Review: Syntax and Semantics of Predicate Logic Semantics: Satisfaction, Entailment, Satisfiability Proof Theory Equivalences

07—Predicate Logic II

UIT2206: The Importance of Being Formal

Martin Henz

March 5, 2014

Generated on Wednesday 5th March, 2014, 10:05

Review: Syntax and Semantics of Predicate Logic Semantics: Satisfaction, Entailment, Satisfiability Proof Theory Equivalences

- Review: Syntax and Semantics of Predicate Logic
- Semantics: Satisfaction, Entailment, Satisfiability
- Proof Theory
- 4 Equivalences

- Review: Syntax and Semantics of Predicate Logic
 - Terms, Formulas
 - Models
 - Equality
 - Variables
- 2 Semantics: Satisfaction, Entailment, Satisfiability
- 3 Proof Theory
- 4 Equivalences

Terms

$$t ::= x \mid c \mid f(t,\ldots,t)$$

where

- x ranges over a given set of variables \mathcal{V} ,
- ullet c ranges over nullary function symbols in \mathcal{F} , and
- f ranges over function symbols in \mathcal{F} with arity n > 0.

Formulas

$$\phi ::= P(t, \dots, t) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\forall x \phi) \mid (\exists x \phi)$$

where

- $P \in \mathcal{P}$ is a predicate symbol of arity $n \ge 0$,
- t are terms over \mathcal{F} and \mathcal{V} , and
- x are variables in \mathcal{V} .

Models

Definition

Let $\mathcal F$ contain function symbols and $\mathcal P$ contain predicate symbols. A model $\mathcal M$ for $(\mathcal F,\mathcal P)$ consists of:

- A non-empty set A, the universe;
- ② for each nullary function symbol $f \in \mathcal{F}$ a concrete element $f^{\mathcal{M}} \in A$;
- of for each $f \in F$ with arity n > 0, a concrete function $f^{\mathcal{M}}: A^n \to A$:
- **③** for each $P \in \mathcal{P}$ with arity n > 0, a function $P^{\mathcal{M}}: U^n \to \{F, T\}$.
- **1** for each $P \in \mathcal{P}$ with arity n = 0, a value from $\{F, T\}$.

Example

Let $\mathcal{F} = \{e, \cdot\}$ and $\mathcal{P} = \{\leq\}$.

Let model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ be defined as follows:

- Let A be the set of binary strings over the alphabet $\{0,1\}$;
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Example (continued)

- Let A be the set of binary strings over the alphabet $\{0,1\}$;
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Some Elements of A

- 10001
- \bullet ϵ
- $1010 \cdot ^{\mathcal{M}} 1100 = 10101100$
- $000 \cdot^{\mathcal{M}} \epsilon = 000$

Terms, Formulas Models Equality Variables

Equality Revisited

Interpretation of equality

Usually, we require that the equality predicate = is interpreted as same-ness.

Extensionality restriction

This means that allowable models are restricted to those in which $a = {}^{\mathcal{M}} b$ holds if and only if a and b are the same elements of the model's universe.

Example (continued)

- Let A be the set of binary strings over the alphabet {0, 1};
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Equality in \mathcal{M}

- $000 = ^{\mathcal{M}} 000$
- $001 \neq^{\mathcal{M}} 100$

How To Handle Free Variables?

Idea

We can give meaning to formulas with free variables by providing an environment (lookup table) that assigns variables to elements of our universe:

$$I: \mathcal{V} \to A$$
.

Environment extension

We define environment extension such that $I[x \mapsto a]$ is the environment that maps x to a and any other variable y to I(y).

- Review: Syntax and Semantics of Predicate Logic
- 2 Semantics: Satisfaction, Entailment, Satisfiability
 - Satisfaction
 - Entailment and Satisfiability
- Proof Theory
- 4 Equivalences

Satisfaction Relation

The model \mathcal{M} satisfies ϕ with respect to environment I, written $\mathcal{M} \models_I \phi$:

- in case ϕ is of the form $P(t_1, t_2, \dots, t_n)$, if a_1, a_2, \dots, a_n are the results of evaluating t_1, t_2, \dots, t_n with respect to I, and if $P^{\mathcal{M}}(a_1, a_2, \dots, a_n) = T$;
- in case ϕ is of the form P, if $P^{\mathcal{M}} = T$;
- in case ϕ has the form $\forall x \psi$, if the $\mathcal{M} \models_{I[x \mapsto a]} \psi$ holds for all $a \in A$;
- in case ϕ has the form $\exists x \psi$, if the $\mathcal{M} \models_{I[x \mapsto a]} \psi$ holds for some $a \in A$;

Satisfaction Relation (continued)

- in case ϕ has the form $\neg \psi$, if $\mathcal{M} \models_I \psi$ does not hold;
- in case ϕ has the form $\psi_1 \lor \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds or $\mathcal{M} \models_I \psi_2$ holds;
- in case ϕ has the form $\psi_1 \wedge \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds and $\mathcal{M} \models_I \psi_2$ holds; and
- in case ϕ has the form $\psi_1 \to \psi_2$, if $\mathcal{M} \models_I \psi_2$ holds whenever $\mathcal{M} \models_I \psi_1$ holds.

Satisfaction of Closed Formulas

If a formula ϕ has no free variables, we call ϕ a *sentence*. $\mathcal{M}\models_I \phi$ holds or does not hold regardless of the choice of I. Thus we write $\mathcal{M}\models\phi$ or $\mathcal{M}\not\models\phi$.

Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Entailment

 $\Gamma \models \psi$ iff for all models \mathcal{M} and environments I, whenever $\mathcal{M} \models_I \phi$ holds for all $\phi \in \Gamma$, then $\mathcal{M} \models_I \psi$.

Satisfiability of Formulas

 ψ is satisfiable iff there is some model \mathcal{M} and some environment I such that $\mathcal{M} \models_I \psi$ holds.

Satisfiability of Formula Sets

 Γ is satisfiable iff there is some model \mathcal{M} and some environment I such that $\mathcal{M} \models_I \phi$, for all $\phi \in \Gamma$.

Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Validity

 ψ is valid iff for all models $\mathcal M$ and environments I, we have $\mathcal M\models_I \psi$.

The Problem with Predicate Logic

Entailment ranges over models

Semantic entailment between sentences: $\phi_1, \phi_2, \dots, \phi_n \models \psi$ requires that in *all* models that satisfy $\phi_1, \phi_2, \dots, \phi_n$, the sentence ψ is satisfied.

How to effectively argue about all possible models?

Usually the number of models is infinite; it is very hard to argue on the semantic level in predicate logic.

Idea from propositional logic

Can we use natural deduction for showing entailment?

- Review: Syntax and Semantics of Predicate Logic
- Semantics: Satisfaction, Entailment, Satisfiability
- Proof Theory
 - Equality
 - Universal Quantification
 - Existential Quantification
- 4 Equivalences

Natural Deduction for Predicate Logic

Relationship between propositional and predicate logic

If we consider propositions as nullary predicates, propositional logic is a sub-language of predicate logic.

Inheriting natural deduction

We can translate the rules for natural deduction in propositional logic directly to predicate logic.

Example

Equality Universal Quantification Existential Quantification

Built-in Rules for Equality

Properties of Equality

We show:

$$f(x) = g(x) \vdash h(g(x)) = h(f(x))$$

using

$$\frac{t_1 = t_2 \quad [x \Rightarrow t_1]\phi}{t = t} = [e]$$

$$[x \Rightarrow t_2]\phi$$

1
$$f(x) = g(x)$$
 premise
2 $h(f(x)) = h(f(x))$ = i
3 $h(g(x)) = h(f(x))$ = e 1,2

Elimination of Universal Quantification

$$\frac{\forall x \phi}{[x \Rightarrow t] \phi} [\forall x \ e]$$

Once you have proven $\forall x \phi$, you can replace x by any term t in ϕ , provided that t is free for x in ϕ .

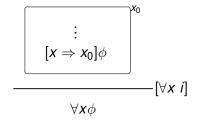
Example

$$\frac{\forall x \phi}{[x \Rightarrow t] \phi} [\forall x \ e]$$

We prove:
$$S(g(john)), \forall x(S(x) \rightarrow \neg L(x)) \vdash \neg L(g(john))$$

```
 \begin{array}{lll} 1 & S(g(john)) & \text{premise} \\ 2 & \forall x(S(x) \rightarrow \neg L(x)) & \text{premise} \\ 3 & S(g(john)) \rightarrow \neg L(g(john)) & \forall x \ e \ 2 \\ 4 & \neg L(g(john)) & \rightarrow e \ 3.1 \end{array}
```

Introduction of Universal Quantification



If we manage to establish a formula ϕ about a fresh variable x_0 , we can assume $\forall x \phi$.

The variable x_0 must be *fresh*; we cannot introduce the same variable twice in nested boxes.

Example

Introduction of Existential Quantification

In order to prove $\exists x \phi$, it suffices to find a term t as "witness", provided that t is free for x in ϕ .

Example

$$\forall x \phi \vdash \exists x \phi$$

Recall: Definition of Models

A model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ consists of:

- A non-empty set *U*, the *universe*;
- **②** ..

Remark

Compare this with Traditional Logic.

Because *U* must not be empty, we should be able to prove the sequent above.

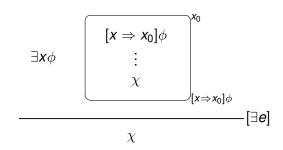
Example (continued)

$$\forall x \phi \vdash \exists x \phi$$

$$\begin{array}{ll}
1 & \forall x \phi \\
2 & [x \Rightarrow x] \phi \\
3 & \exists x \phi
\end{array}$$

premise
$$\forall x \ e \ 1$$
 $\exists x \ i \ 2$

Elimination of Existential Quantification



Making use of ∃

If we know $\exists x \phi$, we know that there exist at least one object x for which ϕ holds. We call that element x_0 , and assume $[x \Rightarrow x_0]\phi$. Without assumptions on x_0 , we prove χ (x_0 not in x_0).

Example

$$\forall x (P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x)$$

1	$\forall x (P(x) \rightarrow Q(x))$	premise	
2	$\exists x P(x)$	premise	
3	$P(x_0)$	assumption	<i>x</i> ₀
4	$P(x_0) \rightarrow Q(x_0)$	∀ <i>x e</i> 1	
5	$Q(x_0)$	ightarrow e 4,3	
6	$\exists x Q(x)$	∃ <i>x i</i> 5	
7	$\exists x Q(x)$	∃ <i>x e</i> 2,3–6	

Note that $\exists x Q(x)$ within the box does not contain x_0 , and therefore can be "exported" from the box.

Another Example

1 2	$\forall x(Q(x) \rightarrow R(x))$ $\exists x(P(x) \land Q(x))$	premise premise	
3	$P(x_0) \wedge Q(x_0)$	assumption	<i>x</i> ₀
4	$Q(x_0) \rightarrow R(x_0)$	∀ <i>x e</i> 1	
5	$Q(x_0)$	<i>∧e</i> ₂ 3	
6	$R(x_0)$	ightarrow e 4,5	
7	$P(x_0)$	<i>∧e</i> ₁ 3	
8	$P(x_0) \wedge R(x_0)$	<i>∧i</i> 7, 6	
9	$\exists x (P(x) \land R(x))$	∃ <i>x i</i> 8	
10	$\exists x (P(x) \land R(x))$	∃ <i>x e</i> 2,3–9	

Variables must be fresh! This is not a proof!

- 1 Review: Syntax and Semantics of Predicate Logic
- Semantics: Satisfaction, Entailment, Satisfiability
- Proof Theory
- 4 Equivalences
 - Quantifier Equivalences
 - Soundness and Completeness
 - Undecidability, Compactness

Quantifier Equivalences

Soundness and Completeness Undecidability, Compactness

Equivalences

Two-way-provable

We write $\phi \dashv \vdash \psi$ iff $\phi \vdash \psi$ and also $\psi \vdash \phi$.

Some simple equivalences

$$\neg \forall x \phi \quad \dashv \vdash \quad \exists x \neg \phi$$

$$\neg \exists x \phi \quad \dashv \vdash \quad \forall x \neg \phi$$

$$\forall x \forall y \phi \quad \dashv \vdash \quad \forall y \forall x \phi$$

$$\exists x \exists y \phi \quad \dashv \vdash \quad \exists y \exists x \phi$$

$$\forall x \phi \land \forall x \psi \quad \dashv \vdash \quad \forall x (\phi \land \psi)$$

$$\exists x \phi \lor \exists x \psi \quad \dashv \vdash \quad \exists x (\phi \lor \psi)$$

Quantifier Equivalences Soundness and Completeness

$\neg \forall x \phi \vdash \exists x \neg \phi$

1	$\neg \forall x \phi$	premise	
2	$\neg \exists x \neg \phi$	assumption	
3_		x_0	_
4	$\neg [x \Rightarrow x_0] \phi$	assumption	
5	$\neg[x \Rightarrow x_0]\phi$ $\exists x \neg \phi$	∃ <i>x i</i> 4	
6	\perp	<i>¬e</i> 5, 2	
7	$[x \Rightarrow x_0]\phi$	PBC 4-6	_
8	$\forall x \phi$	∀ <i>x i</i> 3–7	
9	\perp	<i>¬e</i> 8, 1	
10	$\exists x \neg \phi$	PBC 2–9	

Quantifier Equivalences

Soundness and Completeness Undecidability, Compactness

$\exists x \exists y \phi \vdash \exists y \exists x \phi$

Assume that *x* and *y* are different variables.

1 $\exists x \exists y \phi$	premise	
2 $[x \Rightarrow x_0](\exists y \phi)$	assumption	<i>x</i> ₀
$\exists y([x \Rightarrow x_0]\phi$	def of subst (x, y different)	
$ 4 [y \Rightarrow y_0][x \Rightarrow x_0] \phi$	assumption	<i>y</i> ₀
$\int [x \Rightarrow x_0][y \Rightarrow y_0] \phi$	def of subst (x, y, x_0, y_0) different)	
$ 6 \exists x[y \rightarrow y_0] \phi$	∃ <i>x i</i> 5	
$ 7 \exists y \exists x \phi$	∃ <i>y i</i> 6	
8 ∃ <i>y</i> ∃ <i>xφ</i>	∃ <i>y e</i> 3, 4–7	
$9 \exists y \exists x \phi$	∃ <i>x e</i> 1, 2–8	

Quantifier Equivalences

Soundness and Completeness Undecidability, Compactness

More Equivalences

Assume that x is not free in ψ

$$\forall x \phi \wedge \psi \quad \dashv \vdash \quad \forall x (\phi \wedge \psi)$$

$$\forall x \phi \vee \psi \quad \dashv \vdash \quad \forall x (\phi \vee \psi)$$

$$\exists x \phi \wedge \psi \quad \dashv \vdash \quad \exists x (\phi \wedge \psi)$$

$$\exists x \phi \vee \psi \quad \dashv \vdash \quad \exists x (\phi \vee \psi)$$

Central Result of Natural Deduction

$$\phi_1, \dots, \phi_n \models \psi$$
iff
$$\phi_1, \dots, \phi_n \vdash \psi$$

proven by Kurt Gödel, in 1929 in his doctoral dissertation

Recall: Decidability

Decision problems

A *decision problem* is a question in some formal system with a yes-or-no answer.

Decidability

Decision problems for which there is an algorithm that returns "yes" whenever the answer to the problem is "yes", and that returns "no" whenever the answer to the problem is "no", are called *decidable*.

Decidability of satisfiability

The question, whether a given propositional formula is satisifiable, is decidable.

Quantifier Equivalences Soundness and Completeness Undecidability, Compactness

Undecidability of Predicate Logic

Theorem

The decision problem of validity in predicate logic is undecidable: no program exists which, given any language in predicate logic and any formula ϕ in that language, decides whether $\models \phi$.

Proof sketch

- Establish that the Post Correspondence Problem (PCP) is undecidable
- Translate an arbitrary PCP, say C, to a formula ϕ .
- Establish that $\models \phi$ holds if and only if *C* has a solution.
- Conclude that validity of predicate logic formulas is undecidable.

Quantifier Equivalences Soundness and Completeness Undecidability, Compactness

Next Week

- midterm
- Modal Logic I