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More Declarative Sentences

Propositional logic can easily handle simple declarative
statements such as:

Example
Student Peter Lim enrolled in UIT2206.

Propositional logic can also handle combinations of such
statements such as:

Example
Student Peter Lim enrolled in Tutorial 1, and student Julie
Bradshaw is enrolled in Tutorial 2.

But: How about statements with “there exists...” or “every...”
or “among...”?
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What is needed?

Example
Every student is younger than some instructor.

What is this statement about?

Being a student
Being an instructor
Being younger than somebody else

These are properties of elements of a set of objects.

We express them in predicate logic using predicates.
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Predicates

Example
Every student is younger than some instructor.

S(andy) could denote that Andy is a student.
I(paul) could denote that Paul is an instructor.
Y (andy,paul) could denote that Andy is younger than Paul.
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The Need for Variables

Example
Every student is younger than some instructor.

We use the predicate S to denote student-hood.
How do we express “every student”?

We need variables that can stand for constant values, and a
quantifier symbol that denotes “every”.
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The Need for Variables

Example
Every student is younger than some instructor.

Using variables and quantifiers, we can write:

∀x(S(x)→ (∃y(I(y) ∧ Y (x , y)))).

Literally: For every x , if x is a student, then there is some y
such that y is an instructor and x is younger than y .
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Another Example

English
Not all birds can fly.

Predicates
B(x): x is a bird
F (x): x can fly

The sentence in predicate logic

¬(∀x(B(x)→ F (x)))
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A Third Example

English
Every girl is younger than her mother.

Predicates
G(x): x is a girl

M(x , y): x is y ’s mother
Y (x , y): x is younger than y

The sentence in predicate logic

∀x∀y(G(x) ∧M(y , x)→ Y (x , y))
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A “Mother” Function

The sentence in predicate logic

∀x∀y(G(x) ∧M(y , x)→ Y (x , y))

Note that y is only introduced to denote the mother of x .

If everyone has exactly one mother, the predicate M(y , x) is a
function, when read from right to left.

We introduce a function symbol m that can be applied to
variables and constants as in

∀x(G(x)→ Y (x ,m(x)))
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A Drastic Example

English
Andy and Paul have the same maternal grandmother.

The sentence in predicate logic without functions

∀x∀y∀u∀v(M(x , y) ∧M(y ,andy) ∧
M(u, v) ∧M(v ,paul)→ x = u)

The same sentence in predicate logic with functions

m(m(andy)) = m(m(paul))
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Outlook

Syntax: We formalize the language of predicate logic,
including scoping and substitution.

Semantics: We describe models in which predicates,
functions, and formulas have meaning.

Proof theory: We extend natural deduction from propositional
to predicate logic

Further topics: Soundness/completeness, undecidability,
incompleteness results, compactness results
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Predicate Vocabulary

At any point in time, we want to describe the features of a
particular “world”, using predicates, functions, and constants.
Thus, we introduce for this world:

a set of predicate symbols P
a set of function symbols F
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Arity of Functions and Predicates

Every function symbol in F and predicate symbol in P comes
with a fixed arity, denoting the number of arguments the symbol
can take.

Special case: Nullary Functions
Function symbols with arity 0 are called constants.

Special case: Nullary Predicates
Predicate symbols with arity 0 denotes predicates that do not
depend on any arguments. They correspond to propositional
atoms.
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Terms

t ::= x | c | f (t , . . . , t)

where
x ranges over a given set of variables V,
c ranges over nullary function symbols in F , and
f ranges over function symbols in F with arity n > 0.
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Examples of Terms

If n is nullary, f is unary, and g is binary, then examples of
terms are:

g(f (n),n)

f (g(n, f (n)))
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More Examples of Terms

If 0,1,2 are nullary (constants), s is unary, and +,− and ∗ are
binary, then

∗(−(2,+(s(x), y)), x)

is a term.
Occasionally, we allow ourselves to use infix notation for
function symbols as in

(2− (s(x) + y)) ∗ x
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Formulas

φ ::= P(t , . . . , t) | (¬φ) | (φ ∧ φ) | (φ ∨ φ) |
(φ→ φ) | (∀xφ) | (∃xφ)

where
P ∈ P is a predicate symbol of arity n ≥ 0,
t are terms over F and V, and
x are variables in V.
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Conventions

Just like for propositional logic, we introduce convenient
conventions to reduce the number of parentheses:

¬, ∀x and ∃x bind most tightly;
then ∧ and ∨;
then→, which is right-associative.
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Parse Trees

∀x((P(x)→ Q(x)) ∧ S(x , y))

has parse tree
∀x

∧

→

P

x

Q

x

S

x y
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Another Example

Every son of my father is my brother.

Predicates
S(x , y): x is a son of y
B(x , y): x is a brother of y

Functions
m: constant for “me”

f (x): father of x

The sentence in predicate logic

∀x(S(x , f (m))→ B(x ,m))

Does this formula hold?The Importance of Being Formal 06—From Propositional to Predicate Logic
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Equality as Predicate

Equality is a common predicate, usually used in infix notation.

=∈ P

Example
Instead of the formula

= (f (x),g(x))

we usually write the formula

f (x) = g(x)
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Free and Bound Variables

Consider the formula

∀x((P(x)→ Q(x)) ∧ S(x , y))

What is the relationship between variable “binder” x and
occurrences of x?

∀x

∧

→

P

x

Q

x

S

x y
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Free and Bound Variables

Consider the formula

(∀x(P(x) ∧Q(x)))→ (¬P(x) ∨Q(y))

Which variable occurrences are free; which are bound?
→

∀x

∧

P

x

Q

x

∨

¬

P

x

Q

y
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Substitution

Variables are placeholders. Replacing them by terms is called
substitution.

Definition
Given a variable x , a term t and a formula φ, we define [x ⇒ t ]φ
to be the formula obtained by replacing each free occurrence of
variable x in φ with t .

Example

[x ⇒ f (x , y)]((∀x(P(x) ∧Q(x)))→ (¬P(x) ∨Q(y)))

= ∀x(P(x) ∧Q(x)))→ (¬P(f (x , y)) ∨Q(y))
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Example as Parse Tree

[x ⇒ f (x , y)]((∀x(P(x) ∧Q(x)))→ (¬P(x) ∨Q(y)))

= (∀x(P(x) ∧Q(x)))→ (¬P(f (x , y)) ∨Q(y))

→

∀x

∧

P

x

Q

x

∨

¬

P

x

Q

y
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Example as Parse Tree

→

∀x

∧

P

x

Q

x

∨

¬

P

f

x y

Q

y
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Models

Definition
Let F contain function symbols and P contain predicate
symbols. A modelM for (F ,P) consists of:

1 A non-empty set A, the universe;
2 for each nullary function symbol f ∈ F a concrete element

fM ∈ A;
3 for each f ∈ F with arity n > 0, a concrete function

fM : An → A;
4 for each P ∈ P with arity n > 0, a function

PM : Un → {F ,T}.
5 for each P ∈ P with arity n = 0, a value from {F ,T}.
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Example

Let F = {e, ·} and P = {≤}.
Let modelM for (F ,P) be defined as follows:

1 Let A be the set of binary strings over the alphabet {0,1};
2 let eM = ε, the empty string;
3 let ·M be defined such that s1 ·M s2 is the concatenation of

the strings s1 and s2; and
4 let ≤M be defined such that s1 ≤M s2 iff s1 is a prefix of s2.
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Example (continued)

1 Let A be the set of binary strings over the alphabet {0,1};
2 let eM = ε, the empty string;
3 let ·M be defined such that s1 ·M s2 is the concatenation of

the strings s1 and s2; and
4 let ≤M be defined such that s1 ≤M s2 iff s1 is a prefix of s2.

Some Elements of A
10001
ε

1010 ·M 1100 = 10101100
000 ·M ε = 000
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Equality Revisited

Interpretation of equality
Usually, we require that the equality predicate = is interpreted
as same-ness.

Extensionality restriction
This means that allowable models are restricted to those in
which a =M b holds if and only if a and b are the same
elements of the model’s universe.
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Example (continued)

1 Let A be the set of binary strings over the alphabet {0,1};
2 let eM = ε, the empty string;
3 let ·M be defined such that s1 ·M s2 is the concatenation of

the strings s1 and s2; and
4 let ≤M be defined such that s1 ≤M s2 iff s1 is a prefix of s2.

Equality inM
000 =M 000
001 6=M 100
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Another Example

Let F = {z, s} and P = {≤}.
Let modelM for (F ,P) be defined as follows:

1 Let A be the set of natural numbers;
2 let zM = 0;
3 let sM be defined such that s(n) = n + 1; and
4 let ≤M be defined such that n1 ≤M n2 iff the natural

number n1 is less than or equal to n2.
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How To Handle Free Variables?

Idea
We can give meaning to formulas with free variables by
providing an environment (lookup table) that assigns variables
to elements of our universe:

l : V → A.

Environment extension
We define environment extension such that l[x 7→ a] is the
environment that maps x to a and any other variable y to l(y).
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Satisfaction Relation

The modelM satisfies φ with respect to environment l , written
M |=l φ:

in case φ is of the form P(t1, t2, . . . , tn), if a1,a2, . . . ,an are
the results of evaluating t1, t2, . . . , tn with respect to l , and if
PM(a1,a2, . . . ,an) = T ;
in case φ is of the form P, if PM = T ;
in case φ has the form ∀xψ, if theM |=l[x 7→a] ψ holds for all
a ∈ A;
in case φ has the form ∃xψ, if theM |=l[x 7→a] ψ holds for
some a ∈ A;
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Satisfaction Relation (continued)

in case φ has the form ¬ψ, ifM |=l ψ does not hold;
in case φ has the form ψ1 ∨ ψ2, ifM |=l ψ1 holds or
M |=l ψ2 holds;
in case φ has the form ψ1 ∧ ψ2, ifM |=l ψ1 holds and
M |=l ψ2 holds; and
in case φ has the form ψ1 → ψ2, ifM |=l ψ2 holds
wheneverM |=l ψ1 holds.
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Satisfaction of Closed Formulas

If a formula φ has no free variables, we call φ a sentence.
M |=l φ holds or does not hold regardless of the choice of l .
Thus we writeM |= φ orM 6|= φ.
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Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and
ψ a formula.

Entailment
Γ |= ψ iff for all modelsM and environments l , whenever
M |=l φ holds for all φ ∈ Γ, thenM |=l ψ.

Satisfiability of Formulas
ψ is satisfiable iff there is some modelM and some
environment l such thatM |=l ψ holds.

Satisfiability of Formula Sets
Γ is satisfiable iff there is some modelM and some
environment l such thatM |=l φ, for all φ ∈ Γ.
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Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and
ψ a formula.

Validity
ψ is valid iff for all modelsM and environments l , we have
M |=l ψ.
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The Problem with Predicate Logic

Entailment ranges over models

Semantic entailment between sentences: φ1, φ2, . . . , φn |= ψ
requires that in all models that satisfy φ1, φ2, . . . , φn, the
sentence ψ is satisfied.

How to effectively argue about all possible models?
Usually the number of models is infinite; it is very hard to argue
on the semantic level in predicate logic.

Idea from propositional logic

Can we use natural deduction for showing entailment?
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Natural Deduction for Predicate Logic

Relationship between propositional and predicate logic
If we consider propositions as nullary predicates, propositional
logic is a sub-language of predicate logic.

Inheriting natural deduction
We can translate the rules for natural deduction in propositional
logic directly to predicate logic.

Example

φ ψ

φ ∧ ψ
[∧i]
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Built-in Rules for Equality

t = t
[= i]

t1 = t2 [x ⇒ t1]φ

[x ⇒ t2]φ

[= e]
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Properties of Equality

We show:
f (x) = g(x) ` h(g(x)) = h(f (x))

using

t = t
[= i]

t1 = t2 [x ⇒ t1]φ

[x ⇒ t2]φ

[= e]

1 f (x) = g(x) premise
2 h(f (x)) = h(f (x)) = i
3 h(g(x)) = h(f (x)) = e 1,2
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Elimination of Universal Quantification

∀xφ

[x ⇒ t ]φ
[∀x e]

Once you have proven ∀xφ, you can replace x by any term t
in φ, provided that t is free for x in φ.
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Example

∀xφ

[x ⇒ t ]φ
[∀x e]

We prove: S(g(john)), ∀x(S(x)→ ¬L(x)) ` ¬L(g(john))

1 S(g(john)) premise
2 ∀x(S(x)→ ¬L(x)) premise
3 S(g(john))→ ¬L(g(john)) ∀x e 2
4 ¬L(g(john)) → e 3,1
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Introduction of Universal Quantification

�
�

�
�

...
[x ⇒ x0]φ

x0

∀xφ
[∀x i]

If we manage to establish a formula φ about a fresh variable x0,
we can assume ∀xφ.
The variable x0 must be fresh; we cannot introduce the same
variable twice in nested boxes.
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Example

∀x(P(x)→ Q(x)), ∀xP(x) ` ∀xQ(x) via

�
�

�
�

...
[x ⇒ x0]φ

x0

∀xφ

1 ∀x(P(x)→ Q(x)) premise
2 ∀xP(x) premise

3 P(x0)→ Q(x0) ∀x e 1 x0
4 P(x0) ∀x e 2
5 Q(x0) → e 3,4

6 ∀xQ(x) ∀x i 3–5
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Introduction of Existential Quantification

[x ⇒ t ]φ

∃xφ
[∃x i]

In order to prove ∃xφ, it suffices to find a term t as “witness”,
provided that t is free for x in φ.
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Example

∀xφ ` ∃xφ

Recall: Definition of Models
A modelM for (F ,P) consists of:

1 A non-empty set U, the universe;
2 ...

Remark
Compare this with Traditional Logic.

Because U must not be empty, we should be able to prove the
sequent above.
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Example (continued)

∀xφ ` ∃xφ

1 ∀xφ premise
2 [x ⇒ x ]φ ∀x e 1
3 ∃xφ ∃x i 2
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Elimination of Existential Quantification

∃xφ

�

�

�

�
[x ⇒ x0]φ

...
χ

x0

[x⇒x0]φ

χ
[∃e]

Making use of ∃
If we know ∃xφ, we know that there exist at least one object x
for which φ holds. We call that element x0, and assume
[x ⇒ x0]φ. Without assumptions on x0, we prove χ (x0 not in χ).The Importance of Being Formal 06—From Propositional to Predicate Logic
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Example

∀x(P(x)→ Q(x)),∃xP(x) ` ∃xQ(x)

1 ∀x(P(x)→ Q(x)) premise
2 ∃xP(x) premise

3 P(x0) assumption x0
4 P(x0)→ Q(x0) ∀x e 1
5 Q(x0) → e 4,3
6 ∃xQ(x) ∃x i 5

7 ∃xQ(x) ∃x e 2,3–6
Note that ∃xQ(x) within the box does not contain x0, and
therefore can be “exported” from the box.
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Another Example

1 ∀x(Q(x)→ R(x)) premise
2 ∃x(P(x) ∧Q(x)) premise

3 P(x0) ∧Q(x0) assumption x0
4 Q(x0)→ R(x0) ∀x e 1
5 Q(x0) ∧e2 3
6 R(x0) → e 4,5
7 P(x0) ∧e1 3
8 P(x0) ∧ R(x0) ∧i 7, 6
9 ∃x(P(x) ∧ R(x) ∃x i 8

10 ∃x(P(x) ∧ R(x)) ∃x e 2,3–9
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Variables must be fresh! This is not a proof!

1 ∃xP(x) premise
2 ∀x(P(x)→ Q(x)) premise

3 x0

4 P(x0) assumption x0
5 P(x0)→ Q(x0) ∀x e 2
6 Q(x0) → e 5,4

7 Q(x0) ∃x e 1, 4–6

8 ∀yQ(y) ∀y i 3–7
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Equivalences

Two-way-provable
We write φ a` ψ iff φ ` ψ and also ψ ` φ.

Some simple equivalences

¬∀xφ a` ∃x¬φ
¬∃xφ a` ∀x¬φ
∀x∀yφ a` ∀y∀xφ
∃x∃yφ a` ∃y∃xφ

∀xφ ∧ ∀xψ a` ∀x(φ ∧ ψ)

∃xφ ∨ ∃xψ a` ∃x(φ ∨ ψ)
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¬∀xφ ` ∃x¬φ

1 ¬∀xφ premise

2 ¬∃x¬φ assumption

3 x0

4 ¬[x ⇒ x0]φ assumption
5 ∃x¬φ ∃x i 4
6 ⊥ ¬e 5, 2

7 [x ⇒ x0]φ PBC 4–6

8 ∀xφ ∀x i 3–7
9 ⊥ ¬e 8, 1

10 ∃x¬φ PBC 2–9
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∃x∃yφ ` ∃y∃xφ

Assume that x and y are different variables.

1 ∃x∃yφ premise

2 [x ⇒ x0](∃yφ) assumption x0
3 ∃y([x ⇒ x0]φ def of subst (x , y different)

4 [y ⇒ y0][x ⇒ x0]φ assumption y0
5 [x ⇒ x0][y ⇒ y0]φ def of subst (x , y , x0, y0 different)
6 ∃x [y → y0]φ ∃x i 5
7 ∃y∃xφ ∃y i 6

8 ∃y∃xφ ∃y e 3, 4–7

9 ∃y∃xφ ∃x e 1, 2–8
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More Equivalences

Assume that x is not free in ψ

∀xφ ∧ ψ a` ∀x(φ ∧ ψ)

∀xφ ∨ ψ a` ∀x(φ ∨ ψ)

∃xφ ∧ ψ a` ∃x(φ ∧ ψ)

∃xφ ∨ ψ a` ∃x(φ ∨ ψ)
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Central Result of Natural Deduction

φ1, . . . , φn |= ψ

iff

φ1, . . . , φn ` ψ

proven by Kurt Gödel, in 1929 in his doctoral dissertation (just
one year before his most famous result, the incompleteness

results of mathematical logic)
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