
XSACT: A Comparison Tool for Structured Search Results ∗

Ziyang Liu, Sivaramakrishnan Natarajan, Peng Sun, Stephen Booher,
Tim Meehan, Robert Winkler, Yi Chen

Arizona State University

{ziyang.liu, snatara5, peng.sun, stephen.booher, tmeehar, rswinkle, yi}@asu.edu

ABSTRACT
Studies show that about 50% of web search is for information ex-
ploration purpose, where a user would like to investigate, compare,
evaluate, and synthesize multiple relevant results. Due to the ab-
sence of general tools that can effectively analyze and differentiate
multiple results, a user has to manually read and comprehend po-
tentially large results in an exploratory search. Such a process is
time consuming, labor intensive and error prone. With meta in-
formation embedded, keyword search on structured data provides
the potential for automating or semi-automating the comparison of
multiple results.

In this demo we present a system XSACT for differentiating
search results on structured data. XSACT takes as input a set of
structured results, and outputs a Differentiation Feature Set (DFS)
for each result to highlight their differences within a size bound.
The problem of generating DFSs with maximal differences is proved
to be NP-hard. XSACT adopts efficient algorithms for DFS genera-
tion, and features a user-friendly interface that effectively interacts
with the users to help them compare search results.

1. INTRODUCTION
Studies show that about 50% of keyword searches on the web

are for information exploration purposes, and inherently have mul-
tiple relevant results [1]. In contrast to navigational queries whose
intent is to reach a particular website, the user who issues an infor-
mational query often would like to investigate, evaluate, compare,
and synthesize multiple relevant results for information discovery
and decision making purposes. Without the help of tools that can
automatically or semi-automatically analyze multiple results, the
process of manually reading, comprehending, and analyzing the
results can be time consuming, labor-intensive, error prone or even
infeasible due to possibly large result sizes.

For example, consider a customer who is looking for GPS of
brand TomTom, who issues a keyword query {TomTom, GPS} on
a shopping website. There are many results returned; fragments of
two results represented in a tree structure are shown in Figure 1,
∗This material is based on work partially supported by NSF CA-
REER award IIS-0845647, IIS-0740129, IIS-0915438.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 1317,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

and some statistics information of the results is shown next to the
results. As each GPS product may have tens of features, it is very
difficult for users to manually check each result, compare and ana-
lyze these results to decide which GPS to purchase.

To help users analyze search results, the websites of many banks
and online shopping companies, such as Citibank, Buzzillions, Best
Buy, etc., provide comparison tools for customers to compare spe-
cific products based on a set of pre-defined metrics, and have achieved
big success. However, in these websites, only pre-defined types of
objects (rather than arbitrary search results) can be compared, and
the comparison metrics are pre-defined and static. Such hard coded
approaches are inflexible, restrictive and not scalable.

An immediate question is whether a tool that automatically gen-
erates a comparison table for query results can be developed, which
highlights the differences among results in a small space. A widely
used approach to help users judge result relevance is to generate
snippets, as supported by every web search engine and some struc-
tured data search engines. However, without considering the rela-
tionships among results, they generally are not helpful to compare
and differentiate multiple results. For example, Figure 1 shows two
result snippets of query “TomTom, GPS” generated by eXtract [2],
which highlight the most frequently occurred information in the
results. However, snippets are generally not comparable. For in-
stance, from their snippets, we know GPS 1 is best used for Auto,
but have no idea about GPS 3 in this aspect, since such information
is missing in its snippet due to space limitation.

Despite the high demand of a general tool for informative query
result comparisons in diverse domains, it is not supported in exist-
ing text search engines. The main reason is that text documents
are unstructured, making it extremely difficult if not impossible to
develop a tool that automatically compares the semantics of two
documents.

On the other hand, when searching structured data, the meta in-
formation of results presents a potential to enable result compari-
son. However, many challenges remain, even for enabling struc-
tured result comparison. For example, which features in the search
results should be selected for result comparison? One desideratum
is, of course, such features should maximally highlight the differ-
ences among the results. Then, how should we define the differ-
ence, and the degree of differentiation of a set of features? Another
desideratum is, the selected features should reasonably reflect the
corresponding results, so that the differences shown in the selected
features reflect the differences in the corresponding results. Fur-
thermore, how should we select desirable features from the results
efficiently?

To address these challenges, in this demo we present a system
XSACT for comparing and differentiating structured search results.
XSACT takes as input a set of structured results, each with a set of

1581



product

name

TomTom

Go 630 

Portable 

GPS

rating

4.2

reviews

review review…

pros

pro pro

compact

yes

easy to 

read

yes

uses

best use

auto

yes

category

casual 

user

# of reviews: 11

ATTR:VALUE:# of occ

pro: easy to read: 10

pro: compact: 8

best use: auto: 6

category: casual: 6

pro: large screen: 1

…

product

name

TomTom

Go 730 
(Tri-linguia l) 

BOX

rating

4.1

reviews

review review…

pros

pro

acquire 

satellites 

quickly

yes

uses

best use

faster 

routers

yes

# of reviews: 68

ATTR:VALUE:# of occ

pro: satellites: 44

pro: easy to setup: 40

pro: compact: 38

best use: routers: 26

pro: large screen: 4

…
pros

pro pro

easy to 

setup

yes yes

compact

Result 1 Fragments & Statistics Result 3 Fragments & Statistics  

Figure 1: Two Result Fragments of Query {TomTom, GPS} and their Statistic Information

 

Figure 2: Comparison Table for the Results in Figure 1

User Interface

Search 

Engine

keywords results

Entity 

Identifier

Feature 

Extractor

Result Processor

selected results 

& criteria

Single-Swap 

Method

Multi-Swap 

Method

DFS

 

Figure 3: Architecture of XSACT

features, and outputs a Differentiation Feature Set (DFS) for each
result to highlight their differences within a size bound. XSACT
can handle general structured results, such as relational tuples and
XML data, as long as they contain a set of features of form (en-
tity, attribute, value), as to be discussed in Section 2. In the exam-
ple, XSACT will generate a comparison table for the two results as
shown in Figure 2.

To the best of our knowledge, XSACT is the first system that
provides automatic result comparison. It can be used to augment
any existing search engine for structured data to provide the func-
tionality of helping users easily compare search results.

The technical contributions of XSACT, as detailed in [5] include:

(1) We initiate the problem of differentiating structured search re-
sults, which is critical for diverse application domains, such as on-
line shopping, employee hiring, job/institution hunting, etc. (2) We
identify three desiderata of selecting Differentiation Feature Set
(DFS) from search results in order to effectively help users com-
pare and contrast results. (3) We propose an objective function to
quantify the degree of differentiation among a set of DFSs, and
prove that the problem of identifying valid features that maximize
the objective function given a size limit is NP-hard. (4) We tackle
the problem efficiently by proposing two local optimality criteria:
single-swap optimality and multi-swap optimality, and developing
efficient algorithms to achieve these criteria.

2. RESULT COMPARISON
System Architecture. The architecture of XSACT is shown in Fig-
ure 3. A User first issues a keyword query to a search engine, which
returns a set of results to the user. The user then can select a set
of results for comparison, and optionally specify an upper bound
of the comparison table size. To make meaningful comparisons,
the result processor module processes the results and extracts rel-
evant information. Specifically the entity identifier infers entities
and attributes in the results [3], defined in the spirit of the Entity-
Relationship model in relational databases. Then the feature ex-
tractor identifies features. A feature is defined as a triplet (entity,
attribute, value), such as (Product, Name, TomTom Go 630), and a
feature type as an (entity, attribute) pair, such as (Product, Name).
Since a result often has a lot of features, the DFS generator care-
fully selects a set of features, Differentiation Feature Set (DFS),
which can maximize their differences among the set of selected
results. Two alternative modules can generate DFS, single-swap
method and multi-swap method.

Desiderata of Differentiation Feature Set (DFS). We identify a
set of desiderata for DFSs: limited size, reasonable summary, and
maximal differentiation. Limited size is a necessary condition of a
DFS, which ensures that the DFS can be easily checked by a user.
Moreover, a DFS should maximize its difference with other DFSs,
while at the same time being a reasonable summary of the result
to ensure that the differences among DFSs correctly reflects the
differences among results.

Desideratum 1: [Being Small] The size of each DFS D, denoted
as |D|, is defined as the number of features in D. |D| should not

1582



exceed a user-specified upper bound L, i.e., |D| ≤ L.

For the comparisons based on DFSs to be valid, a DFS should be
a reasonable summary of the corresponding result by capturing the
main characteristics in the result.

Desideratum 2: [Validity] A feature type is significant if it has a
large number of occurrences in a result compared with other feature
types of the same entity. A DFS is valid if feature types are selected
into the DFS in the order of their significance, so that it represents
a faithful summary of the result.

In Figure 1, we list a table showing the statistic information of
each result. The number that follows each feature type indicates
the occurrence of that feature type in the result, i.e., the number of
reviewers that say Yes to that feature type. For example, for GPS
1, feature type Pro:Compact occurs 8/11=73% within its entity (re-
view), indicating that 73% reviewers think this GPS is compact,
while feature type Pro:LargeScreen only has 9% reviewers think
so. Even though Pro:LargeScreen:Yes could be used to differentiate
this result from another result, GPS 3, which has Pro:LargeScreen:Yes
occurred 6%, such a comparison does not reflect the most important
characteristics of the results.

Furthermore, good DFSs should be able to differentiate results.
To illustrate the differentiability of DFSs, let us consider two DFSs,
denoted by S1 and S3, consisting of exactly the features in the snip-
pets in Figure 1. Several observations can be made: First of all, fea-
tures of different types are not comparable, e.g., it does not make
sense to compare Product:Name:TomTom Go 630 in S1 with Prod-
uct:Rating:4.1 in S3. Second, notice that S1 has Pro:EasyToRead:Yes
with 91% occurrences, but S3 does not include features of type
Pro:EasyToRead. Thus the two results cannot be differentiated by
this feature type, as the user does not know whether GPS 3 is easy
to read or not. This is analogous to “null” values in databases: the
absence of a value only means “unknown”, but does not necessarily
mean that the value is not what we are looking for.

According to these observations, we define that two results are
comparable by features of the same type. Two results are differen-
tiable by a feature type if their DFSs have different characteristics
of this shared feature type. Specifically, DFSs D1 and D2 of two
results are differentiable in a feature type t if and only if there is a
feature of t whose occurrences in the two results differ more than
x% of the smaller one (threshold x is empirically set to 10% in our
system). Then we quantitatively define the degree of differentia-
tion of two DFSs DoD(D1, D2) as the number of feature types on
which the DFSs are differentiable. Accordingly, we define the third
desideratum for generating DFSs:

Desideratum 3: [Differentiability] Given a set of results R1, R2, · · · ,
Rn, their DFSs, D1, D2, · · · , Dn, should maximize the total de-
gree of differentiation computed as the sum of the degree of differ-
entiation of every pair of DFSs:

DoD(D1, D2, · · · , Dn) =
∑

1≤i≤n

∑
i<j≤n

DoD(Di, Dj)

For example, the two DFSs in Figure 1 have a DoD of 2 because
only two features types, Product:Name and Pro:Compact, are dif-
ferentiable. But for the DFSs generated by our system, shown in
Figure 2, their DoD is 5 because three more feature types become
comparable.

Problem Definition and NP-hardness. Now we formally define
the problem of generating DFSs for search result differentiation.
Given a set of results, their DFSs should maximize the DoD, i.e.,
the total degree of differentiation, and the DFSs should be valid

0

0.03

0.06

0.09

0.12

QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8

T
im
e
 (
s)

Single-Swap Multi-Swap

0

10

20

30

40

50

QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8

D
o
D

(a) Quality of DFSs

(b) Processing Time

 

Figure 4: Effectiveness and Efficiency of XSACT

with respect to the corresponding result, and be small.

Definition 1: The DFS construction problem (R1, R2, · · · , Rn, m,
L) is the following: given n search results R1, R2, · · · , Rn, each
with no more than m feature types, compute a DFS Di for each
result Ri, such that:
(1) DoD(D1, D2, · · · , Dn) is maximized.
(2) ∀i, feature types of the same entity in Di should appear in the
order of their number of occurrences in Ri.
(3) ∀i, |Di| ≤ L.

Theorem 2.1: The DFS construction problem is NP-hard [5].

Local Optimality and Algorithms. In order to address the prob-
lem with good effectiveness and efficiency, we propose two local
optimality criteria. A set of DFSs is single-swap optimal if by
changing or adding one feature in a DFS, while keeping its validity
and size limit bound, the degree of differentiation cannot increase.
A set of DFSs is multi-swap optimal if, by making changes to any
number of features in a DFS, while keeping its validity and size
limit bound, the degree of differentiation cannot increase. Single-
swap optimality can be achieved by iteratively improving a DFS
by adding/removing a feature, until it cannot be further improved.
Multi-swap optimality is more desirable, while also more challeng-
ing to achieve: an intuitive approach that checks every possible
combination of features in a DFS involves an exponential time
complexity. We proposed a dynamic programming algorithm to
achieve it efficiently.

Figure 4 shows the effectiveness and efficiency of the DFSs gen-
erated by XSACT over eight queries on a movie data set extracted
from IMDB.1 For each query, we generate DFSs for all its results.
As we can see from (a), the multi-swap optimal method gener-
ally outperforms the single-swap optimal method in terms of DoD,
which is expected since it is able to change multiple features in
a DFS at a time, thus increases the chances of achieving a high
DoD. Figure 4(b) suggests that the single-swap optimal algorithm
is usually more efficient, but the multi-swap optimal algorithm also
achieves a better efficiency for some queries. The reason is that
although the multi-swap optimal algorithm is more complicated, it
increases the DoD faster by adding/changing multiple features in
a DFS at a time, thus it may stop faster. It can also be observed
that both algorithms are efficient and practical. More experiment

1ftp://ftp.sunet.se/pub/tv+movies/imdb/

1583



 

Figure 5: XSACT’s Result Page of Query “TomTom, GPS”

results can be found in [5].

3. DEMONSTRATION
In the demonstration, we present XSACT, which addresses an

open challenge of providing automatic comparisons for keyword
search results on structured data. With real datasets in online shop-
ping domain, XSACT shows how result comparison can enhance
users’ search experiences.

XSACT has a web-based user interface (http://wsdb.asu.edu/xsact).
A screen shot of the result page for query {TomTom, GPS} is shown
in Figure 5. Two real datasets are available in the demo: Product
Reviews and Outdoor Retailer. The Product Reviews dataset, re-
trieved from www.buzzillions.com, contains a set of GPS, mobile
phone and digital camera products, each associated with a price, an
aggregated user rating and a set of reviews. Each review consists
of the information of the reviewer, as well as a set of features of
the product in the reviewer’s opinion, such as the pros, cons and
best uses. Figure 1 shows fragments of this dataset. The Outdoor
Retailer dataset, extracted from www.REI.com, contains a set of
brands and products for outdoor recreation and sporting, including
bicycles, clothes, footwear, etc. Each brand has a set of products,
and each product has a set of features that describes the product.
For example, the features of a bicycle include: category, subcate-
gory, gender, number of gears, tires, brakes, frame, etc.

Both datasets are stored in XML format, and XSeek [3, 4] is
adopted as the search engine. Other structured form of the data
and/or other search engines can also be used as long as the search
results contain a set of features.

The demonstration features rich interaction with users. As we
can see from Figure 5, XSACT allows users to specify datasets
and keywords for retrieval. After the results are generated, their
snippets, such as product names and prices, are listed. If the user
wants to know more about a specific result, s/he can click the name
of the result and the entire result will be shown. Each result has
a hyperlink back to the corresponding page at Buzzillions.com or
REI.com, so that the user can obtain more information if needed.
Given the results, the user can identify which results they are inter-
ested in comparing by clicking the checkboxes right before query
results (similar as what some bank websites do to let the user com-
pare selected credit cards). Also, the user can optionally specify the
size limit of the comparison table. Then after clicking the “compar-
ison” button above the results, a comparison table will be shown in
a new browser window, which consists of a DFS for each result,
such as the one shown in Figure 2.

Through the demo, the XSACT system will show the feasibil-
ity and advantages of automatically generating meaningful and in-
formative comparison tables for structured search results. For ex-

ample, for Product Review data, a user can manually compare re-
sults, which can be very time-consuming as each result may con-
tain hundreds of features. Alternatively, a product review compari-
son website, buzzillions.com, generates comparison tables literally
containing all the features of user selected products. However, it is
unable to generate a comparison table which can highlight the dif-
ferences among products, with a size controlled by the user. On the
other hand, using XSACT, comparison tables will be generated dy-
namically based on the selected products, as shown in the example
in Figure 2. XSACT enables the user to easily compare products
by selecting features that can maximally differentiate the selected
products within a user specified table size upper bound.

On the Outdoor Retailer dataset, XSACT allows users to see the
different focuses of different brands through the generated compar-
ison table, which will guide the user’s choice of brands when pur-
chasing a particular product, without manually checking the hun-
dreds of products of each brand. For example, if a male user wants
to buy a jackets and issues a query “men, jackets”, then each result
will be a brand selling men’s jackets, as well as the products of the
brand. From the comparison table of the selected results, the user
will learn, for example, brand “Marmot” mainly sells rain jackets,
while brand “Columbia” focuses on insulated ski jackets. If a rain
jacket is what the user wants, he will likely give a higher priority
to “Marmot” as their rain jacket products are likely more reliable.
Again, the comparison table generated by XSACT saves a user’s
time of browsing all selected results and manually analyzing all the
products of each brand.

This demonstration will also present the challenges involved,
including both the technical challenges discussed in [5] and the
ones encountered to handle diverse datasets when building XSACT.
For example, due to the large size of the two datasets (a prod-
uct can have hundreds of reviews in the Product Review dataset,
and a brand can have hundreds of products in the Outdoor Retailer
dataset), it is demanding to generate meaningful comparison tables
in a short period of time. Besides, the large variety of feature types
in both datasets invalidates the approach that manually pre-defines
the comparison metrics and shows the advantage of automatic gen-
eration of comparison tables.

In summary, the XSACT system helps users compare structured
search results by generating a set of differentiation feature sets. It
can be used to augment existing keyword search engines on struc-
tured data to enhance user search experience. Result differentiation
is very useful in keyword search applications due to the large pres-
ence of exploration queries. It combines with other techniques such
as query cleaning, database selection, result generation, result rank-
ing, result snippet generation, etc., to form a suite of techniques in
building a full-fledged keyword search engine for structured data.
Result differentiation also calls for future works from the database
community, such as considering more factors (e.g., interestingness)
when selecting features for DFS, and better algorithms (such as
one with a guaranteed approximation ratio) for the DFS generation
problem.

4. REFERENCES
[1] A. Broder. A Taxonomy of Web Search. SIGIR, 2002.
[2] Y. Huang, Z. Liu, and Y. Chen. Query Biased Snippet Generation in

XML Search. In SIGMOD, 2008.
[3] Z. Liu and Y. Chen. Identifying Meaningful Return Information for

XML Keyword Search. In Proceedings of SIGMOD, 2007.
[4] Z. Liu and Y. Chen. Reasoning and Identifying Relevant Matches for

XML Keyword Search. In VLDB, 2008.
[5] Z. Liu, P. Sun, and Y. Chen. Structured search result differentiation.

PVLDB, 2(1):313–324, 2009.

1584




