08—The Ugly Corners of Math, Logic and Computation

The Importance of Being Formal

Martin Henz

March 12, 2014

- Infinity
- 2 Decidability
- (In)completeness
- 4 Undefinability

- Infinity
 - Finite Sets
 - Countable and Uncountable Sets
 - The Cantor-Schröder-Bernstein Theorem
- 2 Decidability
- (In)completeness
- 4 Undefinability

Finite sets

There is a finite number that represents the *cardinality* of the set.

Finite sets

There is a finite number that represents the *cardinality* of the set.

Example

 $S = \{a, b, c, d, e\}$: The number 5 is the cardinality of S.

Finite sets

There is a finite number that represents the *cardinality* of the set.

Example

 $S = \{a, b, c, d, e\}$: The number 5 is the cardinality of S.

How about this set?

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

Finite sets

There is a finite number that represents the *cardinality* of the set.

Example

 $S = \{a, b, c, d, e\}$: The number 5 is the cardinality of S.

How about this set?

 $\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$ What is the cardinality of \mathbb{N} ?

Counting

We count finite sets by establishing a function that is one-to-one and onto between the set and the numbers $\{1, 2, ..., n\}$.

We say the two sets are equinumerous.

Equinumerous Sets

Definition

Suppose A and B are sets. We say that A is *equinumerous* with B if there is a function $f:A\longrightarrow B$ that is one-to-one and onto, denoted $A\sim B$. For each natural number n, let $I_n=\{i\in\mathbb{Z}^+|i\le n\}$.

Definition

A set *A* is called *finite* if there is a natural number *n* such that $A \sim \{i \in \mathbb{Z}^+ | i < n\}$

The Cantor-Schröder-Bernstein Theorem

\mathbb{Z}^+ and \mathbb{Z} are equinumerous

$$\mathbb{Z}^+ \sim \mathbb{Z}$$

Proof

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{1-n}{2} & \text{if } n \text{ is odd} \end{cases}$$

Even More Surprising

$$\mathbb{Z}^+ \times \mathbb{Z}^+$$
 and \mathbb{Z}^+ are equinumerous

$$\mathbb{Z}^+ \times \mathbb{Z}^+ \sim \mathbb{Z}^+$$

Equinumerosity is an Equivalence Relation

Theorem

For any sets A, B, C:

- \bigcirc $A \sim A$
- 2 If $A \sim B$ then $B \sim A$.
- If $A \sim B$ and $B \sim C$, then $A \sim C$.

Finite Sets

Countable and Uncountable Sets
The Cantor-Schröder-Bernstein Theorem

Denumerability, Countability

Definition

A set A is called *denumerable* if $\mathbb{Z}^+ \sim A$.

Definition

A set A is called *countable* if it is either finite or denumerable.

Countable Sets

Theorem

Suppose A and B are countable sets. Then:

- \bullet $A \times B$ is countable.
- \bigcirc $A \cup B$ is countable.

Theorem

The union of countably many countable sets is countable.

Theorem

Let *A* be a countable set. The set of all finite sequences of elements of *A* is countable.

Cantor's Theorem

 $\mathscr{P}(\mathbb{Z}^+)$ is uncountable.

Corollary

 \mathbb{R} is uncountable.

Domination

Definition

We say *B* dominates *A*, written $A \lesssim B$, if there is a function $f: A \longrightarrow B$ that is one-to-one.

Cantor-Schröder-Bernstein Theorem

Suppose *A* and *B* are sets. If $A \lesssim B$ and $B \lesssim A$, then $A \sim B$.

Corollary
$$\mathbb{R} \sim \mathscr{P}(\mathbb{Z}^+)$$

Continuum Hypothesis

Hypothesis

There is no set *X* such that $\mathbb{Z}^+ \prec X \prec \mathbb{R}$.

Impossibility of Proof

Gödel and Cohen proved that it is impossible to prove the continuum hypothesis, and it is also impossible to disprove it.

Q

If Term is countable, is its Traditional Logic countable?

Q

If Term is countable, is its Traditional Logic countable?

Α

yes

Q

If Term is countable, is its Traditional Logic countable?

Α

yes

Q

If A is countable, is its Propositional Logic countable?

If Term is countable, is its Traditional Logic countable?

Α

yes

Q

If A is countable, is its Propositional Logic countable?

Α

yes

If Term is countable, is its Traditional Logic countable?

Α

yes

Q

If A is countable, is its Propositional Logic countable?

Α

yes

Other countable sets

predicate logic, modal logic, all proofs in natural deduction

- Infinity
- 2 Decidability
- (In)completeness
- 4 Undefinability

Decision Problems

Definition

A *decision problem* is a question in some formal system with a yes-or-no answer.

Decision Problems

Definition

A *decision problem* is a question in some formal system with a yes-or-no answer.

Examples

The question whether a given propositional formula is satisifiable (unsatisfiable, valid, invalid) is a decision problem.

The question whether two given propositional formulas are equivalent is also a decision problem.

How to Solve the Decision Problem?

Question

How do you decide whether a given propositional formula is satisfiable/valid?

How to Solve the Decision Problem?

Question

How do you decide whether a given propositional formula is satisfiable/valid?

The good news

We can construct a truth table for the formula and check if some/all rows have ${\tt T}$ in the last column.

How to Solve the Decision Problem?

Question

How do you decide whether a given propositional formula is satisfiable/valid?

The good news

We can construct a truth table for the formula and check if some/all rows have ${\tt T}$ in the last column.

Algorithm

A precise step-by-step procedure for solving a problem is called an *algorithm* for the problem.

Decidability

Definition

Decision problems for which there is an algorithm computing "yes" whenever the answer is "yes", and "no" whenever the answer is "no", are called *decidable*.

Decidability

Definition

Decision problems for which there is an algorithm computing "yes" whenever the answer is "yes", and "no" whenever the answer is "no", are called *decidable*.

An algorithm for satisifiability

Using a truth table, we can implement an *algorithm* that returns "yes" if the formula is satisifiable, and that returns "no" if the formula is unsatisfiable.

Decidability

Definition

Decision problems for which there is an algorithm computing "yes" whenever the answer is "yes", and "no" whenever the answer is "no", are called *decidable*.

An algorithm for satisifiability

Using a truth table, we can implement an *algorithm* that returns "yes" if the formula is satisifiable, and that returns "no" if the formula is unsatisfiable.

Decidability of satisfiability

The question, whether a given propositional formula is satisifiable, is decidable.

Is termination of algorithms decidable?

The Halting Problem

For a given algorithm (program) *P* and a given input data *D*, decide whether *P* terminates on *D*.

Is termination of algorithms decidable?

The Halting Problem

For a given algorithm (program) *P* and a given input data *D*, decide whether *P* terminates on *D*.

The bad news

The Halting Problem is not decidable

Is termination of algorithms decidable?

The Halting Problem

For a given algorithm (program) *P* and a given input data *D*, decide whether *P* terminates on *D*.

The bad news

The Halting Problem is not decidable

Language does not matter

It does not matter whether you decide to use JavaScript or C or a Turing Machine or the lambda calculus

Decidability of Propositional Logic

Theorem

The decision problem of validity in propositional logic is decidable: There are algorithms which, given any formula ϕ of propositional logic, decides whether $\models \phi$.

Decidability of Propositional Logic

Theorem

The decision problem of validity in propositional logic is decidable: There are algorithms which, given any formula ϕ of propositional logic, decides whether $\models \phi$.

Proof

One such algorithm builds the full truth table for the given formula and then checks whether the last column has no F.

Theorem

The decision problem of validity in predicate logic is undecidable: no program exists which, given any language in predicate logic and any formula ϕ in that language, decides whether $\models \phi$.

Theorem

The decision problem of validity in predicate logic is undecidable: no program exists which, given any language in predicate logic and any formula ϕ in that language, decides whether $\models \phi$.

Proof sketch

 Establish that the Post Correspondence Problem (PCP) is undecidable

Theorem

The decision problem of validity in predicate logic is undecidable: no program exists which, given any language in predicate logic and any formula ϕ in that language, decides whether $\models \phi$.

- Establish that the Post Correspondence Problem (PCP) is undecidable
- Translate an arbitrary PCP, say C, to a formula ϕ .

Theorem

The decision problem of validity in predicate logic is undecidable: no program exists which, given any language in predicate logic and any formula ϕ in that language, decides whether $\models \phi$.

- Establish that the Post Correspondence Problem (PCP) is undecidable
- Translate an arbitrary PCP, say C, to a formula ϕ .
- Establish that $\models \phi$ holds if and only if *C* has a solution.

Theorem

The decision problem of validity in predicate logic is undecidable: no program exists which, given any language in predicate logic and any formula ϕ in that language, decides whether $\models \phi$.

- Establish that the Post Correspondence Problem (PCP) is undecidable
- Translate an arbitrary PCP, say C, to a formula ϕ .
- Establish that $\models \phi$ holds if and only if *C* has a solution.
- Conclude that validity of predicate logic formulas is undecidable.

- Infinity
- 2 Decidability
- (In)completeness
- 4 Undefinability

Natural Deduction in Propositional Logic

$$\phi_1, \dots, \phi_n \models \psi$$
iff
$$\phi_1, \dots, \phi_n \vdash \psi$$

- "

 ": Show that each proof rule does the right thing, semantically. Structural induction.
- "⇒": Construct a proof based on the truth table (tedious).

Natural Deduction in Predicate Logic

$$\phi_1, \dots, \phi_n \models \psi$$
iff
$$\phi_1, \dots, \phi_n \vdash \psi$$

proven by Kurt Gödel, in 1929 in his doctoral dissertation

Second-order Predicate Logic

Definition

Second-order predicate logic has the same definition as first order predicate logic, but after \forall and \exists predicate symbols are allowed.

Second-order Predicate Logic

Definition

Second-order predicate logic has the same definition as first order predicate logic, but after \forall and \exists predicate symbols are allowed.

Example

$$\forall P \forall x (P(x) \lor \neg P(x))$$

Incompleteness of Second-order Logic

There is no deductive system (that is, no notion of provability) for second-order formulas that simultaneously satisfies the following:

Soundness: Every provable second-order sentence is universally valid, i.e., true in every model.

Completeness: Every universally valid second-order formula, under standard semantics, is provable.

Effectiveness: There is a proof-checking algorithm that can correctly decide whether a given sequence of symbols is a valid proof or not.

Gödel's First Incompleteness Result

Theorem

No consistent system of axioms whose theorems can be listed by an algorithm is capable of proving all truths about the relations of the natural numbers (arithmetic).

Proof sketch

Represent formulas by natural numbers. Express provability as a property of these numbers. Construct a *bomb*: "This formula is valid, but not provable."

Gödel's Second Incompleteness Result

Theorem

For any formal effectively generated theory T including basic arithmetical truths and also certain truths about formal provability, if T includes a statement of its own consistency then T is inconsistent.

Tarski's Undefinability Result

Theorem

Given some formal arithmetic, the concept of truth in that arithmetic is not definable using the expressive means that arithmetic affords.