06—From Propositional to Predicate Logic

The Importance of Being Formal

Martin Henz

February 19, 2014

Generated on Wednesday 19th February, 2014, 09:48

- Predicate Logic as a Formal Language
- Semantics of Predicate Logic
- Proof Theory
- 5 Equivalences

Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness

Need for Richer Language Predicates Variables Functions

Syntax of Predicate Logic

- Need for Richer Language
- Predicates
- Variables
- Functions

2 Predicate Logic as a Formal Language

- 3 Semantics of Predicate Logic
- Proof Theory

5 Equivalences

Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness Need for Richer Language Predicates Variables Functions

More Declarative Sentences

• Propositional logic can easily handle simple declarative statements such as:

Example

Student Peter Lim enrolled in UIT2206.

 Propositional logic can also handle combinations of such statements such as:

Example

Student Peter Lim enrolled in Tutorial 1, *and* student Julie Bradshaw is enrolled in Tutorial 2.

 But: How about statements with "there exists..." or "every..." or "among..."?

Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness

Need for Richer Language Predicates Variables Functions

What is needed?

Example

Every student is younger than some instructor.

What is this statement about?

- Being a student
- Being an instructor
- Being younger than somebody else

These are *properties* of elements of a *set* of objects.

We express them in predicate logic using *predicates*.

Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness

Predicates

Need for Richer Language Predicates Variables Functions

Example

Every student is younger than some instructor.

- *S*(*andy*) could denote that Andy is a student.
- *I*(*paul*) could denote that Paul is an instructor.
- Y(andy, paul) could denote that Andy is younger than Paul.

Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completences

Need for Richer Language Predicates Variables Functions

The Need for Variables

Example

Every student is younger than some instructor.

We use the predicate *S* to denote student-hood. How do we express *"every student"*?

We need *variables* that can stand for constant values, and a *quantifier* symbol that denotes *"every"*.

Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness Need for Richer Language Predicates Variables Functions

The Need for Variables

Example

Every student is younger than some instructor.

Using variables and quantifiers, we can write:

$$\forall x(S(x) \rightarrow (\exists y(I(y) \land Y(x,y)))).$$

Literally: For every x, if x is a student, then there is some y such that y is an instructor and x is younger than y.

Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness Need for Richer Language Predicates Variables Functions

Another Example

English

Not all birds can fly.

Predicates

B(x): x is a bird F(x): x can fly

The sentence in predicate logic

$$\neg(\forall x(B(x) \to F(x)))$$

Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness Need for Richer Language Predicates Variables Functions

A Third Example

English

Every girl is younger than her mother.

Predicates

G(x): x is a girl M(x, y): x is y's mother Y(x, y): x is younger than y

The sentence in predicate logic

 $\forall x \forall y (G(x) \land M(y, x) \rightarrow Y(x, y))$

Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness Need for Richer Language Predicates Variables Functions

A "Mother" Function

The sentence in predicate logic

 $\forall x \forall y (G(x) \land M(y, x) \rightarrow Y(x, y))$

Note that *y* is only introduced to denote the mother of *x*.

If everyone has exactly one mother, the predicate M(y, x) is a function, when read from right to left.

We introduce a function symbol m that can be applied to variables and constants as in

$$\forall x(G(x) \rightarrow Y(x, m(x)))$$

Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness

Need for Richer Language Predicates Variables Functions

A Drastic Example

English

Andy and Paul have the same maternal grandmother.

The sentence in predicate logic without functions

$$\forall x \forall y \forall u \forall v (M(x, y) \land M(y, and y) \land M(u, v) \land M(v, paul) \rightarrow x = u)$$

The same sentence in predicate logic with functions

$$m(m(andy)) = m(m(paul))$$

Outlook

Need for Richer Language Predicates Variables Functions

Syntax: We formalize the language of predicate logic, including scoping and substitution.

- Semantics: We describe models in which predicates, functions, and formulas have meaning.
- Proof theory: We extend natural deduction from propositional to predicate logic

Further topics: Soundness/completeness, undecidability, incompleteness results, compactness results

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

1) Syntax of Predicate Logic

Predicate Logic as a Formal Language

- Predicate and Functions Symbols
- Terms
- Formulas
- Variable Binding and Substitution
- 3 Semantics of Predicate Logic
- Proof Theory

5 Equivalences

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

At any point in time, we want to describe the features of a particular "world", using predicates, functions, and constants. Thus, we introduce for this world:

- a set of predicate symbols ${\cal P}$
- a set of function symbols ${\cal F}$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Arity of Functions and Predicates

Every function symbol in ${\cal F}$ and predicate symbol in ${\cal P}$ comes with a fixed arity, denoting the number of arguments the symbol can take.

Special case: Nullary Functions

Function symbols with arity 0 are called *constants*.

Special case: Nullary Predicates

Predicate symbols with arity 0 denotes predicates that do not depend on any arguments. They correspond to propositional atoms.

Syntax of Predicate Logic Predicate Logic as a Formal Language	Predicate and Functions Symbols
Semantics of Predicate Logic	Terms
Proof Theory	Formulas
Equivalences Soundness and Completeness	Variable Binding and Substitution
ooundness and oompleteness	

$$t ::= x \mid c \mid f(t, \ldots, t)$$

where

- x ranges over a given set of variables \mathcal{V} ,
- c ranges over nullary function symbols in \mathcal{F} , and
- *f* ranges over function symbols in \mathcal{F} with arity n > 0.

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Examples of Terms

If n is nullary, f is unary, and g is binary, then examples of terms are:

- g(f(n), n)
- *f*(*g*(*n*, *f*(*n*)))

More Examples of Terms

If 0, 1, 2 are nullary (constants), s is unary, and +, - and * are binary, then

$$*(-(2,+(s(x),y)),x)$$

is a term.

Occasionally, we allow ourselves to use infix notation for function symbols as in

$$(2-(s(x)+y))*x$$

Syntax of Predicate Logic	
Predicate Logic as a Formal Language	Predicate and Functions Symbols
Semantics of Predicate Logic	Terms
Proof Theory	Formulas
Equivalences	Variable Binding and Substitution
Soundness and Completeness	

Formulas

$$\phi ::= P(t, \dots, t) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \lor \phi) \mid (\forall x \phi) \mid (\exists x \phi)$$

where

- $P \in \mathcal{P}$ is a predicate symbol of arity $n \ge 0$,
- *t* are terms over \mathcal{F} and \mathcal{V} , and
- x are variables in \mathcal{V} .

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness	Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Conventions

Just like for propositional logic, we introduce convenient conventions to reduce the number of parentheses:

- \neg , $\forall x$ and $\exists x$ bind most tightly;
- then \wedge and \lor ;
- then \rightarrow , which is right-associative.

Parse Trees

$$\forall x((P(x) \rightarrow Q(x)) \land S(x,y))$$

has parse tree

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Another Example

Every son of my father is my brother.

Predicates

S(x, y): x is a son of y B(x, y): x is a brother of y

Functions

m: constant for "me"

f(x): father of x

The sentence in predicate logic

$$\forall x(S(x,f(m)) \rightarrow B(x,m))$$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Equality as Predicate

Equality is a common predicate, usually used in infix notation.

 $=\in \mathcal{P}$

Example

Instead of the formula

$$=(f(x),g(x))$$

we usually write the formula

$$f(x)=g(x)$$

Free and Bound Variables

Consider the formula

$$\forall x((P(x) \rightarrow Q(x)) \land S(x,y))$$

What is the relationship between variable "binder" x and occurrences of x?

Free and Bound Variables

Consider the formula

$$(\forall x(P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$$

Which variable occurrences are free; which are bound?

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Substitution

Variables are *place*holders. Re*plac*ing them by terms is called *substitution*.

Definition

Given a variable *x*, a term *t* and a formula ϕ , we define $[x \Rightarrow t]\phi$ to be the formula obtained by replacing each free occurrence of variable *x* in ϕ with *t*.

Example

$$[x \Rightarrow f(x,y)]((\forall x(P(x) \land Q(x))) \to (\neg P(x) \lor Q(y)))$$

$$= orall x(P(x) \wedge Q(x)))
ightarrow (\neg P(f(x,y)) \lor Q(y))$$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Example as Parse Tree

 $[x \Rightarrow f(x, y)]((\forall x (P(x) \land Q(x))) \to (\neg P(x) \lor Q(y)))$ $= (\forall x (P(x) \land Q(x))) \to (\neg P(f(x, y)) \lor Q(y))$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Example as Parse Tree

Models Equality Free Variables Satisfaction and Entailment

Syntax of Predicate Logic

2 Predicate Logic as a Formal Language

3 Semantics of Predicate Logic

- Models
- Equality
- Free Variables
- Satisfaction and Entailment

Proof Theory

5 Equivalences

Models Equality Free Variables Satisfaction and Entailment

Models

Definition

Let \mathcal{F} contain function symbols and \mathcal{P} contain predicate symbols. A model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ consists of:

- A non-empty set A, the universe;
- ② for each nullary function symbol $f \in \mathcal{F}$ a concrete element $f^{\mathcal{M}} \in A$;
- **③** for each *f* ∈ *F* with arity *n* > 0, a concrete function $f^{\mathcal{M}} : A^n \to A$;
- for each $P \in \mathcal{P}$ with arity n > 0, a function $P^{\mathcal{M}}: U^n \to \{F, T\}.$
- **5** for each $P \in P$ with arity n = 0, a value from $\{F, T\}$.

Models Equality Free Variables Satisfaction and Entailment

Example

Let $\mathcal{F} = \{e, \cdot\}$ and $\mathcal{P} = \{\leq\}$. Let model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ be defined as follows:

Let A be the set of binary strings over the alphabet {0, 1};

2 let
$$e^{\mathcal{M}} = \epsilon$$
, the empty string;

- Iet ·^M be defined such that s₁ ·^M s₂ is the concatenation of the strings s₁ and s₂; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences

Soundness and Completeness

Models Equality Free Variables Satisfaction and Entailment

Example (continued)

- Let A be the set of binary strings over the alphabet {0, 1};
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- Iet ·^M be defined such that s₁ ·^M s₂ is the concatenation of the strings s₁ and s₂; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Some Elements of A

• 10001

- Ο ε
- $1010 \cdot \mathcal{M} \ 1100 = 10101100$
- 000 $\cdot^{\mathcal{M}} \epsilon = 000$

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic

Proof Theory Equivalences Soundness and Completeness Models Equality Free Variables Satisfaction and Entailment

Equality Revisited

Interpretation of equality

Usually, we require that the equality predicate = is interpreted as same-ness.

Extensionality restriction

This means that allowable models are restricted to those in which $a = {}^{\mathcal{M}} b$ holds if and only if *a* and *b* are the same elements of the model's universe.

- Let A be the set of binary strings over the alphabet {0, 1};
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- Iet ·^M be defined such that s₁ ·^M s₂ is the concatenation of the strings s₁ and s₂; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Equality in \mathcal{M}

- $000 = {}^{\mathcal{M}} 000$
- 001 $\neq^{\mathcal{M}}$ 100

Another Example

Let $\mathcal{F} = \{z, s\}$ and $\mathcal{P} = \{\leq\}$.

Let model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ be defined as follows:

Let A be the set of natural numbers;

2 let
$$z^{\mathcal{M}} = 0$$
;

- **(**) let $s^{\mathcal{M}}$ be defined such that s(n) = n + 1; and
- let $\leq^{\mathcal{M}}$ be defined such that $n_1 \leq^{\mathcal{M}} n_2$ iff the natural number n_1 is less than or equal to n_2 .

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory

> Equivalences Soundness and Completeness

Models Equality Free Variables Satisfaction and Entailment

How To Handle Free Variables?

Idea

We can give meaning to formulas with free variables by providing an environment (lookup table) that assigns variables to elements of our universe:

$$I: \mathcal{V} \to A.$$

Environment extension

We define environment extension such that $I[x \mapsto a]$ is the environment that maps *x* to *a* and any other variable *y* to I(y).

Models Equality Free Variables Satisfaction and Entailment

Satisfaction Relation

The model \mathcal{M} satisfies ϕ with respect to environment *I*, written $\mathcal{M} \models_I \phi$:

- in case φ is of the form P(t₁, t₂,..., t_n), if a₁, a₂,..., a_n are the results of evaluating t₁, t₂,..., t_n with respect to *I*, and if P^M(a₁, a₂,..., a_n) = T;
- in case ϕ is of the form *P*, if $P^{\mathcal{M}} = T$;
- in case φ has the form ∀xψ, if the M ⊨_{I[x→a]} ψ holds for all a ∈ A;
- in case φ has the form ∃xψ, if the M ⊨_{I[x→a]} ψ holds for some a ∈ A;

Models Equality Free Variables Satisfaction and Entailment

Satisfaction Relation (continued)

- in case ϕ has the form $\neg \psi$, if $\mathcal{M} \models_I \psi$ does not hold;
- in case ϕ has the form $\psi_1 \lor \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds or $\mathcal{M} \models_I \psi_2$ holds;
- in case ϕ has the form $\psi_1 \wedge \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds and $\mathcal{M} \models_I \psi_2$ holds; and
- in case φ has the form ψ₁ → ψ₂, if M ⊨_I ψ₂ holds whenever M ⊨_I ψ₁ holds.

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory

> Equivalences Soundness and Completeness

Models Equality Free Variables Satisfaction and Entailment

Satisfaction of Closed Formulas

If a formula ϕ has no free variables, we call ϕ a *sentence*. $\mathcal{M} \models_I \phi$ holds or does not hold regardless of the choice of *I*. Thus we write $\mathcal{M} \models \phi$ or $\mathcal{M} \not\models \phi$. Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences

Models Equality Free Variables Satisfaction and Entailment

Soundness and Completeness Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Entailment

$$\label{eq:rescaled} \begin{split} \mathsf{\Gamma} &\models \psi \text{ iff for all models } \mathcal{M} \text{ and environments } \textit{I}, \text{ whenever } \\ \mathcal{M} &\models_{\textit{I}} \phi \text{ holds for all } \phi \in \mathsf{\Gamma}, \text{ then } \mathcal{M} \models_{\textit{I}} \psi. \end{split}$$

Satisfiability of Formulas

 ψ is satisfiable iff there is some model \mathcal{M} and some environment *I* such that $\mathcal{M} \models_I \psi$ holds.

Satisfiability of Formula Sets

 Γ is satisfiable iff there is some model \mathcal{M} and some environment I such that $\mathcal{M} \models \mathcal{A}$ for all $\mathcal{A} \subseteq \Gamma$ The Importance of Being Formal 06—From Propositional to Predicate Logic Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences

Soundness and Completeness

Models Equality Free Variables Satisfaction and Entailment

Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Validity ψ is valid iff for all models \mathcal{M} and environments *I*, we have $\mathcal{M} \models_I \psi$.

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory

> Equivalences Soundness and Completeness

Models Equality Free Variables Satisfaction and Entailment

The Problem with Predicate Logic

Entailment ranges over models

Semantic entailment between sentences: $\phi_1, \phi_2, \dots, \phi_n \models \psi$ requires that in *all* models that satisfy $\phi_1, \phi_2, \dots, \phi_n$, the sentence ψ is satisfied.

How to effectively argue about all possible models?

Usually the number of models is infinite; it is very hard to argue on the semantic level in predicate logic.

Idea from propositional logic

Can we use natural deduction for showing entailment?

Equality Universal Quantification Existential Quantification

Syntax of Predicate Logic

2 Predicate Logic as a Formal Language

3 Semantics of Predicate Logic

Proof Theory

- Equality
- Universal Quantification
- Existential Quantification

Equivalences

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory

> Equivalences Soundness and Completeness

Equality Universal Quantification Existential Quantification

Natural Deduction for Predicate Logic

Relationship between propositional and predicate logic

If we consider propositions as nullary predicates, propositional logic is a sub-language of predicate logic.

Inheriting natural deduction

We can translate the rules for natural deduction in propositional logic directly to predicate logic.

Example

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic

Proof Theory

Equivalences Soundness and Completeness Equality Universal Quantification Existential Quantification

Built-in Rules for Equality

$$\begin{array}{ccc} t_1 = t_2 & [x \Rightarrow t_1]\phi \\ \hline t = t & [x \Rightarrow t_2]\phi \end{array} = e$$

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic

Proof Theory

Equivalences Soundness and Completeness Equality Universal Quantification Existential Quantification

Properties of Equality

We show:

$$f(x) = g(x) \vdash h(g(x)) = h(f(x))$$

using

$$\begin{array}{ccc} t_1 = t_2 & [x \Rightarrow t_1]\phi \\ \hline t = t & [x \Rightarrow t_2]\phi \end{array} = e$$

1

$$f(x) = g(x)$$
 premise

 2
 $h(f(x)) = h(f(x))$
 $= i$

 3
 $h(g(x)) = h(f(x))$
 $= e$ 1,2

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences

Equality Universal Quantification Existential Quantification

Elimination of Universal Quantification

Soundness and Completeness

$$\frac{\forall x\phi}{[x \Rightarrow t]\phi} [\forall x \ e]$$

Once you have proven $\forall x \phi$, you can replace *x* by any term *t* in ϕ , provided that *t* is free for *x* in ϕ .

Equality Universal Quantification Existential Quantification

Example

$$\frac{\forall x \phi}{[x \Rightarrow t]\phi} [\forall x e]$$

We prove: $S(g(john)), \forall x(S(x) \rightarrow \neg L(x)) \vdash \neg L(g(john))$

$$\begin{array}{ll} 1 & S(g(john)) & \text{premise} \\ 2 & \forall x(S(x) \rightarrow \neg L(x)) & \text{premise} \\ 3 & S(g(john)) \rightarrow \neg L(g(john)) & \forall x \ e \ 2 \\ 4 & \neg L(g(john)) & \rightarrow e \ 3,1 \end{array}$$

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences

Equality Universal Quantification Existential Quantification

Introduction of Universal Quantification

Soundness and Completeness

If we manage to establish a formula ϕ about a fresh variable x_0 , we can assume $\forall x \phi$.

The variable x_0 must be *fresh*; we cannot introduce the same variable twice in nested boxes.

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences

Soundness and Completeness

Equality Universal Quantification Existential Quantification

Example

$$\begin{bmatrix} \vdots \\ [x \Rightarrow x_0]\phi \end{bmatrix}^{x_0}$$

$$\forall x (P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$$
via

 $\forall \mathbf{x} \phi$

1	orall x(P(x) o Q(x))	premise	
2	$\forall x P(x)$	premise	
3	$P(x_0) ightarrow Q(x_0)$	∀ <i>x e</i> 1	<i>x</i> ₀
4	$P(x_0)$	∀ <i>x e</i> 2	
5	$Q(x_0)$	ightarrow e 3,4	
6	$\forall xQ(x)$	∀ <i>x i</i> 3–5	
	The Importance of Being For	mal 06—From Propositiona	I to Predicate Logic

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory

Equality Universal Quantification Existential Quantification

Introduction of Existential Quantification

-

Soundness and Completeness

Equivalences

$$[x \Rightarrow t]\phi$$
$$[\exists x \ i]$$
$$\exists x \phi$$

In order to prove $\exists x \phi$, it suffices to find a term *t* as "witness", provided that *t* is free for *x* in ϕ .

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic **Proof Theory** Equivalences

Soundness and Completeness

Equality Universal Quantification Existential Quantification

 $\forall \boldsymbol{x}\phi \vdash \exists \boldsymbol{x}\phi$

Recall: Definition of Models

A model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ consists of:

A non-empty set U, the universe;

2 ...

Remark

Compare this with Traditional Logic.

Because U must not be empty, we should be able to prove the sequent above.

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic

Proof Theory

Equivalences Soundness and Completeness Equality Universal Quantification Existential Quantification

Example (continued)

$\forall \pmb{x} \phi \vdash \exists \pmb{x} \phi$

1 $\forall x \phi$ premise2 $[x \Rightarrow x] \phi$ $\forall x \ e \ 1$ 3 $\exists x \phi$ $\exists x \ i \ 2$

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory

Equality Universal Quantification Existential Quantification

Equivalences Soundness and Completeness

Elimination of Existential Quantification

Making use of \exists

If we know $\exists x \phi$, we know that there exist at least one object *x* for which ϕ holds. We call that element *x*₀, and assume

Equality Universal Quantification Existential Quantification

Example

$$\forall x(P(x) \rightarrow Q(x)), \exists xP(x) \vdash \exists xQ(x))$$

1 2	$orall x(P(x) o Q(x)) \ \exists x P(x)$	premise premise	
3	$P(x_0)$	assumption	<i>x</i> ₀
4	$P(x_0) ightarrow Q(x_0)$	∀ <i>x e</i> 1	
5	$Q(x_0)$	ightarrow <i>e</i> 4,3	
6	$\exists x Q(x)$	∃ <i>x i</i> 5	
7	$\exists x Q(x)$	∃ <i>x e</i> 2.3–6	

Note that $\exists x Q(x)$ within the box does not contain x_0 , and therefore can be "exported" from the box.

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences

Soundness and Completeness

Equality Universal Quantification Existential Quantification

Another Example

1 2	$orall x(Q(x) ightarrow R(x)) \ \exists x(P(x) \wedge Q(x))$	premise premise	
3	$P(x_0) \wedge Q(x_0)$	assumption	<i>x</i> ₀
4	$Q(x_0) ightarrow R(x_0)$	∀ <i>x e</i> 1	
5	$Q(x_0)$	∧ <i>e</i> ₂ 3	
6	$R(x_0)$	ightarrow e 4,5	
7	$P(x_0)$	∧ <i>e</i> ₁ 3	
8	$P(x_0) \wedge R(x_0)$	<i>∧i</i> 7, 6	
9	$\exists x (P(x) \land R(x))$	∃ <i>x i</i> 8	
10	$\exists x(P(x) \land R(x))$	∃ <i>x e</i> 2,3–9	

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic

Proof Theory

Equivalences Soundness and Completeness Equality Universal Quantification Existential Quantification

Variables must be fresh! This is not a proof!

1	$\exists x P(x)$	premise	
2	$\forall x(P(x) \rightarrow Q(x))$	premise	
3			<i>x</i> ₀
4	$P(x_0)$	assumption	<i>x</i> ₀
5	$P(x_0) ightarrow Q(x_0)$	∀ <i>x e</i> 2	
6	$Q(x_0)$	ightarrow e 5,4	
7	$Q(x_0)$	∃ <i>x e</i> 1, 4–6	I
8	$\forall yQ(y)$	∀ <i>y i</i> 3–7	

Quantifier Equivalences

Syntax of Predicate Logic

- Predicate Logic as a Formal Language
- 3 Semantics of Predicate Logic
- Proof Theory
- Equivalences

 Quantifier Equivalences
 - Soundness and Completeness

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory

Quantifier Equivalences

Equivalences

Soundness and Completeness

Equivalences

Two-way-provable

We write $\phi \dashv \vdash \psi$ iff $\phi \vdash \psi$ and also $\psi \vdash \phi$.

Some simple equivalences

$$\neg \forall x \phi \quad \dashv \vdash \quad \exists x \neg \phi$$
$$\neg \exists x \phi \quad \dashv \vdash \quad \forall x \neg \phi$$
$$\forall x \forall y \phi \quad \dashv \vdash \quad \forall y \forall x \phi$$
$$\exists x \exists y \phi \quad \dashv \vdash \quad \exists y \exists x \phi$$
$$\forall x \phi \land \forall x \psi \quad \dashv \vdash \quad \forall x (\phi \land \psi)$$
$$\exists x \phi \lor \exists x \psi \quad \dashv \vdash \quad \exists x (\phi \lor \psi)$$

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences Soundness and Completeness $\neg \forall \chi \phi \vdash \exists \chi \neg \phi$

 $\neg \forall \mathbf{X} \phi$ premise $\neg \exists x \neg \phi$ 2 assumption 3 X_0 4 $\neg [x \Rightarrow x_0]\phi$ assumption 5 $\exists \mathbf{x} \neg \phi$ $\exists x \ i \ 4$ 6 *¬e* 5, 2 7 $[x \Rightarrow x_0]\phi$ **PBC 4–6** 8 $\forall x \ i \ 3-7$ $\forall \mathbf{x} \phi$ 9 *¬e* 8, 1 10 PBC 2-9 $\exists \mathbf{X} \neg \phi$

Assume that *x* and *y* are different variables.

1	$\exists x \exists y \phi$	premise	
2	$[\mathbf{x} \Rightarrow \mathbf{x}_0](\exists \mathbf{y}\phi)$	assumption	<i>x</i> ₀
3	$\exists y([x \Rightarrow x_0]\phi$	def of subst (x, y different)	
4	$[\mathbf{y} \Rightarrow \mathbf{y}_0][\mathbf{x} \Rightarrow \mathbf{x}_0]\phi$	assumption	<i>Y</i> 0
5	$\delta [\mathbf{x} \Rightarrow \mathbf{x}_0][\mathbf{y} \Rightarrow \mathbf{y}_0]\phi$	def of subst (x , y , x_0 , y_0 different)	
6	$\exists x[y \to y_0]\phi$	∃ <i>x i</i> 5	
7	' $\exists y \exists x \phi$	∃ <i>y i</i> 6	
8	$\exists y \exists x \phi$	∃ <i>y e</i> 3, 4–7	
9	$\exists y \exists x \phi$	∃ <i>x e</i> 1, 2–8	

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences

Soundness and Completeness

Quantifier Equivalences

More Equivalences

Assume that *x* is not free in ψ

$$\begin{array}{cccc} \forall \boldsymbol{x}\phi \wedge \psi & \dashv \vdash & \forall \boldsymbol{x}(\phi \wedge \psi) \\ \forall \boldsymbol{x}\phi \vee \psi & \dashv \vdash & \forall \boldsymbol{x}(\phi \vee \psi) \\ \exists \boldsymbol{x}\phi \wedge \psi & \dashv \vdash & \exists \boldsymbol{x}(\phi \wedge \psi) \\ \exists \boldsymbol{x}\phi \vee \psi & \dashv \vdash & \exists \boldsymbol{x}(\phi \vee \psi) \end{array}$$

Syntax of Predicate Logic Predicate Logic as a Formal Language Semantics of Predicate Logic Proof Theory Equivalences

Soundness and Completeness

Central Result of Natural Deduction

$$\phi_1, \ldots, \phi_n \models \psi$$
iff

 $\phi_1,\ldots,\phi_n\vdash\psi$

proven by Kurt Gödel, in 1929 in his doctoral dissertation (just one year before his most famous result, the incompleteness results of mathematical logic)