
iFlow: An Approach for Fast and Reliable Internet-Scale
Stream Processing Utilizing Detouring and Replication

Christopher McConnell, Fan Ping, Jeong-Hyon Hwang
Department of Computer Science

State University of New York at Albany

{ctm, apping, jhh}@cs.albany.edu

ABSTRACT
We propose to demonstrate iFlow, our replication-based system that
supports both fast and reliable processing of data streams over the
Internet. iFlow uses a low degree of replication in conjunction with
detouring techniques to overcome network outages. iFlow also de-
ploys replicas in a manner that improves performance and availabil-
ity at the same time, and can cope with varying system conditions
by continually migrating replicas.

Based on a live network monitoring application, our demonstra-
tion will substantiate the strengths of iFlow. During the demon-
stration, various visual tools will provide graphical evidence of im-
provements with regards to availability, performance, and resource
usage. To show iFlow’s adaptivity, these tools will also allow us
to control the demonstration situation including injecting different
types of failures.

1. INTRODUCTION
Recent years have seen significant interest in applications where

high-volume, continuous data streams are generated at diverse ge-
ographic locations and distant users must receive the results of
processing the data in near real-time. Examples of these applica-
tions include real-time processing of financial data streams, online
monitoring of Internet components, and sensor-based monitoring
of global environments. These Internet-scale stream processing ap-
plications can be facilitated by systems that can express the desired
computation as a graph of operators [1, 3, 4] and then instantiate
the operators over a large number of nodes [12].

When developing an Internet-scale stream processing system, we
need to address the challenges that arise due to node and network
failures particularly with end-to-end communications. End-to-end
communication over the Internet may have failure rates as high as
2.4% [5, 10]; an overwhelming percentage of these failures occur
at the network link level. Detecting and solving such outages may
take anywhere from seconds, to several minutes [11], which can be
detrimental in a system where response in near-real time is neces-
sary. Although node failures occur less frequently, node failures
can cause a loss of essential data or temporary stoppage in data
transmission.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

We observe that previous techniques that handle node and link
failures have an important limitation when used for Internet-scale
stream processing [2, 6, 7, 8, 14]: they provide only a single means
of correction, namely replication of operators. In such a case, the
degree of replication is typically determined by the desired level
of tolerance for network failures rather than the less frequent node
failures. Previous replication techniques thus incur a large over-
head cost to improve availability.

To overcome the aforementioned challenges and limitations, we
have implemented iFlow, an Internet-scale stream processing sys-
tem. The main goals of iFlow are to (1) improve availability (prob-
ability of end users receiving the requested data on time) while (2)
lowering the cost of additional network and processing resources,
and finally (3) improve on the average latency measured over all
nodes for receiving the processed data.

To meet these goals, iFlow utilizes a low degree of replication
with the following techniques. First, iFlow utilizes detours in the
face of network outages. In other words, when a node detects a
communication problem, it attempts to send data to the destina-
tion node via another node. Our detouring technique proactively
identifies such forwarder nodes and prioritizes them based on their
likelihood of relaying data under possible network failure scenar-
ios (Section 2.3). Second, iFlow effectively improves availabil-
ity by replicating operators at nodes that introduce new detour-
ing opportunities (Section 2.2.2). Finally, as network conditions
change, iFlow migrates operator replicas in a manner that reduces
resource usage and improves both performance and availability
(Section 2.4).

In this demonstration proposal, we provide an overview of the
iFlow system and then describe the main contributions of our work,
focusing on our techniques for replication, detouring, migration
and repair. We conclude with our detailed plans for displaying the
impact of our contributions.

2. MAIN FEATURES OF IFLOW
iFlow strives to outperform its earlier versions [6, 8] and other

previous solutions [2, 14] in performance, availability and resource
efficiency through detouring, replica deployment and migration.
iFlow groups nodes for scalability reasons. Nodes in the same
group periodically obtain the detailed routing and latency informa-
tion for all communication paths between them. This information
is then sent to an elected coordinator of the group. The coordi-
nator is responsible for deploying replicas and migrating them to
adaptively improve performance and availability.

2.1 Replication Model
iFlow adopts our previous replication framework [8]. In this

framework (illustrated in Figure 1), multiple replicas send data to

1557

U1

U1

ping

A

B

C

U2

CPU load

network delay

U2

duplicate filter

(time, node, load)
(9:00:00, B, 80%)
(9:00:00, C, 50%)
(9:00:01, B, 90%)
(9:00:01, C, 40%)
(9:00:00, C, 50%)
(9:00:01, B, 90%)
........

3

’

(time, node, load)
(9:00:00, C, 50%)
(9:00:01, C, 40%)
(9:00:00, B, 80%)
........

(time, node, load)
(9:00:00, B, 80%)
(9:00:01, B, 90%)
(9:00:00, C, 50%)
........

3

’

’

Figure 1: Replication Model. Nodes B and C report their CPU usage to
replicas ∪2 and ∪′

2. These replicas merge streams and send the result to 1′
3 in

parallel. 1′
3 uses whichever tuple arrives first from ∪2 and ∪′

2, while ignoring
duplicates (see those struck-through).

downstream replicas, allowing the latter to use whichever data ar-
rives first, ignoring delayed data. To further expedite processing,
replicas run without synchronization, possibly processing identical
data in a different order as illustrated by replicas ∪2 and ∪′2 in Fig-
ure 1. Despite this relaxation, our previous work guarantees that ap-
plications always receive the same results as in the non-replicated,
fault-free case. This replication model has a distinct advantage of
improving performance with more operator replicas. It also allows
the system to continue its operation even with the presence of fail-
ures which are typically difficult to detect on the Internet scale. For
further details about the replication model, we refer the reader to
our previous article [8].

2.2 Initial Replica Deployment
Given the replication model described in Section 2.1, a question

that arises is the initial deployment of operator replicas. Our solu-
tion to this problem is as follows:

2.2.1 Deployment of First Operator Instances
Whenever the coordinator of a node group is requested to in-

stantiate operators, it first selects reliable, under-utilized nodes and
constructs an initial deployment plan where each operator is ran-
domly assigned to one of the selected nodes. The coordinator then
refines the plan by repeatedly choosing one operator and reassign-
ing the operator to a node that would improve performance (i.e.,
reduce the network delays of the input and output streams of the
operator). When the planning reaches an optimized deployment
of operators, the coordinator creates the first instances of operators
according to the plan.

2.2.2 Detouring-Aware Replica Deployment
After creating the first instances of operators, the coordinator de-

ploys k more replicas for each operator to mask up to k simul-
taneous node failures. During this phase, it is also beneficial to
replicate operators in a manner that improves network availability.
Thus, given operator o which has already been replicated at nodes
N1, · · · , Nk, the coordinator estimates the gain in availability of
replicating o at node N for all possible N /∈ {N1, · · · , Nk} and
then replicates o at a node that maximizes the gain.

Since iFlow strives to mask network failures using detouring, the
availability gain of replicating o at node N will increase as more
nodes are likely to forward messages from upstream nodes to N
and from N to downstream nodes, particularly when all the other
replicas are isolated from the network. Thus, the availability gain,

U

N

C

A

B

Figure 2: Detouring Example. Node U sends data to node N . If the link
between U and N fails, B and C might be able to forward data from U to N .

denoted as ∆avail(N |N1, ..., Nk), is approximated as:∑
all node F /∈{N1,··· ,Nk,N}

∆avail(N |N1, ..., Nk;F)

where ∆avail(N |N1, · · ·Nk;F) denotes the probability that node
N can communicate with a potential forwarder F when other nodes
N1, · · ·Nk cannot. This approximation is made under the assump-
tion that forwarder F is highly likely to reach all the upstream and
downstream nodes which are usually independent of N1, ..., Nk.

∆avail(N |N1, · · ·Nk;F) is also approximated as |∩
k
i=1
−−→
NiF−

−−→
NF |

|∩k
i=1

−−→
NiF | ·

|∩k
i=1
−−→
FNi−

−−→
FN|

|∩k
i=1

−−→
FNi| since (1) simultaneous failure of

−−→
N1F , · · · ,

−−→
NkF

is typically caused by the failure of their common path (∩k
i=1

−−→
NiF),

(2)
−−→
NF can have a higher availability benefit as it is less dependent

on the common path (i.e., the overlap decreases), and (3) routes
−−→
NF and

−−→
FN may not be symmetric [11], thus can have different

availability benefits.

2.3 Detouring
iFlow uses detouring to mask network problems with low repli-

cation overhead. If a node U cannot send data to a node N , it
checks if any node in the same group can successfully forward data
to N . Node U then continues to use the first successful detour until
the direct network path to N becomes operational.

To efficiently carry out detouring, each iFlow node U contains
a detour planner which receives updates, via remote nodes, about
their current route(s) to other remote nodes. Based on this routing
information, the detour planner updates, for each remote node N ,
detour plan P[N] consisting of routes that may allow node U to
reach N via some remote node in the group. These routes in the
detour plan are prioritized based on their latencies and overlap with
the direct network path. The reason behind this is that, given the
current path

−−→
UN , a detour

−−−→
UFN via a remote node F tends to

have a higher benefit as (1) the overlap between
−−→
UN and

−−−→
UFN

gets smaller and (2)
−−−→
UFN has a smaller delay. As described in

Section 3, we intend to demonstrate the impact of our benefit-based
detouring on both availability and performance.

Figure 2 illustrates an example where node U prioritizes three
detours to N (i.e., via A, B and C). In this example, the detour via
A (i.e.,

−−−−−→
UNAN) has a significant overlap with the original path to

N (i.e.,
−−→
UN), thus the benefit of the detour is low. On the other

hand, both the detours
−−−→
UBN and

−−−→
UCN (i.e.,

−−−−−→
UCBN) have high

benefits since they do not overlap with
−−→
UN except the end points.

Between them,
−−−→
UBN is a better choice because it involves fewer

network hops (i.e., shorter probing time and higher performance)
than
−−−→
UCN .

1558

C1 C2

NM N’

S

Figure 3: Migration Example. Operator replicas are running on nodes
N and N ′. Operator migration from N to M can improve performance from
C1’s perspective.

2.4 Replication-Aware Adaptation
The system conditions can change over time as the input rate

and subsequently the processing load vary, nodes join and leave
the system, and regional congestion and failures occur. To adapt
to such changes, iFlow continually migrates an operator to a node
that further improves performance and availability (estimated as in
Section 2.2.2). Each migration copies the state of an operator to
a new node without stopping the execution of the operator using
a copy-on-write technique [9]. Our migration technique assesses
the benefit of migrating an operator based on its impact on end-
applications. The reason behind this is that the performance (i.e.,
the end-to-end latency) in our replication framework depends on
the fastest data flow among multiple replicated flows, thus some
slow streams may have limited impact on performance.

As an example, let’s assume that nodes N and N ′ in Figure 3
run operator replicas and then consider the benefit of migrating the
operator replica at N to M . In this case, stream

−−→
NC2 has a low im-

pact because C2 would usually receive data from
−−−→
N ′C2 before it re-

ceives the same data from
−−→
NC2. On the other hand, both

−−→
NC1 and−−−→

MC1 have a high impact since C1 will be affected by them (rather
than the slower stream

−−−→
N ′C1) before and after migration, respec-

tively. It can be seen that the migration from N to M is advanta-
geous since the end-to-end delay at client C1 would decrease (while
C2 would remain unaffected) as C1 would receive data along a
faster route (

−−−−→
SMC1) rather than the slower one (

−−−−→
SNC1).

2.5 Repair
If a node crashes, all the operators of the node become unavail-

able. In this case, the original fault-tolerance level cannot be guar-
anteed until new replicas act on behalf of the unavailable operators.
To minimize such a period of instability, prompt failure detection
and replica reconstruction are required. In our approach, when-
ever a node cannot send data to a remote operator o via all possible
routes, it notifies the coordinator. If the coordinator receives such
notifications from a majority of the upstream nodes (i.e., the nodes
that send data to o), it suspects that o is lost due to node failure
or completely isolated from the rest of the network. In this case, a
new replica of o is created by copying an available replica of o as
described in Section 2.4. The coordinator uses the replica deploy-
ment algorithm in Section 2.2.2 to determine the node to run the
new replica.

3. DEMONSTRATION DETAILS
The demonstration will stress the strengths of iFlow using a live

network monitoring application. Specifically, we will show that
iFlow can efficiently react to changing system conditions by con-
tinuously improving both performance and availability as well as
effectively masking node and network failures with substantially
less overhead than previous solutions.

Figure 4: The iFlow Visualizer

Figure 5: Latency measurements over a sliding window

3.1 Visualizer
The demonstration will proceed using the visualizer shown in

Figure 4. The visualizer contains a logical view that displays the
queries as networks of operators and a physical view that illustrates
the actual deployment of replicas and available nodes around the
globe. By utilizing various graphs, the visualizer will display the
changes in iFlow measurements across multiple demonstration set-
tings (Section 3.3). The visualizer will also be used to emulate
node failures (by killing processes) as well as network congestion
and failures (by adding extra delays or terminating connections).

3.2 Setup
The demonstration will show the operation of a node group con-

structed as described in Section 2. On tens of selected PlanetLab
nodes [13] that form a group, we will run a wide area monitor-
ing application. If the demonstration site has a network problem,
we will conduct the demonstration only locally while emulating
a global networking based on pre-collected network traces. We
will demonstrate the impact of detouring by running iFlow with
several alternatives (no detouring, random detouring, benefit-based
detouring). iFlow also has multiple replica deployment strategies
(detour-aware, minimal cost, random), the impact of which can be
displayed over multiple demonstrations.

As illustrated in Figures 1 and 4, the demonstration will involve
a number of nodes that periodically report CPU load as well as the
communication latency for each path to a remote node. The latency
readings will be merged at replicas of ∪1 while the load readings
will be merged at replicas of ∪2. The replicas of 13 will asso-
ciate the CPU load readings and network latency readings based on
the Node ID of the CPU readings and the Remote Node ID of the
latency readings so that the impact of node overload on network
delays can be analyzed later.

3.3 Detouring Impact
iFlow’s visualizer contains multiple graphs which show the ef-

fectiveness of our proposed detouring techniques in the face of net-
work and node failures. In this section, we describe our demon-

1559

Figure 6: Network cost measurements over a sliding window

Figure 7: A comparison of detouring techniques in the face of
network failures.

stration plan, presenting multiple failure types and a discussion on
network cost and bandwidth.

3.3.1 Node Failures
In this demonstration, we will cause a node to crash. The visu-

alizer will then show how reactively iFlow can create a new replica
to preserve the required fault-tolerance level. This demonstration
will verify that our replication approach effectively masks failures
as shown in Figure 5 and the repair process is non-disruptive to reg-
ular processing (i.e., no significant increase in end-to-end latencies)
as described in Section 2.5.

3.3.2 Network Failures
Our iFlow visualizer allows us to inject network failures by spec-

ifying the path we wish to disconnect, the length of the disconnec-
tion period, the frequency of artificial disconnections (i.e., every 5
minutes) and the router to fail. With the router marked, any other
path that utilizes this router will also be disconnected.

With failures injected, the visualizer will compare techniques to
handle network failures as in Figure 7. To measure the effective-
ness of such techniques, we will compare the overall availability
of messages sent, as well as the longest latency (in seconds) for all
messages to be received by the end user. By changing period and
frequency of disconnections we will demonstrate how our detour-
ing technique can address more challenging network instability.

3.3.3 Network Costs
We will contrast the network cost of our approach with that of

previous approaches which focus on utilizing only replication to
handle failures. As partly shown in Figure 6, our iFlow visualizer
has graphs depicting both the network bandwidth and the network
cost (product of network bandwidth and delay) as measured over
the entire system. We will see that iFlow has a lower cost by utiliz-
ing a smaller number of replicas compared to previous techniques.

3.4 Adaptivity
This demonstration will begin with creating the first instances of

operators and then deploying replicas as described in Section 2.2.
During this initial deployment phase, the visualizer will show how
replication improves performance (i.e., decreases end-to-end la-
tency) at the expense of increasing network cost (see Figures 5 and
6). We will also demonstrate that our replica migration technique

Figure 8: Latency measurements with operator migration

can further improve performance (see Figure 8), availability, and
system efficiency as described in Section 2.4. By adding more
client applications at new locations, we will show that iFlow can
react to such changes by moving operators.

4. REFERENCES
[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.

Models and Issues in Data Stream Systems. In PODS, pages
1–16, 2002.

[2] M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-Tolerance in the Borealis Distributed
Stream Processing System. In SIGMOD, pages 13–24, 2005.

[3] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.
Monitoring Streams: A New Class of Data Management
Applications. In VLDB, pages 215–226, 2002.

[4] S. Chandrasekaran, A. Deshpande, M. Franklin, and
J. Hellerstein. TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World. In CIDR, 2003.

[5] M. Dahlin, B. B. V. Chandra, L. Gao, and A. Nayate.
End-To-End WAN Service Availability. IEEE/ACM
Transactions on Networking, 11(2):300–313, 2003.

[6] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel,
M. Stonebraker, and S. Zdonik. High-Availability
Algorithms for Distributed Stream Processing. In ICDE,
pages 779–790, 2005.

[7] J.-H. Hwang, U. Çetintemel, and S. Zdonik. A Cooperative,
Self-Configuring High-Availability Solution for Stream
Processing. In ICDE, pages 176–185, 2007.

[8] J.-H. Hwang, U. Çetintemel, and S. Zdonik. Fast and
Highly-Available Stream Processing over Wide Area
Networks. In ICDE, pages 804–813, 2008.

[9] Y. Kwon, M. Balazinska, and A. Greenberg. Fault-tolerant
Stream Processing using a Distributed, Replicated File
System. In VLDB, pages 574–585, 2008.

[10] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental study
of internet stability and backbone failures. In FTCS, pages
278–285, 1999.

[11] V. Paxon. End-to-End Routing Behavior in the Internet. IEEE
ACM Transactions on Networking, 5(5):601–615, 1997.

[12] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-Aware Operator
Placement for Stream-Processing Systems. In ICDE, pages
49–58, 2006.

[13] PlanetLab. http://www.planet-lab.org.
[14] M. A. Shah, J. M. Hellerstein, and E. Brewer.

Highly-Available, Fault-Tolerant, Parallel Dataflows. In
SIGMOD, pages 827–838, 2004.

1560

