions, and yield propositions.

Motivation

Propositional Atoms

Constructing Propositions

Syntax of Propositional Logic

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic

Unary Operators

Let *p* be an atom.

All possibilities

The following options exist:

1
$$p^{v} = F: (op(p))^{v} = F. p^{v} = T: (op(p))^{v} = F.$$

3
$$p^{v} = F$$
: $(op(p))^{v} = T$. $p^{v} = T$: $(op(p))^{v} = T$.

3
$$p^{v} = F$$
: $(op(p))^{v} = F$. $p^{v} = T$: $(op(p))^{v} = T$.

3
$$p^{\nu} = F$$
: $(op(p))^{\nu} = T$. $p^{\nu} = T$: $(op(p))^{\nu} = F$.

The fourth operator *negates* its argument, *T* becomes *F* and *F* becomes *T*. We call this operator *negation*, and write $\neg p$ (pronounced "not p").

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Nullary Operators are Constants

The constant op

The constant \top always evaluates to *T*, regardless of the valuation.

The constant \perp

The constant \perp always evaluates to *F*, regardless of the valuation.

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Binary Operators: 16 choices

р	q	$op_1(p,q)$	$op_2(p,q)$	$op_3(p,q)$	$op_4(p,q)$
F	F	F	F	F	F
F	T	F	F	F	F
T	F	F	F	Т	T
T	Τ	F	Т	F	Т

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Binary Operators: 16 choices (continued)

р	q	$op_5(p,q)$	$op_6(p,q)$	$op_7(p,q)$	$op_8(p,q)$
F	F	F	F	F	F
F	T	Т	Т	Т	T
T	F	F	F	Т	T
T	Τ	F	Т	F	Т

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Binary Operators: 16 choices (continued)

р	q	$op_9(p,q)$	$op_{10}(p,q)$	$op_{11}(p,q)$	$op_{12}(p,q)$
F	F	Т	Т	Т	Т
F	T	F	F	F	F
T	F	F	F	Т	Т
Т	T	F	Т	F	Т

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Binary Operators: 16 choices (continued)

р	q	$op_{13}(p,q)$	$op_{14}(p,q)$	$op_{15}(p,q)$	$op_{16}(p,q)$
F	F	Т	Т	Т	Т
F	T	Т	Т	Т	Т
Т	F	F	F	Т	Т
Τ	Т	F	Т	F	Т

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic

Three Famous Ones

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

- op_2 : $op_2(p,q)$ is T when p is T and q is T, and F otherwise. Called *conjunction*, denoted $p \land q$.
- op_8 : $op_8(p,q)$ is T when p is T or q is T, and F otherwise. Called *disjunction*, denoted $p \lor q$.
- op_{14} : $op_{14}(p,q)$ is T when p is F or q is T, and F otherwise. Called *implication*, denoted $p \rightarrow q$.

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic

Inductive Definition

Definition

For a given set *A* of propositional atoms, the set of *well-formed formulas in propositional logic* is the smallest set *F* that fulfills the following rules:

- The constant symbols \perp and \top are in *F*.
- Every element of A is in F.
- If ϕ is in *F*, then $(\neg \phi)$ is also in *F*.
- If ϕ and ψ are in *F*, then $(\phi \land \psi)$ is also in *F*.
- If ϕ and ψ are in *F*, then $(\phi \lor \psi)$ is also in *F*.
- If ϕ and ψ are in *F*, then $(\phi \rightarrow \psi)$ is also in *F*.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic

Notes on Defining Sets

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Are there more sets that fulfill these rules?

The set of *all formula defined in this module* fulfills these rules. The clause "the smallest set" eliminates those elements that are not *forced in* through any of the given rules.

Observe

Some rules are simple (they do not have any condition), whereas others assume one or two formulas in the set as given, and then require that another forumula is also in the set.

Inductively defined sets

A set defined in this way is called an *inductively defined set*.

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

$(((\neg p) \land q) \rightarrow (\top \land (q \lor (\neg r))))$

is a well-formed formula in propositional logic.

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

More Compact in Backus-Naur-Form (BNF)

$\phi ::= \boldsymbol{\rho} \mid \bot \mid \top \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$

The Importance of Being Formal 03—Propositional Logic I

Semantics of Propositional Logic Outlook: Natural Deduction for Propositional Logic

Convention

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

The negation symbol \neg binds more tightly than \land and \lor , and \land and \lor bind more tightly than \rightarrow . Moreover, \rightarrow is *right-associative*: The formula $p \rightarrow q \rightarrow r$ is read as $p \rightarrow (q \rightarrow r)$.

Example

$$(((\neg p) \land q) \rightarrow (p \land (q \lor (\neg r))))$$

can be written as

$$\neg p \land q \rightarrow p \land (q \lor \neg r)$$

Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Atoms and Propositions

- 2 Semantics of Propositional Logic
 - Operations on Truth Values
 - Evaluation of Formulas
 - Validity and Satisfiability

3 Outlook: Natural Deduction for Propositional Logic

Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Negating Truth Values

Definition

Function $\setminus : \{F, T\} \rightarrow \{F, T\}$ given in truth table:

$$\begin{array}{c|c}
B & \backslash B \\
\hline
F & T \\
T & F
\end{array}$$

Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Conjunction of Truth Values

Definition

Function & : $\{F, T\} \times \{F, T\} \rightarrow \{F, T\}$ given in truth table:

Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Disjunction of Truth Values

Definition

Function $|: \{F, T\} \times \{F, T\} \rightarrow \{F, T\}$ given in truth table:

Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Implication of Truth Values

Definition

Function $\Rightarrow: \{F, T\} \times \{F, T\} \rightarrow \{F, T\}$ given in truth table:

Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Evaluation of Formulas

Definition

The result of *evaluating* a well-formed propositional formula ϕ with respect to a valuation v, denoted $v(\phi)$ is defined as follows:

- If ϕ is the constant \bot , then $v(\phi) = F$.
- If ϕ is the constant \top , then $v(\phi) = T$.
- If ϕ is an propositional atom p, then $v(\phi) = p^{v}$.
- If ϕ has the form $(\neg \psi)$, then $v(\phi) = \setminus v(\psi)$.
- If ϕ has the form $(\psi \wedge \tau)$, then $v(\phi) = v(\psi) \& v(\tau)$.
- If ϕ has the form $(\psi \lor \tau)$, then $v(\phi) = v(\psi) | v(\tau)$.
- If ϕ has the form $(\psi \to \tau)$, then $v(\phi) = v(\psi) \Rightarrow v(\tau)$.

Valid Formulas

Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Definition

A formula is called *valid* if it evaluates to T with respect to every possible valuation.

Examples

Example

ls

 $(((\neg p) \land q) \rightarrow (\top \land (q \lor (\neg r))))$

valid?

Example

Find a valid formula that contains the propositional atoms p, q, r and w.

Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Meaning of propositional formula

Meaning as mathematical object

We define the meaning of formulas as a function that maps formulas and valuations to truth values.

Approach

We define this mapping based on the structure of the formula, using the meaning of their logical connectives.

Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Truth values and valuations

Definition

The set of truth values contains two elements T and F, where T represents "true" and F represents "false".

Definition

A *valuation* or *model* of a formula ϕ is an assignment of each propositional atom in ϕ to a truth value.

Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Meaning of logical connectives

The meaning of a connective is defined as a truth table that gives the truth value of a formula, whose root symbol is the connective, based on the truth values of its components.

ϕ	ψ	$\phi \wedge \psi$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Truth tables of formulas

Truth tables use placeholders of formulas such as ϕ :

ϕ	ψ	ϕ	$\wedge \psi$	
Т	Т		Г	
Т	F	1	E	
F	Т	1	E	
F	F	1	E	
Buil	d th	e tru		or given formula:
р	q	r	$(p \wedge q)$	$((p \land q) \land r)$
Т	Н	Т	Т	Т
Т	Т	F	Т	F

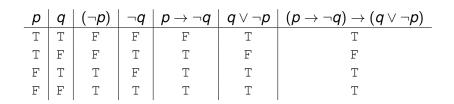
Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Truth tables of other connectives

ϕ	$ \psi$	$\phi \lor \psi$	ϕ	$ \psi$	$\phi \to \psi$
Т	Т	Т	Т	Т	Т
Т	F	Т	Т	F	F
F	Т	T F	F	Т	Т
F	T F T F	F	F	F T F	Т
ф Т F	- 		 	<u> </u>	

Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Constructing the truth table of a formula



Operations on Truth Values Evaluation of Formulas Validity and Satisfiability

Validity and Satisfiability

Validity

A formula is *valid* if it computes T for all its valuations.

Satisfiability

A formula is *satisfiable* if it computes T for at least one of its valuations.

2 Semantics of Propositional Logic

- Outlook: Natural Deduction for Propositional Logic
 - Sequents

Introduction

Objective

We would like to develop a *calculus* for reasoning about propositions, so that we can establish the validity of statements such as "If the train arrives late...".

Idea

We introduce *proof rules* that allow us to derive a formula ψ from a number of other formulas $\phi_1, \phi_2, \dots \phi_n$.

Notation

We write a *sequent* $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$ to denote that we can derive ψ from $\phi_1, \phi_2, \ldots, \phi_n$.

Example—Revisited

English

If the train arrives late and there are no taxis at the station, then John is late for his meeting.

John is not late for his meeting. The train did arrive late.

Therefore, there were taxis at the station.

Sequent

$$p \land \neg q \to r, \neg r, p \vdash q$$

Remaining task

Find proof rules that allow us to establish such sequents.

The Importance of Being Formal 03—Propositional Logic I