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ABSTRACT
In this demo, we presentfpga-ToPSS(Toronto Publish/Subscribe
System Family), an efficient event processing platform for high-
frequency and low-latency algorithmic trading. Our event process-
ing platform is built over reconfigurable hardware—FPGAs—to
achieve line-rate processing. Furthermore, our event processing
engine supports Boolean expression matching with an expressive
predicate language that models complex financial strategies to au-
tonomously buy and sell stocks based on real-time financial data.

1. INTRODUCTION
Algorithmic trading is a computer-based approach to execute

buy and sell orders on financial instruments such as securities (e.g.,
stocks, bonds, and options.) Financial brokers exercise investment
strategies using autonomous high-frequency algorithmic trading fu-
eled by real-time market events (e.g., stock & news feeds.) Algorith-
mic trading is dominating financial markets and now accounts for
over70% of all trading in equities [5]. Therefore, as the computer-
based trading race among major brokerage firms continues, it is
crucial to optimize execution of buy or sell orders at the microsec-
ond level in response to market events, such as corporate news,
recent stock price patterns, and fluctuations in currency exchange
rates, because every microsecond translates into opportunities and
ultimately profit [5]. Consider a classical arbitrage strategy with an
estimated annual profit of $21 billion according to TABB Group [6]:
Barrick Gold stock (TSE:ABX) is trading at $40.04 a share in
Toronto while (NYSE:ABX) is trading at $40.05 in New York.
Therefore, to take advantage, a high-frequency algorithmically driven
strategy must quickly respond by buying in Toronto and selling in
New York before the price gap closes [3]. Every 1-millisecond
reduction in response-time is estimated to generate the staggering
amount of over $100 million a year [10].

Algorithmic trading is naturally modeled by an event process-
ing platform in which financial news and market data are captured
as events such as: [stock= ABX, TSXask = 40.04, NYSEask
= 40.05]; while investment strategies are formulated by financial
institutions and brokers in the form of subscriptions such as: [stock
= ABX, TSXask 6= NYSEask] or [stock= ABX, TSXask ≤ 40.04].
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Therefore, a scalable event processing platform must efficiently
find all investment strategies (subscriptions) that match incoming
market events at a high rate, up to a million market events per
second [2]. Therefore, to achieve the desired event processing
throughput, we propose a novel FPGA-based solution to signifi-
cantly speed up algorithm trading computations, namely, market
event parsing and market event matching against strategies. We ex-
periment with three novel approaches exploring the trade-off bet-
ween flexibility in programming versus performance gained in data
processing with FPGAs (Field Programmable Gate Arrays.)

Another key realization in algorithmic trading is that generally
investment strategies are developed using extensive data analysis.
Most important, in high-frequency trading in which orders are ful-
filled in order of microseconds, a miscalculated and a rushed strat-
egy could result in the loss of millions of dollars within seconds.
Therefore, the typical high-frequency trading strategy tends to be
consistent over time, and even the highly competitive micro-level
investment strategy has an average shelf life on the order of days [6].
As a result, many investment strategies are relatively long-lived and
are not rapidly updated. Thus, in addition to using hardware accel-
eration to improve matching and parsing, we can encode parts or
all of the strategies into custom hardware blocks for superior per-
formance and seamlessly re-synthesize, on the order of minutes,
relevant components as strategies change.

Why Use FPGAs? Meeting the demand of data processing at
current network bandwidths, which has a tendency to double in
approximately 9 to 10 months (Gilders Law), is becoming increas-
ingly challenging. This up-trend of network bandwidth is quite ev-
ident in the trading network capacity (1-million+ messages per sec-
ond) [2] which is required to support the large fraction of trading in-
volving algorithmic techniques (over 70%) on today’s markets [5].
On the other hand, supply of affordable line-rate processing so-
lutions is becoming scarce as the trend of up-scaling of transistor
densities and higher clock frequencies in commodity CPUs as pre-
dicted by Moore’s Law is now flattening due to the physical limita-
tions of current semiconductor fabrication technology. Thus, there
is a keen interest in the research community and companies alike
[Celoxica, Exegy, RedLine] to rely on FPGA-based computing so-
lutions for applications where deterministic, multi-gigabit process-
ing throughput and low-latency in forwarding of mission critical
data is required. The true success of FPGAs is rooted in three dis-
tinctive features: hardware parallelism, hardware reconfigurability,
and substantially higher throughput packet processing.

Parallelism & Reconfigurability The ability of an FPGA to
be re-configured on-demand into a custom hardware circuit with
a high degree of parallelism is key to its advantage over CPUs for
data and event processing solutions. Using a powerful multi-core
CPU system does not necessarily increase processing rate (Amdahl’s
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Law) as it increases inter-processor signaling and message passing
overhead, often requiring complicated concurrency management
techniques at the program and OS level. On the other hand, FPGAs
allow us to get around these limitations due to their intrinsic highly
inter-connected architecture and the ability to create custom logic
on the fly to perform parallel tasks [11, 13]. In our design, we
exploit parallelism, owing to the nature of the matching algorithm
(Sec. 3), by creating multiple matching units which work in par-
allel with multi-giga bit throughput rates (Sec. 5), and we utilize
reconfigurability by seamlessly adapting relevant components as
investment strategies evolve (Sec. 5).

Packet ProcessingAnother benefit of an FPGA-based solution
is that there are multiple high bandwidth (giga-bit) I/O pins that
allow these devices to be inserted into the high data-rate streams
without added latency on the outgoing traffic. In modern server
systems, however, there is the additional OS layer latency overhead
in moving data between input and output ports (Sec. 7).

2. RELATED WORK
FPGA An FPGA is a semiconductor device with programmable

lookup-tables (LUTs) that are used to implement truth tables for
logic circuits with a small number of inputs (on the order of 4 to
6 typically). FPGAs may also contain memory in the form of flip-
flops and block RAMs (BRAMs), which are small memories (on
the order of a few kilobits), that together provide a small storage
capacity but a large bandwidth for circuits in the FPGA. Thousands
of these building blocks are connected with a programmable inter-
connect to implement larger-scale circuits.

Past work has shown that FPGAs are a viable solution for build-
ing custom accelerated components [13]. For instance, [11] demon-
strates a design for accelerated XML processing. Work in [12]
shows an FPGA solution for processing market feed data while our
work concentrates on an event processing platform to accelerate the
matching computation of strategies in algorithmic trading. Lastly,
[14] presents a framework to use FPGAs for data stream process-
ing as co-processors in many-core architectures (including CPUs)
while our entire architecture is built directly on FPGAs.

Matching The matching is one of the main computation inten-
sive components of event processing which has been well stud-
ied over the past decade (e.g., [1, 4]). In general, the matching
algorithms are classified as (1) counting-based [4], and (2) tree-
based [1]. The counting algorithm is based on the observation that
investment strategies tend to share many common predicates; thus,
the counting method minimizes the number of predicate evalua-
tions by constructing an inverted index over all unique predicates.
Similarly, the tree-based methods are designed to reduce predicate
evaluations; in addition, they recursively cut through space and
eliminate strategies on the first encounter with an unsatisfiable pred-
icate. The counting- and tree-based approaches can be further clas-
sified as either key-based (in which for each strategy a set of pred-
icates are chosen as identifiers [4]), or as non-key based [1]. In
general, the key-based methods reduce memory access, improve
memory locality, and increase parallelism, which are essentials for
a hardware implementation. The most prominent key-based match-
ing algorithm isPropagation [4].

3. EVENT PROCESSING MODEL
Subscription Language & SemanticsThe matching algorithm

takes as input an event (e.g., market event, stock feed) and a set
of subscriptions (e.g., investment strategies) and returns matching
subscriptions. The event is modeled as a value assignment to at-
tributes and the subscription is modeled as a Boolean expression
(i.e., as conjunction of Boolean predicates.) Each Boolean predi-

cate is a triple of either [attributei, operator, values] or [attributei,
operator, attributej ]. Formally, the matching problem is defined as
follows: given a market evente and a set of financial strategies,
find all strategiessi satisfied bye.

Matching Algorithm The Propagation algorithm is a state-of-
the-art key-based counting method that operates as follows [4].
First, each strategy is assigned a key (a set of predicates) based
on which a multi-attribute hashing scheme uniquely assigns strate-
gies into a set of disjoint clusters. Second, keys are selected from
a candidate pool using a novel cost-based optimization tuned by
the workload distribution to minimize the matching cost [4]. The
Propagation data structure has three main strengths which makes
it an ideal candidate for a hardware-based implementation: (1)
strategies are distributed into a set of disjoint clusters which en-
ables highly parallelizable event matching through many special-
ized hardware matching units, (2) within each cluster, strategies are
stored as contiguous blocks of memory which enables fast sequen-
tial access and improves memory locality, and (3) the strategies
are arranged according to their number of predicates which enables
prefetching and reduces memory accesses and cache misses [4].

4. DESIGN OVERVIEW

Figure 1: Soft-processor(s)-
based implementation

Commodity servers are not
quite capable of processing
market event data at line
rates. The alternative for fi-
nancial institutions is to ac-
quire and maintain high cost
purpose-built network appli-
ances. In contrast, our de-
sign uses an FPGA, to sig-
nificantly speed up algorithm
trading computations involv-
ing market event parsing and
market event and strategy matching. FPGAs offer a cost effec-
tive algorithmic trading solutions, since custom hardware can be
altered and scaled to adapt to the prevailing load and throughput
demands. Hardware reconfigurability allows FPGAs to housesoft
processors—processors composed of programmable logic. A soft
processor has several advantages: it is easier to program than (e.g.,
usingC as opposed toVerilogwhich requires specialized knowl-
edge and hardware development tools), it is portable to different
FPGAs, it can be customized, and it can be used to communi-
cate with other components and accelerators in the design. In this
project, the FPGA resides on a NetFPGA [9] network interface card
and communicates through DMA on a PCI interface to a host com-
puter. FPGAs have programmable I/O pins that in our case provide
a direct connection to memory banks and to the network interfaces,
which in a typical server, are only accessible through a network
interface card. In this section, we describe the three designs that
we are implementing. Not described is a PC-based version, which
serves as baseline for our demo and experiments. It uses exactly
the same C-based matching code as the first approach.

Tuning for Flexibility Our first approach is the Soft-processor(s)-
based solution (cf. Fig. 1), which runs on a custom soft proces-
sor that is implemented on the NetFPGA platform. This solution
also runs the same C-based strategy matching code that is run on
the PC-based version (our baseline); thus, this design is the easi-
est to evolve as message formats and protocols change. In order
to maximize throughput of our event processing application, we
chose NetThreads [7] as the baseline soft processor platform for
the FPGA. NetThreads has two single-issue, in-order, 5-stage, 4-
way multi-threaded processors (cf. Fig. 1), shown to deliver more
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throughput than simpler soft processors [8]. In a single core,in-
structions from four hardware threads are issued in a round-robin
fashion to hide stalls in the processor pipeline and execute com-
putations even when waiting for memory. Such a soft processor
system is particularly well-suited for event processing: The soft
processors suffer no operating system overhead compared to con-
ventional computers, they can receive and process packets in par-
allel with minimal computation cost, and they have access to a
high-resolution system clock (much higher than a PC) to manage
timeouts and scheduling operations. One benefit of not having an
operating system in NetThreads is that packets appear as character
buffers in a low latency memory and are available immediately af-
ter being fully received by the processor system (rather than being
copied to a user-space application). Also, editing the source and
destination IP addresses only requires changing a few memory lo-
cations, rather than having to comply with the operating system’s
internal routing mechanisms. Because a simpler soft processor usu-
ally executes one instruction per cycle, it suffers from a raw perfor-
mance drawback compared to custom logic circuits on FPGAs. A
custom circuit can execute many operations in parallel.

Tuning for Performance Our second approach (cf. Fig. 2),
is a purely hardware solution: custom hardware components per-
form necessary steps involving market event parsing and matching
of market event data against strategies. This method provides the
highest performance, but also involves a higher level of complex-
ity in integrating custom heterogeneous accelerators in which both,
the performance-critical portion of the event processing algorithm
and trading strategies reside (encoded) within the design of the
matching unit logic thereby completely eliminating all on and off-
chip memory access latencies. Moreover, discretization of finan-
cial markets means that the minimum price variation of stock quote
prices is discretized ($0.01 in the US) such that prices can be repre-
sented as scaled integer comparisons in hardware. This allows for
further optimization of hardware resources to accommodate more
matching units, that would otherwise be required to support floating
point comparisons, which is particularly cumbersome in FPGAs.

The Hybrid Approach Due to increased complexity in the hard-
ware-only approach to support dynamic strategies and variable event
data formats, we implemented a third scheme (cf. Fig. 3), which
is a hybrid of the previous two. Since FPGAs are normally pro-
grammed in a low-level hardware-description language, it would
be complex to support a flexible communication protocol. Instead,
we instantiate a soft processor to implement the packet handling in
software. After parsing incoming market event data packets, the
soft processor offloads the bulk of the strategy matching to a dedi-
cated custom hardware matching unit. Unlike the strategy-encoded
matching units used in the hardware-only solution, these match-
ing units use small low-latency on-chip memories,Block RAMs
available on FPGAs, that can be stitched together to form larger
dedicated blocks of memory. The FPGA on the NetFPGA plat-
form [9] has 232 18kbit Block RAMs which are utilized to cache
a small subset of static strategies that do not change very often.
Having an on-chip strategy data cache allows market event match-
ing to be initiated even before the off-chip strategy data can be ac-
cessed. However, our matching algorithm leverages data locality
in the storage of dynamic strategies, which may be updated dur-
ing run time, in contiguous array clusters thereby exploiting burst-
oriented data access feature of the DDR2 (SDRAM), off-chip mem-
ory, while fetching the strategy data clusters.

5. IMPLEMENTATION OVERVIEW
This section provides more details of the proposed twofpga-

ToPSSarchitectures: the hardware-only and hybrid implementa-

Figure 2: Hardware-only implementation

Figure 3: Hybrid implementation
tions.

Hardware-only Implementation Ourfpga-ToPSShardware-only
implementation offers the highest possible rate at which incoming
market events can be matched against investment strategies (sub-
scriptions) that have been encoded in the STRATEGY ENCODED

MATCHING UNIT (SEMU) logic on the FPGA. This method avoids
the latency of both on and off-chip memory access, but significantly
constraints the size of the strategy base that can be supported. A
diagram of this design is shown in Fig. 2. This setup is massively
parallelized and offers strategy matching at extremely high rates
(i.e. one clock cycle).

The stepwise operation of the hardware-only implementation is
depicted in Fig. 2. In this design, the soft processor only serves
to transfer (1) the received market event data packets from the net-
work interface input buffer to the input queue of the our hardware-
only system. Custom hardware submodule, the DISPATCHERunit,
parses (2) the incoming market events and feeds the current mar-
ket event data to all the matching units while generating all the
necessary control signals to run these units synchronously. Each
unit is able to match all encoded strategies against the current mar-
ket (publication) event in one clock cycle. However, subsequent
clock cycles are spent in tallying the matches and preparing the
final responses (e.g. forward address look-up or consolidating sys-
tem wide match counts) that is eventually pushed (3) into the out-
put queue. The soft processor then transfers (4) the final result from
the output queue to the network interface to be sent to the intended
host(s).

Hybrid Implementation With our fpga-ToPSShybrid imple-
mentation, we employ a more generalized design that enables the
matching units to support a dynamic and a larger strategy data
set than can be supported in the hardware-only implementation.
Unlike the SEMUs (strategies encoded within hardware), the BRAM-
based Matching Units (BMUs) allow static strategies to be stored
on the on-chip dedicated low latency Block Rams (BRAMs); thus
making the design less hardware resource intensive compared to
the hardware-only implementation. We adopt two approaches to
reduce the impact of off-chip memory data access latency on the
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overall system throughput. Firstly, we take advantage of the high
degree of data locality inherent inPropagation’s data structure
which helps to minimize random access latency. Secondly, fast
(single cycle latency) but smaller capacity BRAMs are dedicated
for each matching unit to store static strategies, which helps mask
the initial handshaking setup delay associated with off-chip main
memory access, i.e., the market event matching can begin against
static strategies as soon as the event arrives; in the meantime the
system prepares to setup data access from the off-chip DDR2 main
memory.

The stepwise operation of the hybrid system is depicted in Fig. 3.
Upon arrival of a market event, the soft processor transfers (1)
the data packet to the input queue of the hybrid system. A cus-
tom hardware submodule, the DISPATCHERunit, extracts strategy
predicates-value pairs, which are input to hash functions to gen-
erate cluster addresses. Cluster addresses are used to look-up the
memory locations (2) of the relevant strategy clusters residing both
in BMU BRAMs and in off-chip main memory. The DISPATCHER

then feeds the market event (3) and previously computed cluster
addresses (4) on the MU DATA BUS (common to all BMUs). Next,
the DISPATCHERunit activates all parallel BMUs to initiate match-
ing (5) using on-chip static strategies stored in each BMU, while si-
multaneously queuing up read requests for the off-chip main mem-
ory. The transfer of dynamic strategy data between the BMUs is
pipelined to avoid stalling the matching units due to lack of data.
Finally matched strategies are placed (7) into the output queue.

6. DEMO METHODOLOGY
This section describes our demo setup including the hardware

used to implement our FPGA-based algorithmic trading solution
and the measurement infrastructure.

Demo Platform Our FPGA based solutions are instantiated on
the NetFPGA 2.1 [9] platform, operating at 125MHz and have ac-
cess to four 1GigE Media Access Controllers (MACs) via high-
speed hardware FIFO queues (cf. Fig. 1) allowing a theoretical
8Gbps of concurrently incoming and outgoing traffic capacity. In
addition, a memory controller to access the 64 Mbytes of on-board
off-chip DDR2 SDRAM is added. The system is synthesized to
meet timing constraints with the Xilinx ISE 10.1.03 tool and targets
a Virtex II Pro 50 (speed grade 7ns). Our soft processor and match-
ing units run at the frequency of the Ethernet MACs (125MHz),

Demo & Evaluation Setup For our experiments, we use HP
DL320 G5p servers (Quad Xeon 2.13GHz) equipped with an HP
NC326i PCIe dual-port gigabit network card running Linux 2.6.26.
As shown in Figure 4, we exercise our algorithmic trading solu-
tions from the server executing a modifiedTcpreplay 3.4.0
that sends market event packet traces at a programmable fixed rate.
Packets are timestamped and routed to either the FPGA-based so-
lutions (Setup 1) or PC-based (Setup 2) solution. Setup 1 is con-
figured as one of the solutions described in Sec. 4 and Setup 2 is
a baseline serving as comparison only. The network propagation
delays are similar for either solution. Both FPGA-based or PC-
based solutions forward market events on the same wire as incom-
ing packets which allows the Event Monitor (cf. Fig. 4) to capture
both incoming and outgoing packets from both setups. The EM
provides a 8ns resolution on timestamps and exclusively serves for
the measurements.

Demo Workload We generate a workload of tens of thousands
of subscriptions derived from investment strategies such as arbi-
trage and buy-and-hold. In addition, we generate market events us-
ing the Financial Information eXchange (FIX) Protocol with FAST
encoding (cf.fixprotocol.org).

Demo MeasurementsWe characterize the system throughput

Figure 4: Demo Setup
PC Soft-Processor Hybrid Hardware-only

250 53.94 71.09 6.47 3.22
1K 60.77 199.43 7.56 N/A
10K 150.02 1,617.85 87.82 N/A
100K 2,001.29 16,422.87 1,307.34 N/A

Table 1: End-to-end System Latency (µs)
as the maximum sustainable input packet rate obtained by deter-
mining, through a bisection search, the smallest fixed packet inter-
arrival time where the system drops no packets. The latency of our
solutions is the interval between the time a market event packet
leaves the Event Monitor output queue to the time the first for-
warded version of the market event is received and is added to the
output queue of the Event Monitor.

7. CONCLUSIONS
Our fpga-ToPSSframework is built on NetThreads’s soft proces-

sors, which is optimized for throughput and latency because of the
multiple threads executing in round-robin fashion that enables exe-
cution of two instructions in parallel per cycle [7]. Furthermore, our
custom matching units provide the ability to match many strategies
in parallel in addition to providing hardware acceleration. Lastly,
by eliminating the operating system, the FPGA-based solution pro-
vides a superior end-to-end system performance. In Table 1, we
demonstrate the system latency as workload (investment strategies)
size changes from 250 to 100K; a similar trend was also observed
for the system throughput which is omitted due to lack of space.
In summary, even though our FPGA chip (125MHz Virtex II) is
much slower than the latest FPGA (800MHz Virtex 6) and signif-
icantly slower than our CPU (Quad Xeon 2.13GHz), our hybrid
solution outperformed the PC-based solution by upto an order of
magnitude, and our hardware-only, while currently feasible only
for smaller workloads due to lack of resources on the FPGA, im-
proved the latency by nearly two orders of magnitude.
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