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ABSTRACT
We present in this paper ObjectRunner, a system for extract-
ing, integrating and querying structured data from the Web. Our
system harvests real-world items from template-based HTML pages
(the so-called structured Web). It illustrates a two-phase query-
ing of the Web, in which an intentional description of the targeted
data is first provided, in a flexible and widely applicable manner.
ObjectRunner follows then a lightweight, best-effort approach,
leveraging both the input description and the source structure. This
process is domain-independent, in the sense that it applies to any
relation, either flat or nested, describing real-world items. We advo-
cate via our prototype that fully automatic extraction and integra-
tion of structured data can be done fast and effectively, when the
redundancy of the Web meets knowledge over the to-be-extracted
data. We present the technical details and the overall platform
through several application scenarios on real-life Web sources.

1. INTRODUCTION
Extracting structured information from the ocean of Web data is
one of the key challenges in data management research today, and
of foremost importance in the larger effort to bring more semantics
to the Web. In short, its aim is to map as accurately as possible Web
page content to relational-style tables.

Also, we witness in recent years a steady growth of the so-called
structured Web. This represents documents (Web pages) that are
data-centric, presenting structured content, complex objects. Such
schematized pages are often generated dynamically by means of
formatting templates over a database, possibly using user input via
forms (in hidden Web pages). Moreover, there is also strong recent
development of the collaborative Web, representing efforts to build
rich repositories of user-generated structured content.

We present in this paper ObjectRunner, a system that aims
to extract complex data from the structured Web.

Much work has been done recently on techniques for structured
Web information extraction. These are pages that (i) share a com-
mon schema for the information they exhibit, and (ii) share a com-
mon template to encode this information (for a survey, see [10]).
The techniques that apply to schematized Web sources are gen-
erally called wrapper inference techniques, and have been exten-
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sively studied in the literature, ranging from supervised (hard-coded)
wrappers to fully unsupervised ones. At the end of the spectrum,
there have been several proposals for automatically wrapping struc-
tured Web sources, such as [1, 6, 16]. Their approach is usually
generic, in the sense that only the pages’ regularity is exploited, be
it at the level of HTML encoding or of the visual rendering of pages.
The extracted data is used to populate a relational-style table, a
priori without any knowledge over its content. Adding semantics
can then be done either by manual labeling or even by automatic
post-processing (a non-trivial problem in its own). In practice, this
approach suffers from two significant shortcomings:

• only part of the resulting data may be of real interest for a
given user/application, hence effort may be spent on value-
less information,
• with no insight over its content, data resulting from the ex-

traction process may mix values corresponding to distinct at-
tributes of the implicit schema, making the subsequent label-
ing phase tedious and error-prone.

The usability of the collected data is therefore often restricted in
real-life scenarios.

We address these shortcomings with the ObjectRunner pro-
ject, based on a paradigm of two-phase querying of the Web that
leverages both the content and structure of the pages. Object-
Runner is attacking the wrapping problem from the angle of users
looking for a certain kind of information on the Web. More pre-
cisely, it starts from an intentional description of the targeted data,
denoted Structured Objet Description (in short SOD), which is pro-
vided by users in a minimal-effort, flexible manner. The interest of
having such a description is twofold: it allows to improve the ac-
curacy of the extraction process, in many cases quite significantly,
and it makes this process more efficient (lightweight) by enabling
the elimination of unnecessary computations.

System overview. A high-level view of the demonstrated sys-
tem is illustrated in Figure 1 (it will then be discussed in more
detail in the following sections). Users are provided with widely
applicable tools that allow them to specify via an SOD (to be for-
mally defined shortly) what must be obtained from Web pages, in
particular what atomic types (i.e., simple entities) are involved in
the intentional description and how (e.g., occurrence constraints,
nesting, value joins). Techniques to handle both existing (built-
in) and new atomic types efficiently are provided. Starting from
a corpus of Web sources, where each source represents a set of
pages with common (implicit) schema and structure, it then builds
an extraction template (wrapper) and harvests the objects - possi-
ble instances of the given SOD - from these pages. Both struc-
tured data and textual information related to it are then indexed in
the ObjectRunner repository. In the interrogation phase, users
may select one or several SODs. This triggers the generation of a
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Figure 1: Architecture of ObjectRunner

query interface in the style of Query-By-Example, in which both
structured and unstructured data (keywords) might be considered.
Query results are sorted, among other criteria, based on confidence
scores from the extraction process.

The demonstration will focus mainly on the technical aspects of
the extraction and on the features of the specification and interro-
gation interfaces. Beyond these aspects, there are other exciting re-
search problems we are currently investigating. For instance, how
could one discover, process and index in a scalable and effective
manner large corpora of structured Web pages, as potential sources
for ObjectRunner? Or how could one select the most relevant
sources for a given SOD? A discussion of these issues goes beyond
the scope of this demonstration proposal, whose main purpose is to
advocate the avantages of the two-phase querying approach.

Our experiments show that by (i) having an explicit target for the
extraction process, and (ii) using diverse and rich enough sources,
this approach turns out to be highly effective in practice. Moreover,
preliminary results hint that a fully automatic solution for querying
the structured, non-hidden Web - including aspects such as source
indexing and selection - might be within reach, based on carefully
designed heuristics and the redundancy of the Web.

2. PRELIMINARIES
We introduce in this section the necessary terminology and techni-
cal background. We suppose that the user has collected a number
of structured Web sources {S1, . . . , Sn}, where each source rep-
resents a set of HTML pages that describe real-world objects (e.g.,
concerts, real-estate ads, books, etc). Our running example refers to
concert objects, which can be seen as triples date-address-artist.
We illustrate in Figure 2 four fragments of template-based pages
that describe such information. We start by defining the typing for-
malism by which one can specify what data should be extracted
from the HTML pages. We then discuss the extraction problem.

Types. We consider a set of entity types, where each such type
represents an atomic piece of information, expressed as a string of
tokens (words or HTML tags). Each entity type ti has an associated
recognizer ri which can be simply viewed as a regular expression.
In practice, as in the demonstration, we will distinguish three kinds
of recognizers: (i) user-defined regular expressions, (ii) system pre-
defined ones (e.g., addresses, dates, phone numbers, etc), and (iii)
open, dictionary-based ones (denoted in our interface isInstanceOf
recognizers; see Figure 3). We discuss more the recognizer choices
and implementation in the next section.

Based on entity types, we define recursively complex types. A

set type is a pair t = [{ti},mi] where {ti} denotes a set of in-
stances of type ti (atomic or not) and mi denotes a multiplicity
constraint that specifies restrictions on the number of ti instances
in t: n−m for at least n and at most m, ∗ for zero or more, + for
one or more, ? for zero or one. A tuple type denotes an unordered
collection of set or tuple types. A disjunction type denotes a pair of
mutually exclusive types.

SODs. A Structured Object Description denotes any complex
type, possibly complemented by additional restrictions in the form
of value, textual or disambiguation rules. For instance, these would
allow one to say that a certain entity type has to cover the entire
textual content of an HTML node or a textual region delimited by
consecutive HTML tags. Or to require that two date types have to
be in a certain order relationship or that a particular address has to
be in a certain range of geographical coordinates. For brevity, these
details are omitted in the model described here.

An instance of an entity type ti is any string that is valid w.r.t.
the recognizer ri. Then, an instance of an SOD is defined straight-
forwardly in a bottom-up manner.

For example, concert objects could be specified by an SOD
as a tuple type composed of three entity types: one for the address,
one for the date and one for the artist name. The first two would be
associated to predefined recognizers (for adresses and dates respec-
tively), while the last one would have an isInstanceOf recognizer.

Extraction templates. For a given SOD s and source Si, a tem-
plate τ w.r.t. s and Si describes how instances of s can be extracted
from Si pages. More precisely,

• for each set type t = [{ti},mi] appearing in s, τ defines a
separator string sept; it denotes that consecutive instances
of ti will be separated by this string.
• for each tuple type t = {t1, . . . , tk}, τ defines a total order

over the collection of types and a sequence of k+1 separator
strings sept

1, . . . , sep
t
k+1; this denotes that the k instances of

the k types forming t, in the specified order, will be delimited
by these separators.

We are now ready to describe the extraction problem we consider.
For a given SOD s and a set of sources {S1, . . . , Sn},

1. set up type recognizers for all the entity types in s,

2. for each source Si,
(a) find and annotate entity type instances in pages,
(b) select a sample set of pages,
(c) infer a template τi(s, Si) based on the sample,
(d) use τi to extract all the instances of s from Si,

3. refine the recognizers based on the extracted objects.

3. IMPLEMENTATION OVERVIEW
We provide in this section a more detailed description of the sys-
tem’s internal structure in terms of composing parts and implemen-
tation approaches. We also illustrate how it operates through an
example. The underlying principle of ObjectRunner is that,
given the redundancy of Web data, solutions that are computation-
ally less expensive, yet have high precision and satisfactory recall,
should be favored in most aspects of the system. Though this means
that some sources may be poorly handled, it is highly likely in prac-
tice that their data can be found elsewhere as well and, overall, the
performance speed-up is deemed much more important.

Broadly, the extraction process is done in two stages: (1) au-
tomatic annotation, which consists in recognizing instances of the
input SOD’s entity types in page content, and (2) extraction tem-
plate construction, using the semantic annotations from the previ-
ous stage and the regularity of pages.
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<html><body>
<div>1 Coldplay </div>
<div>2 Saturday August 8, 2010 8:00pm </div> 
<div>3

<span><a > Bowery Ballroom </a></span>
<span>  Delancey St </span>
<span> New York City </span>
<span> New York </span>

<html><body>
<div>1 Kristin Chenoweth </div>
<div>2 Saturday May 29 7:00p </div> 
<div>3

<span><a> The Town Hall </a></span>

<span> 131 W 55th St </span>
<span> New York City </span>
<span> New York </span>
<span> 10019 </span>

</div>
</body></html>

<html><body>
<div>1 Metallica </div>
<div>2 Monday May 11, 8:00pm </div> 
<div>3

<span><a> Madison Square Garden</a></span>
<span> 237 West 42nd street </span>
<span> New York City </span>
<span> New York </span>
<span> 10036 </span>

</div>
</body></html>

<html><body>
<div>1 Kings of Leon </div>
<div>2 Friday June 19 7:00p</div> 
<div>3

<span><a>B.B King Blues Club and Grill </a></span>
<span> 4 Penn Plaza </span>
<span> New York City </span>
<span> New York </span>

P1 P2

<span> New York </span>
<span> 10002 </span>

</div>
</body></html>

<span> New York </span>
<span> 10001 </span>

</div>
</body></html>

P3 P4

Figure 2: Sample pages

Page pre-processing. Pre-processing is necessary in order to
clean HTML pages, e.g., to remove header details, scripts, styles,
comments, images, hidden tags, space, tag properties, empty tags,
etc. In this step, the open source software JTidy is used to transform
HTML documents to XML documents. Beyond page cleaning, we
also apply on the collection of pages of each source a radical sim-
plification to their “central” segment, the one which likely displays
the main content of the page. For that, we rely on an algorithm that
uses page segmentation (in the style of VIPS [2]) and the recog-
nizers of the input SOD to chose the best candidate segment. For
instance, the simplified pages in our example were obtained from
the site http://upcoming.yahoo.com/.

Type recognizers. Importantly, in our application, type recog-
nizers are never assumed to be entirely precise nor complete. This
is inherent in the Web context, where different representation for-
mats might be used for even the most common types of data. We
only discuss here how isInstanceOf types are handled. Intuitively,
these are types for which only a class name can be provided, with-
out direct means to recognize instances thereof. This could be the
case for the Artist entity type. When such a type is input by the user,
ObjectRunner seamlessly constructs on the fly a dictionary-
based recognizer for it. This can be done by querying the YAGO
ontology [14], a vaste knowledge base built from Wikipedia and
Wordnet (Yago has more than 2 million entities and 20 million
facts). Despite its richness, useful entity instances may not be found
simply by exploiting Yago’s isInstanceOf relations. For example,
Metallica is not an instance of the Artist class. This is why
we look at a semantic neighborhood instead: e.g., Metallica is
an instance of the Band class, which is semantically close to the
Artist one. For our purposes, we adapted Yago in order to access
such data with little overhead.

Alternatively, users can choose to look for instances directly on
the Web, by applying Hearst patterns [8] on a corpus of Web pages
that is pre-processed for this purpose. Other kinds of recognizers,
e.g., based on Datalog-style rules or conditional-graphical models
could be plugged in ObjectRunner. We are currently studying
the overhead they might introduce in the system performance.

Annotation and page sample selection. No assumptions are
made on the source pages. They may not be relevant for the in-
put SODs, as they may even not be structured (template-based).
The setting of our entity recognition sub-problem is the follow-
ing: a certain number (typically small in practice) of entity types
t1, . . . , tn have to be matched with a collection of pages (what we
call a source). If done naively, this step could dominate the extrac-
tion costs, since we deal with a potentially large database of entity
instances. Our approach here starts from the observation that only a
subset of these pages have to be annotated, and from the annotated

ones only a further subset (approx. 20 pages) are used as sample
in the next stage, for template construction. We use selectivity es-
timates, both at the level of types and at the one of type instances,
and look for entity matches in a greedy manner, starting from types
with likely few witness pages and instances (see Algorithm 1). At
each step, we continue the matching process only on the “richest”
pages. We also take advantage of the inverted index, in the case of
dictionary-based recognizers. During this loop, the source could be
discarded if unsatisfactory annotation levels are obtained.

Algorithm 1 annotatePages
1: input: parameters (e.g., sample size k), source Si, SOD s
2: sample set S := Si

3: order entity types in s by selectivity estimate
4: for all entity types t in s do
5: look for matches of t in S and annotate
6: for S′ v S top annotated pages, make S := S′

7: end for
8: return sample as most annotated k pages in S

Wrapper generation. This is the core component of the system.
For each source Si, its output is the extraction template τi cor-
responding to the input SOD s. We adopt in ObjectRunner an
approach that is similar in style to the ExAlg algorithm of [1]. Like
ExAlg, a template is inferred from a sample of source pages based
on occurrence vectors for page tokens and equivalence classes de-
fined by them (an equivalence class is a set of tokens having the
same frequency of occurrences in each input page and a unique
role). But how roles and equivalence classes are computed distin-
guishes our approach from [1]. First, we use annotations as an ad-
ditional criterion for distinguishing token roles. This is an obvious
strategy in our context but, since annotations are not complete and
can be conflicting over the set of pages, has to be applied cautiously.
In fact, we observe that it is the combination of equivalence class
structure and annotations that yields the best results. Algorithm 2
sketches how token roles are differentiated.

Algorithm 2 diffTokens
1: differentiate roles using HTML features
2: repeat
3: repeat
4: find equivalence classes (EQs)
5: handle invalid EQs
6: diff. roles using EQs + non-conflicting annotations
7: until fixpoint
8: differentiate roles using EQs + conflicting annotations
9: until fixpoint
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Figure 3: Extraction interface

Second, besides annotations, the SOD itself fulfills a double role
during the wrapper generation step, as it allows us to: (i) stop the
process as soon as we can conclude that the target SOD cannot be
met (this might be the case, as the annotations alone do not guaran-
tee success), and (ii) accept approximate equivalence classes out-
side the ones that might represent to-be-extracted instances.

On the sample pages of our example, if annotations are taken into
account, we can detect that the <div> tag occurrences denoted
div1, div2 and div3 have different roles. By that, we can correctly
determine how to extract the three components, artist, date and ad-
dress. This would not be possible if only their positions in the
HTML tree and in equivalence classes would be taken into account,
as the three <div> occurrences would have the same role.

We give below the extraction template that would be inferred in
our example:

<html><body>
<div type="Artist"> * </div>
<div type="Date"> * </div>
<div type="Address">

<span><a> * </a></span>
<span> * </span>
<span> * </span>
<span> * </span>
<span> * </span>

</div>
</html></body>

4. DEMO SCENARIO
Our demonstration will focus on the desktop tools for extraction,
interrogation and result browsing. First, as illustrated in the screen
capture of Figure 3, users will be able define SODs. For that,
they can either use existing SODs or types, or specify new types
along with means to recognize them (e.g., using the YAGO ontol-
ogy). Demo visitors will be able to try online this tool, choosing
also the real-life sources to be used. In the query interface (Figure
4), users can choose which SODs will be used to query the Web
sources. A QBE-style interface allows one to specify value restric-
tions, joins across SODs and keywords restrictions referring to the
objects’ source pages. Also, the sources that are to be queried can
be chosen at this stage.

5. RELATED WORK
The existing works in Web data extraction can be classified ac-
cording to their automation degree (for a survey, see [10]). The
manual approaches extract only the data that the user marks explic-
itly, using either wrapper programming languages or visual plat-
forms to construct extraction programs, like Lixto [7]. Supervised
approaches use learning techniques, called wrapper induction, to

Figure 4: Query interface
learn extraction rules from manually labeled pages (XWrap [11]).
Semi-supervised approaches (e.g., OLERA [3], Thresher [9]) arrive
to reduce human intervention by acquiring a rough example from
the user. Some semi-automatic approaches (such as IEPAD [4]) do
not require labeled pages, but find extraction patterns according to
extraction rules chosen by the user. The unsupervised approaches
identify the to-be-extracted data using the regularity of the pages.
One important issue is how to distinguish the role of each page
component (token), which could be either a piece of data or
part of the encoding template. Some, as a simplifying assumption,
consider that every HTML tag is generated by the template (as in
DeLa [15], DEPTA [16]). RoadRunner [6], which uses an approach
based on grammar inference, also assumes that every HTML tag is
generated by the template, but other string tokens could be con-
sidered as part of the template as well. In comparison, ExAlg [1]
makes more flexible assumptions, as the template tokens are those
corresponding to frequently occurring equivalence class, and it can
handle optional and alternative parts of pages. The TurboSyncer [5]
system can incorporate many sources, using existing results to im-
prove future extractions. Other works explore the mutual benefit
of annotation and extraction, learning wrappers based on labeled
pages [17, 12] or domain knowledge for query result records [13].
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