Cloudy: A Modular Cloud Storage System

Donald Kossmann
Stephan Merkili

Systems Group, ETH Zurich

{firstname.lastname}@inf.ethz.ch

ABSTRACT

This demonstration presents Cloudy, a modular cloud stor-
age system. Cloudy provides a highly flexible architecture
for distributed data storage and is designed to operate with
multiple workloads. Based on a generic data model, Cloudy
can be customized to meet application requirements. The
goal of this demonstration is to show the ability of Cloudy
to efficiently process different query languages, and to auto-
matically adapt to varying load scenarios.

1. INTRODUCTION

Cloud storage systems are increasingly gaining popular-
ity for all kinds of deployments. They promise to simplify
administration, be fault-tolerant and able to scale on com-
modity hardware. This makes them so attractive, that more
and more developers prefer cloud storage solutions even for
smaller self-hosted environments over traditional database
systems.

By today, a huge variety of cloud storage systems is avail-
able, all with different functionality, optimizations and guar-
antees. That is, solutions focus on a particular scenario
and the provided services are tailored accordingly. As a re-
sult, cloud storage systems vary in the data format (e.g.,
Key/Value vs. row store), access-path optimization (e.g.,
read vs. write, one-dimensional vs. multi-dimensional ac-
cess), distribution (e.g., single vs. multi-data center dis-
tribution), query language, transaction support, availability
etc. For example, Cassandra [6] uses the fully distributed
ring architecture of Dynamo [2] and, thus, can be available
even in the presence of network partitioning. In contrast,
HBase[7] values consistency over availability and does not
tolerate network partitioning. HBase offers versioning capa-
bilities and is particularly suited for read workloads, whereas
Cassandra only uses a simple version number for conflict res-
olution and is better suited for write workloads. Both sys-
tems offer a multi-dimensional access path but no complex
filtering, joins etc. Redis [5], another open-source system,
only supports a one-dimensional access path, is master-slave

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.

Proceedings of the VLDB Endowment, Vol. 3, No. 2

Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

Tim Kraska*
Raman Mittal

Simon Loesing
Flavio Pfaffhauser

*Unawversity of California, Berkeley

kraska@cs.berkeley.edu

based with reduced availability in the presence of network
partitioning, but offers an interesting data model, which al-
lows to store queues and stacks in it. Next to Redis, many
other systems like Voldemort, MongoDB, Scalaris, etc. ex-
ist all positioning themselves somewhere in the design space
of availability, consistency, data model, and workload opti-
mizations.

Although the variety is huge, it is still likely that the user
needs are not perfectly covered by one of the systems. For
example, if one would like the data model of Redis but the
availability of Cassandra, a completely new system needs to
be built. Today’s systems are over-customized, and force
people to either adapt their applications to the storage sys-
tem or develop their own system, which also explains the
huge variety of currently available systems. Furthermore, by
deciding for a particular setup, users narrow the application
focus (e.g., either analytical or transactional) and change the
way the application can evolve over time, often resulting in
misuses of services.

To overcome this system jungle we started to build Cloudy,
a modular cloud storage system. The goal of Cloudy is to
provide a configurable cloud storage system, which can be
tailored and modified by the user to meet his requirements.
Cloudy allows customizing the availability and consistency
guarantees to the user’s needs by adjusting the consistency
protocol, the routing (e.g., master-slave vs. DHT) and the
load balancing (e.g., load calculator and strategy) compo-
nents. Furthermore, Cloudy allows for using the storage
engine which best suits the application (e.g., in-memory vs.
disk). In order to enable all components to communicate
seamlessly with each other, Cloudy introduces one general-
ized data model called DPI. The DPI model not only al-
lows to map richer models (e.g., relational, RDF) to it, but
also simplifies the processing throughout the system as it
enables representing query and data in the same format.
Finally, Cloudy does not restrict itself to a Key/Value in-
terface, instead it allows for different higher interfaces (e.g.
SQL, XQuery) and - as data and queries are the same -
Cloudy naturally supports continuous queries and stream-
ing scenarios.

We currently have a working prototype of Cloudy with
several key features that we would like to demonstrate. The
implementation includes a Key/Value and a SQL interface
as well as streaming capabilities. As all configurations nat-
urally inherit the common parts of the systems, we can fur-
ther show the fault tolerance as well as the automatic scale
up and scale down depending on the load for all use cases.
In the remainder of this demonstration proposal, we first

1533

present an architectural overview of Cloudy, highlighting the
modular architecture to be presented during the demonstra-
tion. Then we summarize the presented features, namely
the query interfaces (Key/Value, SQL, XQuery Streaming)
& load balancing and scale up, with details on how they will
be used to showcase the major technical features of Cloudy.

2. SYSTEM OVERVIEW

In this section, we outline the main properties and features
of Cloudy. This includes a description of the modular archi-
tecture and the data model, as well as a brief presentation
of all components. This section ends with a demonstration
of a typical data workflow inside Cloudy.

2.1 Big Picture

From the beginning, Cloudy has been designed in a mod-
ular way with the goal to operate with easily exchangeable
components. In this flexible architecture, each component
has a specific task, implements a defined set of function-
alities and is connected to other components via clear in-
terfaces. By using different implementations of one compo-
nent, specific properties of the system can be modified (e.g.,
changing the protocol component can change the way data
is replicated) and the system can be tuned to fulfill specific
requirements or execute particular workloads.

At the core of Cloudy is the modular distribution architec-
ture. Each node in the system is an autonomously running
process which executes the entire Cloudy component-stack.
This implies that every node can receive requests, process
these requests and at the same time physically store parts
of the data. In Cloudy, every node covers all functionalities
of the storage system and renders a centralized control un-
necessary. To avoid an undefined behavior, each node in a
running Cloudy system shares the same configuration and
components. However, depending on the used components,
different nodes might take different roles in the system (e.g.,
by master election one node can become the manager of the
complete system). Cloudy even allows to change the topol-
ogy from fully distributed to centralized control depending
on the user requirements.

Cloudy supports several replication and partitioning schemes

for distributing the load across nodes. Having several repli-
cas of the data increases the overall failure resilience of the
system. Cloudy distinguishes between the partitioning (how
data is grouped together), the routing (to determine where
the data is stored) and the consistency protocol (how dif-
ferent replicas are kept in sync). It even allows combining
different partitioning schemes with different consistency and
routing models. One of the currently existing implementa-
tions is the quorum protocol combined with a distributed
hash table for routing and order-preserving hashing similar
to the techniques used in Dynamo [2]. The quorum protocol
provides high scalability as well as availability, but reduced
consistency. An alternative implementation which we use
for the streaming workload, consists of a query-based par-
titioning, with DHT routing and a strong consistency pro-
tocol for keeping replicas in sync (at the cost of reduced
availability). This, together with the fact that Cloudy dis-
tinguishes between temporary and permanent failures, facil-
itates the trade-off between consistency, availability and tol-
erance against network partitioning as defined by the CAP-
theorem individually for every expected use case.

In a distributed storage system load, is not always evenly

External Interfaces

Keyvale | | saL | | XQuery |
Components Services
Core Load Balancing Infrastructure
| Bootstrapper | | Load Calculator | | Messaging | ,Wl
| Router | | Load Balancer | | Gossiper | | Version Control |
| Protocol | | Cloud Burster | | Leader Election |

Storage Engine

| Bekeleyps | [Hasnraple | | MXQuery |

Figure 1: Cloudy Modular Architecture

distributed and ”"hot spots” (nodes with very high load)
show up. That is why Cloudy continuously keeps track of
the load situation on each node. As soon as a node suf-
fers from high load, a part of its data is shifted to another
node and consequently the load is reduced. In case load bal-
ancing among existing nodes is no longer possible (e.g., all
nodes are overloaded), the system will cloudburst. Cloud-
bursting refers to the ability to dynamically add or remove
nodes from the system depending on the load. This ability
to flexibly adapt to changing load situations is one of the
main advantages of the cloud computing paradigm and is a
key to high scalability as well as optimized resource utiliza-
tion. Again, Cloudy offers several alternative strategies for
performing load balancing and cloudbursting operations.

Cloudy supports a variety of interfaces to access the data.
The most simple interface is Key/Value which supports put
and get requests. More advanced interfaces include SQL and
XQuery. All query languages and data models are automat-
ically translated by the interface to the internal DPI model,
which is explained in Section 2.3. Finally, Cloudy supports
different storage engines, ranging from in-memory hash map
to relational stores (e.g., Berkeley DB).

This freedom of choice of data model, query language,
storage format, consistency and distribution architecture al-
lows customizations way beyond the capabilities of existing
cloud storage systems.

2.2 Components

Figure 1 gives an overview of the component-architecture
of Cloudy. In the following we give a brief description of
the most important components and how they are related
to each other:

e External Interfaces: The external interfaces repre-
sent the access points to the system. Cloudy currently
provides a Key/Value, SQL and continuous XQuery in-
terface. The SQL interface is offered through MySQL,
for which we implemented a storage engine translating
the SQL requests to Cloudy’s internal operations and
data model. The XQuery streaming interface offers
registering continuous XQuery and push events to the
system. For all interfaces, we offer client-side routing.
This means that the location of data is cached and
new requests are always directly sent to the responsi-
ble node.

e Router: The router’s task is to assign data to nodes

1534

and to keep track where data is located. The proto-
col uses the router to identify all endpoints (nodes)
which are responsible for a specific data item. Cur-
rently, the router is implemented as a distributed hash
table (DHT), however, static routing tables or trees
are alternatives.

Partitioner: The task of the partitioner is to de-
termine data groups which should be placed together
on one node. At the moment, Cloudy supports do-
main (i.e., database) partitioning, table or column-
based grouping.

Protocol: The protocol coordinates data access and
is the layer between the external interfaces and the
persistent store. The protocol guarantees a specific
level of replication and data consistency. One imple-
mentation of this component is the quorum protocol as
described in the previous section. However, also more
advanced consistency implementations are possible in-
cluding consistency rationing [3], which automatically
adapts the level of consistency at run-time.

Store: The store is responsible for storing data persis-
tently. Current implementations of the store either use
an in-memory hash map or the Berkeley DB (BDB) for
data storage or MXQuery [4] for continuous queries.
Gossiper: The gossiper’s role is to determine the live-
ness of nodes and to propagate metadata throughout
the system. The latter allows to synchronize the DHT
among the nodes and minimizes the number of mis-
routed messages in the system.

Load Balancer and Load Calculator. In regular in-
tervals, the load balancer calls the load calculator and
then decides whether to change the load distribution
and repartition the data.

Cloudburster: The cloudburster checks in regular in-
tervals if new nodes have to be added or removed from
the system. As this typically requires a centralized de-
cision, the default implementation depends on leader
election to avoid over-adding machines.

Some components, shown in Figure 1 as services, are not
exchangeable. These services are deeply integrated into the
system core and modularizing them would significantly in-
crease complexity while adding little value. However, future
versions of Cloudy might modularize them if use cases make
it reasonable.

Because of space constraints, we are not able to describe
all components of Figure 1 in detail. In particular, we do
not describe the mentioned services and infrastructure com-
ponents. Those components/services provide low-level func-
tionalities for all other components (e.g., the messaging ser-
vices or the statistics module) and are not expected to be
frequently individually configured by the user.

2.3 Data Model

The data model of Cloudy is based on a data structure we
call the DPI. The DPI is a set of fields which can be used
to identify, transport and query data items. A DPI contains
a key (unique identifier of a data item), information about
the data structure (e.g., to which domain the item belongs),
the data itself and additional metadata. In combination
with three basic data operations to read, write and delete
data, the DPI is a powerful data model, generic enough to
be used to implement a multitude of more complex data
models (e.g., a relational model). The following three basic

data operations are provided by Cloudy:

e Set<DPI> get(DPI dpi)
e void put(DPI dpi)
e void delete(DPI dpi)

Each request to the system must first be transformed into

a DPI object from the external interface before being pro-
cessed by the system. While the put and delete operations
do not return any value, the get operation returns a set of
zero, one or more DPI objects. A DPI object is composed
of the following fields:

Key: The key is the unique identifier of a DPI. Dif-
ferent DPIs with the same key point to the same re-
quested data.

Type: The type is used as an additional identifier. It
allows defining the data as part of a domain or a hi-
erarchical data model (e.g., define database, table and
attribute of the relational model). Depending on the
implementation, the pair (key, type) uniquely deter-
mines a DPI.

Value: The value field contains the data as a binary
object.

Lifetime: The lifetime defines how long data is valid.
Essentially, with this field we introduce data with a
limited durability for streaming. Thus, in the stream-
ing use case, data (i.e., events) is streamed into the
system and not stored unless an continuous query ex-
tends the lifetime.

Version: The version is an internally maintained field
that contains version information. It can be used by
the protocol to provide specific consistency guarantees.
Hint (optional): With the hint field, additional infor-
mation can be passed between components (e.g., from
the front-end to the store).

It is important to note, that the DPI serves as the data

model and query language by using wildcards and simple

variables.

Depending on the data operation and how the

fields are set, the DPI can have a different meaning. For a
put operation at least the key, type and the value fields have
to be set. This causes Cloudy to create a unique identifier
based on the type and key. Queries on the other hand, can
have wildcards for the different DPI fields. For example, a
wildcard for the key and value, but not the type, would re-
turn a list of all DPIs matching the type. Only the lifetime
field cannot be used for matching the data, as a value di-
rectly defines the lifetime of the query (e.g., 0 for one-time
queries and oo for continuous queries).

The following data operations exemplify the query mech-

anism of Cloudy using DPI objects
(syntax: DPI<Key, Type, Value,LifeTime>):

e put DPI<Mike, dbl:customer, "MyStree;MyCity", oo>
is a put request that permanently stores a new DPI
with the key Mike and type dbl:customer.

get DPI<Mike, dbl:customer, *, O0>returnsthe pre-
viously inserted DPI.

get DPI<[a,M],dbl:*, *, 0> is a range query which
returns all DPIs matching the type dbl:* with a key

in the range between a and M.

To illustrate how Cloudy processes data, we will explain

a sample workflow of a get operation in the next section.

1535

9

get sDPI)
1y Set <DPI>
Protocol [%| get (OPI) | External Interface (Key/Value)
get (DPI) 7 . .DPI) ? S
6 Set <DPI>
2 Set<lDPI>
Store
Set <DPI> GetPrefList (DPI)
Endpoint 1 >
s [Protocol 3 Router

set<opt- 7| (Quorum) | <EPeEPLEP7> | (DHT)
5 *

4

Protocol |4 et (DPI)

oot (OP) getlDPlJ f 7

6 Set <DPI> 6 Set <DPI>

]

Store | Store (BDB)

Endpoint 7 Endpoint 8

Figure 2: Sample Data Workflow in Cloudy
2.4 Sample Data Workflow

Figure 2 presents a data workflow of a get request through
Cloudy. In this example we use the Key/Value interface,
the DHT implementation, the quorum protocol (with repli-
cation factor of three and read quorum of two) and the BDB
store. Furthermore, we assume that no failures occur during
execution.

1. The client issues a get request to Cloudy. Because of
client side routing the request is directly sent to the
responsible endpoint 8.

2. The external interface forwards the get request to the
quorum protocol.

3. The quorum protocol checks whether this endpoint is
responsible to handle the request and asks the router
component (here, a DHT) to provide it with the pref-
erence list (list of all replicas) for the given DPI.

4. The router checks in its routing table which endpoint
is responsible for the DPI (endpoint 8) and which end-
points are the two replicas (endpoint 1, endpoint 7).

5. The quorum protocol sends out the get request to all
the endpoints in the preference list using the messaging
component.

6. The quorum protocol on each endpoint receives the get
request message and checks again the responsibility as
data might have been moved. If the node is respon-
sible, it accesses the local store or otherwise forwards
the request.

7. The store sends back a set of DPIs to the quorum
protocol.

8. The retrieved set of DPIs is sent back to the requester
protocol. Because the read quorum is set to two the
responsible endpoint will only wait for two responses
to arrive.

9. Finally the result set is sent back to the Client.

3. DEMONSTRATION DETAILS

In order to demonstrate the key features of Cloudy, we
will show how the different query languages and data models
are automatically mapped to Cloudy’s internal data model
and operations. Furthermore, we will demonstrate how the
system adapts to changing workloads by balancing a set of
nodes and automatically adding and removing nodes in the
system. For the whole demonstration Cloudy will be exe-
cuted on virtual machines provided by the Amazon Elastic

Compute Cloud (EC2) service.

3.1 Query Processing Demo

Cloudy’s data model is designed to support a variety of
different query languages and data models. In this first
part of the demonstration, we will show how Cloudy’s in-
ternal data model and the supported operations are used
for a Key/Value store, the relational model with SQL and
streaming with XQuery. To demonstrate the capabilities, we
will use different queries ranging from key and key-range re-
quests to the full implementation of the LinearRoad stream-
ing benchmark [1]. In addition, we will allow the user to
issue custom queries against pre-loaded data and visualize
how those query translate to the underlying data model and
operations. Finally, we will outline how the system can be
configured by choosing a partitioning, routing and storage
engine.

3.2 Load Balancing and Scale Up Demo

Cloudy permits exchanging single parts of the system to
customize it for different workloads without requiring to
change other components in the system. Thus, all config-
urations can naturally profit from already existing features
such as failure detection and load balancing and it is not
required to re-invent the wheel. In this second part of the
demo we are going to show, how the system automatically
adapts itself to failures and changing workloads.

For the Key/Value store, we are going to create a synthetic
workload of read and write requests to the system. The
workload is changing over time (e.g., the key-request distri-
bution changes) and by means of a GUI we will demonstrate
how the system adapts itself by re-partitioning the data and
adding and removing nodes to the system.

For the streaming use case, we are going to use the Lin-
earRoad benchmark in order to show the streaming as a ser-
vice capabilities of Cloudy. However, the design objective
of Cloudy is not to minimize the latency of single queries
(Cloudy so far has no automatic query splitting capabili-
ties). Cloudy focuses on supporting many users with several
queries simultaneously. Hence, instead of issuing one Linear-
Road benchmark and varying the load of it, we issue several
LinearRoad benchmarks simultaneously and vary the num-
ber of benchmarks over time. Again, by means of the same
GUI we are going to present how the system adapts itself to
the changing workload.

4. REFERENCES

[1] A. Arasu et al. Linear Road: A Stream Data
Management Benchmark. In Proc. of VLDB, pages
480-491, 2004.

[2] G. DeCandia et al. Dynamo: Amazon’s Highly
Available Key-value Store. In Proc. of SOSP, pages
205-220, 2007.

[3] T. Kraska et al. Consistency Rationing in the Cloud:
Pay only when it matters. In Proc. of VLDB, 2009.

[4] MXQuery. MXQuery: A lightweight, full-featured
XQuery Engine. http://mxquery.org/, March 2010.

[5] Redis. Redis. http://code.google.com/p/redis/, March
2010.

[6] The Apache Software Foundation. Cassandra.
http://cassandra.apache.org/, March 2010.

[7] The Apache Software Foundation. HBase.
http://hadoop.apache.org/hbase/, March 2010.

1536

