
Obfuscating Software Puzzle for
Denial-of-Service Attack Mitigation

Yongdong Wu∗, Vivy Suhendra†, Hendra Saputra‡ and Zhigang Zhao∗
∗Institute for Infocomm Research, Singapore

{wydong,zzhao}@i2r.a-star.edu.sg
†National University of Singapore

vivy@comp.nus.edu.sg
‡Singapore Management University

hendra saputra@singaindo.com

Abstract—The software puzzle scheme counters resource-1

inflated Denial-of-Service (DoS) attacks by requiring each client2

connecting to the server to correctly solve a cryptographic3

puzzle before a connection can be established. It is specifi-4

cally designed to thwart attempts at utilizing high-performance5

Graphic Processing Units (GPUs) to cut down solution time, by6

dynamically and randomly generating the puzzle in such a way7

that an attacker cannot easily translate the puzzle to a GPU8

implementation. The puzzle to be delivered to the client, in the9

form of Java bytecode, needs to be protected with code-compliant10

obfuscation, to hinder reverse engineering without leaking hints11

on wrong key attempts that the attacker can abandon quickly.12

The original puzzle obfuscation method permutes instructions13

within syntactically similar instruction sets to preserve syntactic14

validity regardless of the key. However, this method will not15

significantly obstruct a more sophisticated bytecode verification16

that goes beyond syntax checking. On the other hand, due to17

Java’s stringent specifications, existing obfuscation methods that18

produce fully verifiable bytecode have very restricted transforma-19

tions and hence weak obfuscation strength. This paper proposes20

an advanced Java bytecode obfuscation method with deeper21

consideration of bytecode validity based on JVM verification22

step. It overcomes the code-compliant restriction by transforming23

a sequence of instructions instead of individual instructions,24

and introduces a randomness element that enables one-to-many25

transformations of the software puzzle even with the same key,26

thus increasing the barrier to reverse engineering.27

I. INTRODUCTION28

A Denial-of-Service (DoS) attack works by sending a huge29

number of bogus requests to the server. As the server has to30

spend a lot of resources in establishing connection for each31

of these requests, including completing SSL handshakes in the32

case of HTTPS servers, it may have no resources left to handle33

requests from legitimate clients. The client puzzle scheme [1]34

is a popular DoS countermeasure that increases the cost for35

clients to request a service, thus limiting the number of bogus36

requests that a DoS attacker can put through. In the scheme,37

the server challenges each client requesting connection with a38

unique cryptographic puzzle, which would take the client some39

time to solve. Only after the client responds with the correct40

puzzle solution, the server will spend the required resources41

to establish proper connection with the client. The puzzle42

is generally the inverse of a one-way cryptographic function43

(e.g., hash reversal), which is a hard problem requiring brute-44

force solution. That is, the server computes y = H(x, n) where 1

H is a one-way function, x is a server secret, and n is a nonce 2

for uniqueness. H, n, and y are sent to the client, who must 3

then solve for x by brute-force. Thus it takes much more effort 4

for the client to solve the puzzle than it takes the server to 5

construct the puzzle and verify the solution. 6

The software puzzle scheme [2] extends the client puzzle 7

scheme to counter DoS attacks that are backed by excep- 8

tionally high computational capability in the form of many- 9

core Graphic Processing Units (GPUs). By spreading the 10

computational demand of client puzzles to many GPU cores, 11

an attacker can solve enough puzzles to launch a successful 12

DoS attack. In the software puzzle scheme, the puzzle is 13

dynamically generated only when a client request is received 14

by randomly combining code blocks from a code warehouse, 15

thus preventing an attacker from preparing a faster solution 16

implementation in advance. The code blocks consist of CPU- 17

only instruction blocks in addition to mathematical opera- 18

tions as used in the client puzzle. CPU-only instructions are 19

instructions that are not supported on GPUs or run slower 20

on a GPU than on a CPU, such as reading local cookies, 21

exception handling, networking function, etc. It is further 22

proposed that the server maintains two versions of each code 23

block: cross-platform Java bytecode to send to clients, and 24

the more efficient C binary code for its own computation. 25

Nevertheless, it is still possible for an attacker to create a CPU- 26

GPU instruction mapping in order to translate the puzzle to 27

a GPU implementation in real time. To obstruct this attempt, 28

the puzzle code sent to clients must be obfuscated. 29

In obfuscating the Java bytecode, Wu et al. [2] noted that 30

straightforward cryptographic encryption of the puzzle might 31

undermine the scheme. When an attacker tries different key 32

values to decrypt the puzzle in brute-force manner, decryption 33

with the wrong key would potentially produce syntactically 34

invalid Java bytecode, due to the random nature of standard 35

encryption algorithms. The attacker can thus accelerate the 36

brute-force attempt by detecting syntax violation early in 37

the attempt and quickly abandoning the wrong key value. 38

As such, Wu et al. adopted an obfuscation method based 39

on substitution cipher, where each instruction is permuted 40

over sets of syntactically similar instructions, such as the set 41

of single-byte instructions. Given a sequence of instruction1

opcodes {o0, o1, ...} and a key K = {k0, k1, ...}, the opcode2

oj is replaced with oj + kj mod t where t is the number3

of instructions in the same set as oj . Using this method,4

deobfuscation with any key will always result in syntactically5

valid code, thus eliminating the potential shortcut.6

The above-described obfuscation method uses a simple defi-7

nition of code validity based on operand size and value range.8

That is, each permutation set contains instructions with the9

same number of operands and whose operands have the same10

value range. Two such sets are described: branch instructions11

with 2-byte address operands, and single-byte instructions. In12

reality, as Java is a strongly typed language, there are more13

advanced details that can invalidate the bytecode. The pre-14

execution verification step of the Java Virtual Machine (JVM)15

in fact includes the following checks:16

1) Operand stack states: If an instruction attempts to pop17

operands from the stack, the top of the stack at that18

point must contain the correct number of operands of19

the correct types.20

2) Local variable types: For each local variable, value21

reads and stores must be of a consistent type within its22

live scope in the code.23

3) Local variable initializations: A variable in the local24

variable array must be initialized (by storing a value into25

it) before it can be read.26

Clearly, the obfuscation outcome of instruction permuta-27

tion within the set of single-byte instructions (e.g., changing28

istore_0 to fload_0) cannot be guaranteed to pass the29

above bytecode validation criteria. A DoS attacker could spend30

a little more effort to implement on-the-fly bytecode validation31

that tracks the operand stack and local variable states, in order32

to quickly identify and discard invalid deobfuscation outcome.33

At this point, it is instructive to examine existing Java byte-34

code obfuscation approaches for their suitability in protecting35

software puzzles. There are three main approaches in this36

respect. The first, bytecode encryption, is a straightforward37

approach where the bytecode is encrypted using a key and38

decrypted on the fly in JVM using a custom ClassLoader for39

execution. As discussed, this approach is not suitable for pro-40

tecting software puzzles as it is almost guaranteed to produce41

invalid bytecode. The second approach, code obfuscation, adds42

complexity to the bytecode to make it harder to decompile43

(e.g., by control flow manipulation that results in program44

structures not representable with Java syntax [3]) or ways45

that make the decompiled code harder to read (e.g., renaming,46

method overloading, data/control flow obfuscation [4], [5]).47

The resulting code is valid and executable on standard JVM48

to perform its original functionality. Clearly, this cannot be49

used for software puzzles whose very purpose is to make the50

client spend brute-force effort to recover the functionality.51

The third approach, obfuscated interpretation, aims to hide52

the original functionality of the code from the adversary [6] by53

transforming instructions in the original program to different54

instructions. The original software puzzle obfuscation method55

by Wu et al. belong to this category. The result is a valid56

code that executes a different task than the original code. 1

To achieve the intended functionality, the transformation is 2

reversed on the fly in the JVM. Existing obfuscated interpre- 3

tation methods [6], [7] are FSM-based, where transformation 4

functions are arranged into a finite state machine (FSM) 5

to introduce a degree of randomness in determining which 6

function is invoked at different program points. The FSM 7

is then encrypted with a key and delivered along with the 8

obfuscated program to the deploying device. However, these 9

methods have very few options of transformation functions, 10

thus low protection strength, due to the stringent criteria for 11

code validity discussed above. Monden et al. [6] map an 12

instruction to another instruction that has the same operand 13

signature, and have to insert dummy instructions at the end of 14

the code or loop to maintain a valid stack profile. In contrast, 15

Zhang et al. [7] map an instruction to another instruction that 16

has the same operand signature and stack behavior, but the 17

instructions available for mapping is limited. 18

This paper proposes an enhanced obfuscated interpreta- 19

tion method suitable for the software puzzle, that preserves 20

bytecode validity based on JVM verification requirements 21

as described above. To expand transformation choices, the 22

instruction transformation is not limited to one-to-one: one 23

Java bytecode instruction can be transformed into two or 24

more instructions, and multiple instructions can be compressed 25

into one. This approach allows greater freedom in selecting 26

instructions and operand values in the obfuscated code, some 27

of which could be randomly selected from the valid range. 28

The randomness element makes it possible to produce multiple 29

obfuscated versions of the same software puzzle using the 30

same secret key, and further increases the difficulty for an 31

attacker to reverse engineer the puzzle. 32

II. BYTECODE TRANSFORMATION 33

P0 Px

iconst_2
istore_2

...

iconst_3

istore_3

iconst_0
istore 4

iload 4
…

...

iinc 2 2

iconst_4

iload_3
if_icmple E1

iconst_0
istore_4

iload 5

…

r
௝ݑ

௞ݒ
஺ݑ

஻ݑ , ஼ݑ

஽ݑ

ுݑாݑ

RSTART

ிݑ , ீݑ

r11
r12
…

r21
r22
…

r31
r32
…

(a) Bytecode encoding (b) Encoding rule set

Fig. 1. Bytecode transformation

We denote as P0 the original sequence of bytecode in- 34

structions corresponding to the scope of a Java function, 35

and Px the obfuscated sequence. An encoding rule r is a 36

function mapping a subsequence of P0 to a subsequence of 37

Px, denoted informally as 〈uj〉 → 〈vk〉 for some values of 38

j and k (Fig. 1(a)). The corresponding decoding rule r′ is 39

simply the inverse of r. The encoding rule set R (respectively, 40

R′) consists of rules r (respectively, r′) arranged into an 41

FSM similar to [6], as illustrated in Fig. 1(b). Each rule r 42

or r′ is attached to an FSM state, and is applicable only1

when its attached state is active. State transitions are triggered2

when the encoder/decoder encounter the designated instruction3

sequences in P0. The key, which the client needs to find by4

brute-force in the software puzzle scheme, is used to control5

the start state of the FSM. E.g., given key K = a string6

of bytes k0k1...kn, the start state index can be calculated7

as f(k0, k1, ..., kn) mod nR for some function f , with nR8

denoting the number of states in R. The key also controls9

certain transformation rules, as shall be elaborated.10

TABLE I
WILDCARD DEFINITIONS

Wildcard Expands to

iconst_x iconst_m1, iconst_0, ..., iconst_5

(similarly for lconst_x, fconst_x, dconst_x)

iload_x iload_0, ..., iload_3, iload

(similarly for lload_x, fload_x, dload_x, aload_x)

istore_x istore_0, ..., istore_3, istore

(similarly for lstore_x, ..., astore_x)

ifxx ifeq, ifne, ifge, ifgt, ifle, iflt

if_xx if_icmpeq, ..., if_icmplt

ixxx
iadd, isub, imul, idiv, irem,
iand, ior, ixor, ishl, ishr, iushr

(similarly for lxxx, fxxx, dxxx)

Table I lists the wildcards used for syntactically-similar11

groups of bytecode instructions. The decoupled wildcard12

notation x is treated as a variable, e.g., iconst_2 is an13

instance of iconst_x with x = 2, iconst_(x+1) refers to14

iconst_3, and another instance can be denoted iconst_y15

where y may or may not equal x.16

A. Instruction Transformation17

For a transformation 〈uj〉 → 〈vk〉 to be valid, it must satisfy18

three constraints:19

• It must have a deterministic inverse in order to enable20

correct decoding, thus it cannot involve irreversible op-21

erators such as the modulus function.22

• It must preserve the stack behavior, so that it is applicable23

at any point of the program. That is, 〈uj〉 and 〈vk〉 must24

have the same pre-condition and post-condition regarding25

the stack (e.g., pop two integers and push one integer).26

• Operand values appearing in 〈uj〉must be validly retained27

within 〈vk〉, using the appropriate type and value range28

of operands.29

Various rules can be designed based on these constraints. We30

present a number of examples below, but in practice, many31

other transformations are possible.32

1) Syntactic group transformation: As in [7], a single33

instruction u can be transformed into another instruction34

v in the same syntactic group (Table I) except *load_x 1

and *store_x, whose instructions are not always 2

interchangeable for different values of x. Those are 3

discussed separately below. Example: 4

RULE: iconst_x → iconst_((x+7)%7-1)
APPLY: iconst_0 → iconst_m1

2) Variable index permutation: An instruction that loads 5

from or stores to the local variable array by index can 6

be redirected to a different index containing a variable 7

of the same type. If there is only one variable of that 8

type, a new variable of the required type can be added 9

at the next available index. Example: 10

Let x’ denote the next index of the same type after x, 11

and suppose the local variable array contains: 12

[0] ref [1] ref [2] int [3] ref 13

RULE: astore_x → astore_x’
APPLY: astore_1 → astore 3

3) Value masking: Suppose 〈uj〉 contains constant-value 14

bytes x0, x1, ..., xm. Then 〈vk〉 can include instructions 15

bipush or sipush with operands y0, y1, ..., ym where 16

yi = (xi ⊕ z) where z is derived from the key K, e.g., 17

the 7th byte of K. Example: 18

Suppose K = 9E 30 AA 38 01 F0 64 5D 44 19

...; The value after masking is: 20

(x ⊕ K[7]) = (04 ⊕ 5D) = 59 21

RULE: iload_x → bipush (x ⊕ K[7])
APPLY: iload 4 → bipush 59

4) Branch instruction hiding: This rule transforms a 22

single conditional or unconditional branch instruction u 23

into a sequence 〈vk〉 containing no branch instruction, 24

with sufficient operand bytes in 〈vk〉 to store the branch 25

offset bytes of u (with or without value masking). 26

Remaining operands in 〈vk〉 can be assigned randomly 27

from the valid range. Example: 28

RULE: if_xx a b → bipush (a ⊕ K[0]);
istore_x;
bipush (b ⊕ K[5]);
istore_y;
ixxx; istore_z

APPLY: if_icmpne 00 24 → bipush 9E;
istore_2;
bipush D4;
istore_3;
idiv; istore_2

The wildcards if_xx and ixxx are used above for 29

brevity, but in practice, wildcards in inputs must always 30

be concretized so as to be invertible, while wildcards in 31

outputs must be concretized if they play a distinguishing 32

role. The concrete rule for this example could have, 33

e.g., (if_icmpeq / if_icmpne / if_icmplt 34

/ if_icmpge / if_icmpgt / if_icmple) in 35

place of if_xx and (iand / idiv / irem / 36

isub / ior / iadd) in place of ixxx. 37

5) Branch instruction insertion: This rule transforms a1

non-branching sequence into a sequence containing a2

dummy branch instruction. While the dummy branch3

opcode can be randomly selected, the branch target4

must be chosen carefully to maintain valid stack and5

local variable states along the modified execution paths6

(discussed in Sec. III). Example:7

RULE: istore_x → iload_x; if_xx a b
APPLY: istore_2 → iload_2;

if_icmpeq 00 C2

6) Common pattern transformation: Common instruc-8

tion sequences (usually corresponding to one source9

code line, e.g., a value assignment {iconst_x,10

istore_x}) can be transformed as a unit, to reduce11

code size overhead. Example:12

RULE: iconst_x; istore_y → iinc y x
APPLY: iconst_4; istore_3 → iinc 3 4

B. Encoding / Decoding Rule Set Construction13

Each FSM state in the encoding rule set R contains a set of14

transformation rules selected from the possibilities explained15

in Sec. II-A. Correspondingly, the decoding rule set R′ has a16

state Q′ for each state Q in R, with each state Q′ containing17

an inverse rule r′ for each rule r in Q. Each state transition18

is labeled with a set of instruction sequences of the rule19

designer’s choice; when the encoder encounters instructions20

in P0 that matches one of the sequences, the corresponding21

state transition is triggered. To invert the effect of R, state22

transitions in R′ are triggered by instructions in P0 as well23

(and not Px), that is, based on decoded instructions. The24

sequence matching follows the longest-match policy.25

R′ must be a deterministic transformation: if applying R on26

a given P0 produces a number of possible Px variants (one-27

to-many function), then applying R′ on any Px variant always28

produces the same P0. As such, if Q contains a rule r1 : 〈uj〉29

→ 〈vk〉, then Q must not contain another rule r2 : 〈wm〉 →30

〈vk〉 where 〈wm〉 6= 〈uj〉. Instruction sequences for which no31

rule matches are not transformed, i.e., identity transformation32

applies. These are implicitly present in all states of R, and33

have to be considered in the above restriction as well.34

Fig. 2(a) gives a simple illustration where such a trans-35

formation causes incorrect recovery of P0. The instruc-36

tion sequence {iconst_1; iload_3; if_icmpeq 0037

C2} in P0 does not match the rule and thus, untransformed,38

appears as is in Px. But the decoder finds that the inverse rule39

applies to the subsequence {iload_3; if_icmpeq 0040

C2} and decodes it into {iconst_1; istore_3}, which41

deviates from P0.42

As such, we ensure that no explicit rule has overlapping43

output with any identity transformation: for every rule 〈uj〉44

→ 〈vk〉 in a state Q of R, any sequence s0 matching 〈vk〉45

in P0 while state Q is active is always transformed to a46

different sequence sx in Px. The transformation of s0 can be47

total or partial (i.e., only a subsequence is transformed), but it48

cannot consist purely of syntactic group transformations (Sec.49

istore_x → iload_x;
if_xx a b

R R’

iload_x;
if_xx a b

→ istore_x

...
iconst_1
iload_3
if_icmpeq 00 C2
...

P0

...
iconst_1
iload_3
if_icmpeq 00 C2
...

Px

...
iconst_1
istore_3
...

P0’

R R’

istore_x → iload_x;
if_xx a b

iload_x → iconst_0;
dup;
istore_x

R R’

iload_x;
if_xx a b

→ istore_x

iconst_0;
dup;
istore_x

→ iload_x

...
iconst_1
iload_3
if_icmpeq 00 C2
...

P0
...
iconst_1
iconst_0
dup
istore_3
if_icmpeq 00 C2
...

Px

...
iconst_1
iload_3
if_icmpeq 00 C2
...

P0’

R R’

(a)

(b)

Fig. 2. Examples of improper (a) and proper (b) design of R

II-A, rule 1), as this does not provide enough distinction: the 1

resulting sx will still match 〈vk〉. The exception is when 〈vk〉 2

contains only direct opcodes and no wildcard. To formulate: 3

for every rule 〈uj〉 → 〈vk〉 in a state of R, some subsequence 4

〈wm〉 ⊆ 〈vk〉 must appear as input of a non-syntactic-group 5

transformation in the same state. 6

Fig. 2(b) shows the revised example where the rule trans- 7

forming {iload_x} has been added to R, enabling correct 8

recovery of P0. Note that if the syntactic group transformation 9

rule {iload_x} → {iload_x’} were added instead, P0 10

would still not be correctly recovered. The output of the new 11

rule also contains {istore_x}, which already appears in a 12

rule input, satisfying the constraint in turn. This does introduce 13

some input-output circularity into the design of R, though it is 14

moderated by the fact that only a subsequence of each output 15

needs to be transformed. 16

III. ENCODING / DECODING PROCEDURE 17

Algorithms 1 and 2 shows the encoding and decoding 18

algorithms, respectively. For convenience, we denote the byte 19

address of instruction u as u.addr; the current byte position 20

of program P during traversal as P.pc; and the current stack 21

depth of P as P.depth. The notation RK refers to the encoding 22

rule set R as controlled by the key K, for deriving the start 23

state and value masking bytes. The start state of RK is denoted 24

RK .start, and the active state is denoted RK .q. The various 25

aspects of the procedures are discussed in the following. 26

1 Function encode(P0, R, K)

2 // Scan through P0 to collect information
3 V ars := ∅; Targets := ∅;
4 foreach load/store instruction u in P0 do
5 Let (vi, vt): (index, type) of u;
6 if ∃ vt′ 6= vt : (vi, vt′) ∈ V ars then
7 // Index reuse detected
8 Create new index vi′ := P0.max_locals +1;
9 foreach (vi, vt) load/store instruction w in P0 do

10 Set w’s index to vi′;

11 Add (vi′, vt) to V ars;

12 else add (vi, vt) to V ars;

13 foreach branch instruction u in P0 do
14 Targets += {(u.addr + c) | ∀c: offsets in u};
15 foreach entry e in P0.ExceptionTable do
16 Targets += { e.startPc, e.endPc, e.handlerPc };

17 // Transform P0 into Px

18 Let w: longest sequence length of rule inputs in R;
19 Initialize B: an empty buffer with capacity w;
20 AddrMap := ∅; DepthMap := ∅;
21 RK .q := RK .start;
22 foreach instruction u in P0 do
23 Add u to B;
24 if B is full then
25 Let b: the first instruction in B;
26 if b.addr ∈ Targets then
27 Set AddrMap[b.addr] := Px.pc;

28 outSeq := transform(B, RK , V ars);
29 Add Px.pc to DepthMap[Px.depth];
30 Add outSeq to Px;

31 // End of input: transform remaining instructions in B
32 while B is not empty do execute lines 25–30;

33 // Post-encoding adjustments
34 Perform def-use chain analysis for each variable in V ars;
35 Let ND: set of variables used without prior def;
36 foreach (vi, vt) in ND do
37 Insert a definition for (vi, vt) at the start of Px;

38 foreach branch instruction u with valid offsets in Px do
39 foreach original offset c of u do
40 t := AddrMap[(u.origAddr + c)];
41 Modify c to (t− u.addr);

42 Copy P0.ExceptionTable to Px, adjusting addresses
using AddrMap;

43 Let DU : def-use chains of all variables in V ars;
44 Let UT : {u.pc | ∀u: unreachable instructions in Px};
45 foreach dummy branch instruction u in Px do
46 foreach unassigned offset c in u do
47 Let d: stack depth at Px after u;
48 T := DepthMap[d]− {u.addr} −

{t | pcd ≤ t ≤ pcu, (pcd, pcu) ∈ DU };
49 if T ∩ UT is not empty then
50 Randomly choose a value t from T ∩ UT ;
51 Remove t from UT ;

52 else randomly choose a value t from T ;
53 Set c’s value to (t− v.addr);

54 Output Px;

Algorithm 1: Encoding function

1 Function decode(Px, R′, K)

2 // Scan through Px to collect information
3 V ars := {(vi, vt) | (vi, vt) accessed in Px};
4 Targets := ∅;
5 foreach branch instruction u in Px do
6 Targets += {(u.addr + c) | ∀c: offsets in u};
7 foreach entry e in Px.ExceptionTable do
8 Targets += { e.startPc, e.endPc, e.handlerPc };

9 // Skip variable initializations
10 while u at Px.pc is a basic variable initialization do
11 Advance Px.pc to the next instruction;

12 // Transform Px into P0

13 Initialize P0: an empty bytecode sequence;
14 Let w: longest sequence length of rule inputs in R′;
15 Initialize B: an empty buffer with capacity w;
16 AddrMap := ∅; R′K .q := R′K .start;
17 foreach instruction v in Px do
18 Add v to B;
19 if B is full then
20 Let b: the first instruction in B;
21 if b.addr ∈ Targets then
22 Set AddrMap[b.addr] := P0.pc;

23 outSeq := transform(B, R′K , V ars);
24 Add outSeq to P0;

25 // End of input: transform remaining instructions in B
26 while B is not empty do execute lines 20–24;

27 // Post-decoding adjustments
28 foreach branch instruction u in P0 do
29 foreach original offset c in u do
30 t := AddrMap[(u.origAddr + c)];
31 Modify c to (t− u.addr);

32 Copy Px.ExceptionTable to P0, adjusting addresses
using addrMap;

33 Output P0;

Algorithm 2: Decoding function

A. Local Variable Information 1

To facilitate variable index permutations, the encoder (resp. 2

decoder) performs a preliminary scan of P0 (Px) to identify 3

the variable types corresponding to the local variable array 4

indices. (The optional attribute LocalVariableTable of 5

the Java class file provides this information, but is not always 6

available.) In some cases, Java compilers may use the same 7

index for multiple local variables with non-overlapping scopes. 8

This is an issue if the variables are of different types. We detect 9

such index reuse cases before transformation and re-assign the 10

latter variable to a newly created index. 11

B. Byte Address Adjustment 12

As the transformation changes code size and hence byte 13

addresses of instructions, we adjust all address offsets and 14

targets that persist from P0 to Px (and vice versa), so that they 15

point to the intended instructions with valid stack and variable 16

states. The preliminary scan of P0 or Px collects the tar- 17

1 Function transform(B, FSMK , V ars)

2 // Attempt rule input matching, longest first
3 outSeq := ∅; inSeq := B;
4 while outSeq is empty and inSeq is not empty do
5 if ∃ 〈uj〉 → 〈vk〉 in FSMK .q : inSeq matches 〈uj〉

then
6 outSeq := instantiated 〈vk〉 according to V ars;

7 else remove the last instruction of inSeq;

8 // If no match, identity-transform the earliest instruction
9 if inSeq is empty then

10 Let u: the first single instruction in B;
11 outSeq := 〈u〉; inSeq := 〈u〉;

12 // Update buffer and effect state transition if any
13 B := B − inSeq;
14 while inSeq is not empty do
15 Let inSeq: 〈ui : 0 ≤ i < n〉;
16 if ∃ m ≤ n s.t. 〈ui : 0 ≤ i < m〉 labels a transition

FSMK .q → Q then
17 FSMK .q := Q;
18 Dequeue 〈ui : 0 ≤ i < m〉 from inSeq;

19 else dequeue 〈u0〉 from inSeq;

20 Return outSeq;

Algorithm 3: Transform function

get addresses of branch instructions (if*, goto*, jsr*,1

*switch) after resolving the offset, as well as addresses in2

the ExceptionTable if any. During encoding or decoding,3

the addresses of transformed instructions corresponding to4

those targets are mapped accordingly, and then used for post-5

transformation adjustment. The address mapping is not always6

one-to-one as our scheme works on sequences instead of single7

instructions. Our policy is to map the address of the first8

instruction in the original sequence to the address of the first9

instruction in the transformed sequence.10

C. Dummy Branch Offset Assignment11

In selecting dummy branch targets, we consider a branching12

from program point a to program point b as valid if it fulfils13

two conditions:14

• a and b must have the same stack condition (depth,15

operand types). For this, the encoder maintains a mapping16

of stack depth to program points in Px throughout the17

transformation process.18

• The local variable state at a must be compatible with that19

at b, that is, the resulting execution path containing a→ b20

must not have variable uses without prior definition. To21

this end, we perform a simple intraprocedural data flow22

analysis after transformations to identify variable def-use23

chains [8] across all possible execution paths. Program24

points in between any def-use chain are ruled out as25

targets, as a branching to one of those points would “cut26

off” a chain.27

Dummy branch targets are then randomly selected from among28

the program points that fulfill the above conditions.29

D. Variable Initializations 1

An access to the local variable array (*load_x) should 2

only be made to variables that have been initialized earlier 3

(through *store_x). This could be an issue for transfor- 4

mations that add dummy variables for index permutation, or 5

add originally non-existent variable access (example of rule 6

4). To resolve this, we reuse the variable def-use chains to 7

identify variables for which there exists some use without prior 8

definition. We then insert basic initializations in the beginning 9

of Px for all such variables. These instructions, identifiable by 10

their position at the start of Px, will be ignored by the decoder. 11

IV. CAVEATS 12

A. StackMapTable Validity 13

The StackMapTable attribute is introduced in Java 6 14

and becomes mandatory since Java 7 (class files version 51 15

and later), with the purpose of enabling faster verification 16

[9]. This attribute specifies expected types for local variables 17

and operand stack at selected bytecode offsets, including all 18

branch targets in the code. As our scheme potentially changes 19

instruction addresses and control flow, each version of the 20

software puzzle (original, obfuscated, incorrectly deobfus- 21

cated) will likely have different StackMapTable entries 22

that are incompatible with the other versions. The practical 23

approach is to retain the StackMapTable compiled for the 24

original software puzzle, which is the one legitimate client 25

devices will ultimately execute. If the attacker checks his 26

deobfuscation attempts against the StackMapTable, he will 27

be able to tell if the attempt is wrong. Nevertheless, verifying 28

the StackMapTable will still require considerable effort on 29

the part of the attacker. 30

B. Runtime Error from Value Modification 31

Certain transformations, such as syntactic group transforma- 32

tions and value masking, modify constant values in the stack. 33

The modification may cause runtime errors, e.g., if the value 34

is later used as index to an array, where the modified value 35

is out of the array index bound (e.g., changing 0 to -1). This 36

error cannot be prevented during transformation, because at the 37

bytecode level, we have no way of knowing how the values 38

will be used later in the code. Indeed, this issue is present in 39

all existing obfuscated interpretation methods. For the attacker 40

to exploit this, he will need to perform deobfuscation on the 41

fly and run (or simulate) the instructions as soon as they are 42

deobfuscated. 43

V. EXPERIMENTAL RESULTS 44

We implement our scheme in Java, using Javassist v3.20 45

library [10] to perform bytecode manipulation. The scheme is 46

applied on the AES code blocks used in the software puzzle, 47

as shown in Table II. As expected from the nature of the 48

scheme, it incurs code size overhead more often than not. The 49

code size overhead on the two benchmarks is up to 33.80%, 50

while the maximum transformation runtime overhead is up 51

to 63 ms in the worst case. The code sizes include only the 52

TABLE II
CODE SIZE AND RUNTIME OVERHEAD

Program SubBytes ShiftRows MixCol AddRndKey

Transforms 15 23 75 21

P0 size 64 B 71 B 204 B 74 B

Px size 78 B 95 B 248 B 96 B

Size overhead 21.88% 33.80% 21.57% 29.73%

Max Runtime 31 ms 31 ms 63 ms 31 ms

00 iconst_0

01 istore_3

02 iconst_0

03 istore 5

00 iconst_4 05 iconst_5

01 newarray 10 (int) 06 newarray 10 (int)

03 astore_1 08 astore_1

04 iconst_2 09 iinc 2 by 2

05 istore_2

06 iconst_3 0C iconst_4

07 istore_3 0D iload_3

0E if_icmple 225 (+221)

08 iconst_0 11 iconst_ml

09 istore 4 12 istore_3

0B iload 4 13 iload 5

0D iconst_4 15 iconst_3

0E if_icmpge 202 (+188) 16 bipush 68

18 istore 4

1A bipush 22

1C istore_2

1D idiv

1E istore_2

11 aload_1 1F aload_1

(a) (b)

… …

Fig. 3. Bytecode of the sample application: (a) Original; (b) Transformed

Java functions considered in encoding and excludes other class1

structure components (constant pool, etc.).2

We analyze a representative function MixColumns() in3

Fig. 3, which shows the original bytecode and the transformed4

bytecode side by side, with transformed instructions marked in5

boxes. The encoding rule set R and decoding rule set R′ used6

are given in Fig. 4. The key K used is the 128-bit (16-byte)7

sequence: 9E 30 AA 38 01 F0 64 5D 44 27 A5 778

C0 F9 12 AC. We see that the obfuscation method can9

transform the bytecode with a high level of freedom while10

maintaining code validity.11

VI. CONCLUSION 1

We have described an advanced Java bytecode obfuscation 2

method suitable for protecting software puzzles. The method 3

maintains bytecode validity both in the obfuscated code and 4

in the deobfuscated code regardless if the wrong key is used, 5

hence preventing a DoS attacker from detecting the wrong key 6

early. It solves the limitation of existing validity-preserving 7

Java obfuscation methods by expanding transformations to 8

instruction sequences. This approach enables a wider range 9

of transformation options and randomness in the choice of 10

dummy operands, making it possible to produce multiple 11

obfuscated versions even when the same key is used, and in 12

turn increasing the barrier for attackers to reverse engineer the 13

software puzzle. 14

ACKNOWLEDGEMENT 15

The work was funded under the Energy Innovation Research 16

Programme (EIRP, Award No. NRF2014EWT-EIRP002-040), 17

administrated by the Energy Market Authority (EMA). The 18

EIRP is a competitive grant call initiative driven by the Energy 19

Innovation Programme Office, and funded by the National 20

Research Foundation (NRF). 21

REFERENCES 22

[1] A. Juels and J. G. Brainard, “Client puzzles: A cryptographic counter- 23

measure against connection depletion attacks.” in NDSS, vol. 99, 1999, 24

pp. 151–165. 25

[2] Y. Wu, Z. Zhao, F. Bao, and R. H. Deng, “Software puzzle: A 26

countermeasure to resource-inflated denial-of-service attacks,” IEEE 27

Transactions on Information Forensics and Security, vol. 10, no. 1, pp. 28

168–177, 2015. 29

[3] V. Roubtsov, “Cracking java byte-code encryption,” 30

http://www.javaworld.com/article/2077342/core-java/ 31

cracking-java-byte-code-encryption.html, May 2003. 32

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, 33

and K. Yang, “On the (im)possibility of obfuscating programs,” in 34

Advances in cryptology - CRYPTO 2001. Springer, 2001, pp. 1–18. 35

[5] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating 36

transformations,” Department of Computer Science, The University of 37

Auckland, New Zealand, Tech. Rep., 1997. 38

[6] A. Monden, A. Monsifrot, and C. Thomborson, “A framework for 39

obfuscated interpretation,” in Proc. 2nd workshop on Australasian 40

Information Security, Data Mining and Web Intelligence, and Software 41

Internationalisation - Vol. 32. Australian Computer Society, Inc., 2004, 42

pp. 7–16. 43

[7] X. Zhang, F. He, and W. Zuo, “A framework for mobile phone Java 44

software protection,” in Proc. 3rd Intl Conf. on Convergence and Hybrid 45

Information Technology, vol. 2. IEEE, 2008, pp. 527–532. 46

[8] U. Khedker, A. Sanyal, and B. Sathe, Data flow analysis: theory and 47

practice. CRC Press, 2009. 48

[9] Oracle, “The Java virtual machine specification,” http://docs.oracle.com/ 49

javase/specs/jvms/se7/html/index.html, February 2013. 50

[10] S. Chiba, “Javassist,” http://jboss-javassist.github.io/javassist/. 51

iconst_x → iconst_(x + 1 % 5)

istore_x → istore_x’

if_xx a b → if_xx’ a b

ifxx a b → ifxx’ a b

goto a b → bipush (a ^ K[3]);
i2l;
bipush (b ^ K[10);
lshl;
l2i;
istore_z

(lshl / lshr) → (lshr / lshl)

ixxx → ixxx’

iload_x’ → iload_x

iconst_x → iconst_(x – 1 % 5)

istore_x’ → istore_x

(if_icmpeq / if_icmpne /
if_icmplt / if_icmpge /
if_icmpgt / if_icmple) a b

→ bipush (a ^ K[8]);
istore_x;
bipush (b ^ K[2]);
istore_y;
(iadd / isub / imul / idiv / iand / ior);
istore_z

(ifeq / ifne / iflt /
ifge / ifgt / ifle) a b

→ bipush (a ^ K[14]);
bipush (b ^ K[12]);
(iadd / isub / imul / idiv / iand / ior);
if_xx c d

goto a b → bipush (a ^ K[1]);
bipush (b ^ K[6]);
ixor;
istore_z

(iadd / isub / imul /
idiv / iand / ior / ixor)

→ ineg;
(isub / imul / idiv /
iand / ior / ixor / iadd)

iload_x → iload_x’

iconst_x;
istore_y

→ iinc y x

iinc y x → bipush (x ^ K[9]);
istore_y

istore_x → iload_x;
if_xx a b

iload_x → iconst_0;
dup;
istore_z

{ iconst_x }
{ imul }
{ isub } { iconst_y; istore_x }

{ iconst_x }

{ goto }

{ if_xx }

{ iconst_y; istore_x }

{ istore_x }
{ iand }
{ ixor }
{ imul }
{ isub }

{ iload_x }

if_icmpeq if_icmpne if_icmpge if_icmpgt if_icmple if_icmplt

ifge ifgt ifle iflt

if_xx → if_xx’

ifxx → ifxx’

ST
AR

T

iadd imul ior idiv ixor iand isub irem

ixxx → ixxx’
iconst_x → iconst_(x – 1 % 5)

istore_x’ → istore_x

if_xx’ a b → if_xx a b

ifxx’ a b → ifxx a b

bipush a;
i2l;
bipush b;
lshl;
l2i;
istore_z

→ goto
(a ^ K[3]) (b ^ K[10])

(lshr / lshl) → (lshl / lshr)

ixxx’ → ixxx

iload_x → iload_x’

iconst_x → iconst_(x + 1 % 5)

istore_x → istore_x’

bipush a;
istore_x;
bipush b;
istore_y;
(iadd / isub / imul /
idiv / iand / ior);

istore_z

→ (if_icmpeq / if_icmpne /
if_icmplt / if_icmpge /
if_icmpgt / if_icmple)

(a ^ K[8]) (b ^ K[2])

bipush a;
bipush b;
(iadd / isub / imul /
idiv / iand / ior);

if_xx c d

→ (ifeq / ifne / iflt /
ifge / ifgt / ifle)

(a ^ K[14]) (b ^ K[12])

bipush a;
bipush b;
ixor;
istore_z

→ goto
(a ^ K[1]) (b ^ K[6])

ineg;
(isub / imul / idiv /
iand / ior / ixor / iadd)

→ (iadd / isub / imul /
idiv / iand / ior / ixor)

iload_x’ → iload_x

iinc y x → iconst_x;
istore_y

bipush x;
istore_y

→ iinc y (x ^ K[9])

iload_x;
if_xx a b

→ istore_x

iconst_x;
dup;
istore_z

→ iload_x

{ iconst_x }
{ imul }
{ isub }

{ iconst_y; istore_x }
{ iconst_x }

{ goto }

{ if_xx }

{ iconst_y; istore_x }

{ istore_x }
{ iand }
{ ixor }
{ imul }
{ isub }

{ iload_x }

(a)

(b)

ST
AR

T

Fig. 4. The encoding rule set (a) and decoding rule set (b) used in experimental evaluation

