
EXTRUCT: Using Deep Structural Information in XML
Keyword Search

Arash Termehchy Marianne Winslett
Department of Computer Science, University of Illinois, Urbana, IL 61801

{termehch,winslett}@cs.uiuc.edu

ABSTRACT
Users who are unfamiliar with database query languages can
search XML data sets using keyword queries. Previous work
has shown that current XML keyword search methods, al-
though intuitive, do not effectively use the data’s structural
information and provide poor precision, recall, and rank-
ing for most queries. Based on an extension of the con-
cept of information theory, we have developed principled
frameworks called normalized total correlation (NTC) and
normalized term presence correlation (NTPC) to measure
the relevance of candidate answers to keyword queries. We
demonstrate EXTRUCT, an XML keyword search interface
that uses NTC and NTPC. An extensive empirical evalu-
ation over two real-world XML DBs has shown that EX-
TRUCT has better precision and recall and provides better
ranking than all previous approaches. We demonstrate EX-
TRUCT, along with seven other keyword search systems
for four real-world XML data sets, using prepared queries
as well as queries from the audience. The demonstration
shows that using deep structural information increases the
effectiveness of XML keyword search systems considerably.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Query Processing

General Terms: Algorithms, Designs, Performance

1. INTRODUCTION
Many users of XML databases are not familiar with con-

cepts such as schemas and query languages. Keyword search
[1, 2, 3, 5, 9] has been proposed as an appropriate interface
for such users; each subtree that contains the query terms
is a candidate answer for the input query. Since there are
usually many such subtrees, the challenge is to identify the
subtrees most closely related to the user’s query, since the
query is not framed in terms of the data’s actual structure.
Current systems filter subtrees they consider irrelevant to
the query [9, 3, 2, 5, 1]. Some filtering methods extend
IR techniques and do not take advantage of the structural
information of the data. Others use intuitively appealing
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heuristics based on shallow structural details, which desir-
able answers often violate. Hence, current methods do not
filter many unrelated subtrees and/or filter many relevant
answers. After filtering, the user is shown a huge mix of rel-
evant and irrelevant subtrees where she has to manually find
the desirable answers. To help address this problem, some
systems rank the filtered subtrees [3, 2, 1], using a modified
version of the ranking heuristics used in IR for XML text-
oriented data. Hence, they do not effectively use fine-grained
structural information available in non-text-oriented XML
and are ineffective for many queries, as our experimental re-
sults illustrate. In this demonstration, we introduce an XML
keyword search system called EXTRUCT (Effective XML
Ranking Using Deep Structure) that does not filter out any
candidate answer, and that exploits XML structure to rank
its results while avoiding overreliance on shallow structural
details [7, 8]. Our contributions in the demo:

• We explain our principled frameworks that define the
degree of relatedness of query terms to XML subtrees,
based on NTC and NTPC, which are extended versions
of the concepts of data dependencies and mutual infor-
mation.

• Through examples, we show how previous approaches
rely on intuitively appealing but ad hoc heuristics, caus-
ing low precision, recall, and ranking quality. We show
how NTC and NTPC avoid these pitfalls.

• In domains where IR-style statistics or PageRank can be
helpful in ranking query answers, NTC and NTPC can
be combined with such measures to improve the preci-
sion of query answers. We explain how to combine NTC
and NTPC with traditional IR ranking methods, so that
query answer rankings consider both content and struc-
ture, and show its effect on example queries.

• We demonstrate how to deploy NTC and NTPC in EX-
TRUCT, using a two-phase approach. The first phase
is a precomputation step that extracts the meaningful
substructures from an XML DB, before the query inter-
face is deployed. During normal query processing, we use
the results of the precomputation phase to rank subtrees
containing the query terms.

• Since naive methods are prohibitively inefficient for the
precomputation step, we explain how to use novel op-
timization and approximation techniques to reduce pre-
computation costs, and show how these techniques re-
duce precomputation time by orders of magnitude, with-
out affecting ranking quality.

• Throughout the demonstration, we use example queries
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over IMDB and DBLP provided by previous users and
current audience members to (1) show the surprisingly
bad answers produced by intuitively reasonable heuris-
tics, and (2) show how EXTRUCT improves these an-
swers.

2. BACKGROUND & MOTIVATION
We model an XML DB as a tree T = (r, V,E, L,C,D),

where V is the set of nodes in the tree, r ∈ V is the root,
E is the set of parent-child edges between members of V ,
C ⊂ V is a subset of the leaf nodes of the tree called content
nodes, L assigns a label to each member of V − C, and D
assigns a data value (e.g., a string) to each content node.
A keyword query is a sequence Q = t1 · · · tq of terms. A
subtree S is a candidate answer to Q iff its content nodes
contain at least one instance of each term in Q, and each of
its content nodes contains such an instance. The root of a
candidate answer is the lowest common ancestor (LCA) of its
content nodes. When no confusion is possible, we identify
a candidate answer by its root’s node number. Trees T1

and T2 are label isomorphic if the nodes of T1 can be
mapped to the nodes of T2 in such a way that node labels
are preserved and the edges of T1 are mapped to the edges
of T2. A pattern concisely represents a maximal set of
isomorphic trees (its instances) [7]. For instance, pattern
bib/paper/title corresponds to trees 1/8/14 and 1/15/22 in
Fig. 1. The value of a subtree (if it exists) is the content
associated with its leaves. For example, the value of 1/2/3/4
in Fig. 1 is (“Han”). The values of a pattern are all the
values of its instances. A pattern is a path if it has only
one leaf. The size of a pattern is the number of paths it
contains. A root-pattern is a pattern whose root is the
root of the DB. Except where otherwise noted, we consider
only root-patterns in this paper.

First we show that the current pruning techniques de-
liver low precision and recall. The baseline method for XML
keyword search returns every candidate answer, (with mod-
est refinements in XRANK [3]). Consider query Q1 : Han
KDD in Fig. 1, which shows fragments of DBLP (dblp.uni-
trier.de). The baseline method returns a relatively large set

of subtrees rooted at nodes 1, 2, 7, 8, and 15 as answers
for Q1. However, subtrees rooted at node 1 are not help-
ful, as they merely show that these two terms both occur in
the DB. Candidate answer 15/16,15/18 shows that a paper
by Han and another paper published in KDD are cited by
the same paper. This relationship is not as strong as that
of subtree 2/3,2/6, which represents a KDD paper by Han;
hence it is far less interesting.

Methods such as SLCA and MaxMatch rely on the in-
tuitively appealing heuristic that far-apart nodes are not as
tightly related as nodes that are closer together [9, 5]. Thus,
they eliminate every candidate answer whose root is an an-
cestor of the root of another candidate answer. This heuris-
tic filters many relevant answers and returns many irrelevant
subtrees. SLCA and MaxMatch do not return subtree 2 as
an answer to Q1 because its root is the parent of another
candidate answer, subtree 7. They also return subtree 15
which is not a desired answer to Q1.

XSearch and CVLCA remove every candidate answer hav-
ing two non-leaf nodes with the same label [2, 4]. The idea
is that non-leaf nodes are instances of the same entity type
if they have duplicate labels (DLs), and there is no inter-
esting relationship between entities of the same type. We
refer to this heuristic as DL. However, sometimes there are
meaningful relationships between similar nodes, even in a
DB with few entity types. Suppose a user submits query
Q2 : Han Tim to find the publications written by Han and
Tim in the DB fragment in Fig. 1. DL does not return sub-
tree 8, which is the desired answer to Q2. Also, DL is not
an ideal way to detect uninteresting relationships. It returns
uninteresting candidate answers 1 and 15 for Q2. XReal [1]
uses IR statistics and filters out entity types that do not
contain many of the query terms. For instance, DBLP has
few books about Data Mining, so XReal filters out all book
entities when answering query Q3 : Data Mining Han – even
Han’s textbook. Also, the DBA has to specify the depth of
desired entity types.

After pruning, some approaches rank the candidate an-
swers. XRANK [3] uses a PageRank-based approach to rank
subtrees. PageRank is effective only for certain domains and
relationships, and is not intended for ranking subtrees [8].
For instance, node 15 has more links than nodes 8 and 2 in
Fig. 1, but it is not more important than them. XSearch and
XReal consider each subtree as a small document, ranking
subtrees higher if they have more of the query terms. This
heuristic still does not use structural information effectively.
For instance, subtree 15 contains more terms of Q3 than sub-
trees 8 and 2 in Fig. 1. However, the user submitting Q3

is more likely to want the publications by Han about data
mining than the data mining publications that cite papers
by Han. Hence, subtrees 2 and 8 should rank higher than
15.

As do IR techniques, these methods penalize longer con-
tent nodes. Sometimes shorter content nodes, such as the
children of last nodes in Fig. 1, are more important than
longer ones, such as children of cite nodes. However, this
is not always true. For instance, consider the IMDB frag-
ment from www.imdb.com in Fig. 2. Because tag lines (the
famous sentences in movie trailers) are less indicative of a
movie’s content than plot lines, the best answer to query
Q4 : Evolution Brian is the subtree rooted at node 10. As
the plot field is longer than the tagline field, penalizing long
fields will be misleading. The original IMDB DB contains
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many other fields that are shorter and less informative than
plot and/or title, such as goofs (mistakes in the movies) and
trivia.

The distance between nodes n and m is the number of
nodes in the path between n and m. XSearch and XReal
rank higher the subtrees where the nodes containing query
terms have smaller distances. This heuristic is sometimes
helpful, but often misleads. For instance, nodes 17 and 22
are closer than nodes 4 and 5 in Fig. 1. However, subtree 2
is more relevant than subtree 16 for Q3. Also, our empirical
study shows that most candidate answers have the same
distance.

The first key shortcoming of all these methods are that
they filter out answers instead of ranking them. Second,
they rely on shallow structural properties and/or extensions
of IR-style methods to rank answers. Since these methods do
not effectively use structural information in the data, they
are ineffective for many queries, as our experimental results
illustrate.

3. USING STRUCTURAL INFORMATION
The examples of Section 2 illustrate that there are two

basic challenges in ranking candidate answers. First, a key-
word search system must determine whether a candidate an-
swer represents a strongly and meaningfully related portion
of the data, and provide a metric to measure this property.
Second, it must determine the similarity between candidate
answers and the input query. For instance, in Fig. 1 subtree
15/20,15/22 represents a meaningful entity, while subtrees
rooted at 1 contain a set of loosely related nodes. Thus, the
former is more interesting for users than the latter and must
rank higher. However, not every subtree rooted at a paper
node represents an interesting and meaningful substructure.
As mentioned in Section 2, subtree 15/16,15/18 represents
a less interesting data fragment than subtree 2/3,2/6.

The patterns of candidate answers represent their struc-
tural information. Each pattern provides a relationship be-
tween its paths, where every value of the pattern relates the
values of its paths. We claim that the more correlated the
values of the paths of a pattern are, the more it represents
a meaningful and interesting relationship between its paths,
i.e., a strongly related portion of the data. Consider patterns
q1 : paper/title,paper/cite and q2 : paper/title,paper/author
in Fig. 1. Instances of these patterns are candidate answers
to Q3. Each title node value is associated with more cite
node values than author node values, on average. The same
is true in the original DBLP DB, where each title is asso-
ciated with 2.3 authors and 9.4 cites on average. Also, the
average author publishes less than 2 papers, while a cited
paper is cited more than 2 times on average. Thus, q2 rep-
resents an entity more strongly than q1 and its instances
should appear before instances of q1 in the ranked list of
answers. This complies with the observations mentioned in
Section 2.

To capture the correlation among the paths of a pattern,
we use normalized total correlation (NTC) [7]. NTC
measures the correlation of a pattern; its value for a pattern
p with paths p1, . . . , pn, n > 1 is:

NTC(p) = g(n)×
∑

1≤i≤n H(pi)−H(p)

H(p1, . . . , pn)
. (1)

where H(p) and H(pi), 1 ≤ i ≤ n are the entropies of pat-
tern p and its paths, respectively [7]. Since users prefer

smaller patterns, we penalize larger patterns using function
g(n); g(n) = n2/(n−1)2, n > 1 performs well in practice [7].
For patterns of size 1, we rank the ones with more entropy
higher. Considering all instances in the original DBLP, the
NTC of q1 and q2 is 1.09 and 1.74, respectively, which con-
firms our analysis.

However, NTC does not measure the correlation for pat-
terns with long text fields well. Different movies have differ-
ent plot lines and tag lines. In the original IMDB, on aver-
age each movie has more plot nodes than tagline nodes, so
the NTC of movie/taglines/tagline,movie/writers/writer is
1.48 and the NTC of movie/plots/plot,movie/writers/writer
is only 1.37. As the plot field is longer than the tagline
field, penalizing long fields will not solve the problem. The
problem can occur for short text fields as well [8]. Thus,
intuitively, we should consider the individual components
(words) of each value when computing correlations, both for
long and short fields. For instance, the words in movie tag
lines are not as representative of the movie’s subject as the
words in its plot lines. Thus in IMDB DB, the terms in the
values of the field writer are more correlated with those of
plot than tagline. We call W (r1 : w1, . . . , rn : wn) a term of
a pattern instance r containing path instances ri, 1 ≤ i ≤ n,
with value (r1 : v1, . . . , rn : vn), if wis are non-stop words
that occur in values vis, respectively. The terms of pat-
tern p containing paths (p1, . . . , pn) are the union of the
sets of terms of its instances. For instance, p1 : Han, p2 :
Data is a term of pattern p :bib/paper/cite,bib/paper/title
in Fig. 1. Each term W (p1 : w1, . . . , pn : wn) is associ-
ated with 2n possible events. Each event takes the form
E(p1 : f(w1), . . . , pn : f(wn)), where each f(wi) is either
wi or w̄i, depending on whether wi does or does not oc-
cur in pi, 1 ≤ i ≤ n. Similar to NTC, we define nor-
malized total presence correlation (NTPC) of term
W (p1 : w1, . . . , pn : wn) of pattern p as:

NTPC(W ) = g(n)×
∑

1≤i≤n Hp(wi)−Hp(W )

Hp(W )
. (2)

where Hp(W ) and Hp(Wi), 1 ≤ i ≤ n are the entropies of
pattern W and wi, respectively [8]. As explained in [8], we
measure the correlation of a pattern by averaging over the
top-k correlated terms, where k is reasonably large.

NTPC-based ranking successfully handles all the exam-
ples described earlier [8]. For instance, in the full IMDB
the NTPC of movie/taglines/tagline,movie/writers/writer
is 1.25, while the NTPC of movie/plots/plot,movie/writers/writer
is 1.49. To capture the content similarity between candi-
date answers and the input query, we combined NTPC (and
NTC) with pivoted normalization (PN) [6], an IR-style con-
tent ranking formula that we customized for XML. We con-
trol the relative weight of NTPC (and NTC) and PN as
follows:

r(t) = αNTPC(t) + (1− α)ir(t), (3)

where ir(t) is the content score of the candidate answer,
computed based on the classical PN formula, and α is a
constant that controls the relative weight of structural and
contextual information in ranking. Based on our empirical
evaluation, we set the value of α to 0.8 when combining PN
with NTC and NTPC.

4. SYSTEM ARCHITECTURE
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NTPC NTC XReal SLCA MaxMatch CVLCA XSearch XRank

Precision 0.611 0.599 0.566 0.566 0.545 0.048 0.046 0.050

Recall 0.985 0.965 0.918 0.798 0.798 0.975 0.976 0.975

Table 1: Average precision and recall for 40 user supplied queries over IMDB

NTPC NTC XSearch XReal PN XRank

IMDB 0.701 0.510 0.612 0.587 0.478 0.431

DBLP 0.834 0.834 0.794 0.790 0.621 0.591

Table 2: MAP for DBLP and IMDB queries

NTC and NTPC Computation: EXTRUCT com-
putes the values of NTC and NTPC for all patterns in the
DB in a separate phase before the first queries are submitted
to the system. If the DB does not undergo drastic structural
changes that introduce new node types and patterns, this
computation need never be repeated [7]. The naive method
to compute NTCs and NTPCs is so inefficient as to be im-
practical [7, 8]. As explained in [7], we expect the size of
user’s ideal answer to be quite low. Thus, the size of the pat-
terns we seek does have a domain-dependent upper bound
MCAS (maximum candidate answer size). For instance,
empirical studies suggest that 4 is a reasonable MCAS value
for bibliographic DBs [7]. we also approximate the NTC of
larger patterns using the NTC of the smaller patterns in the
DB [7]. Our empirical studies show that we can get the same
ranking by approximating the NTCs of the patterns of size
4 and 5 using the exact NTC values of patterns up to size 3.
From the properties of total correlation, it follows that infre-
quent and highly frequent terms have relatively low NTPC.
Thus, we remove all terms in path p whose frequencies are
less than ε|p| or more than (1 − ε)|p|, where 0 < ε < 1.
The algorithms to compute NTC and NTPC generate new
patterns of size n using the information of the patterns of
size n − 1 and compute their NTC and NTPC values. The
details of the algorithms and their performances are in [7,
8].

Query Processing: Our query processing algorithm,
SA3 [8], finds each candidate answer using a stack-based
method, looks up the NTC and NTPC values of the pattern
of the candidate answer, and ranks the answer based on its
r(.) value. At startup, SA3 stores XML node information in
a NODES table in BerkeleyDB (www.oracle.com/berkeleydb).
SA3 builds an inverted index for the text information in
the NODES table. It also creates an additional index on
the parental information of the DB nodes to present the
the full subtree to the user. We have performed an exten-
sive user study to measure the effectiveness of NTC and
NTPC methods[7, 8]. Table 1 summarizes the recall and
precision of all methods discussed in Section 2, NTC, and
NTPC, for IMDB by averaging over all queries in the work-
load. NTPC and NTC have higher precision and recall on
IMDB queries than other methods. NTPC performs better
than NTC as IMDB contains many long text fields. Table 2
shows the Mean Average Precisions (MAPs) of the ranking
methods discussed in Section 2, NTC, NTPC, and pivoted
normalization (PN) method without any structural infor-
mation. Generally, NTPC and NTC provide better ranking
than other methods. They have the same MAP for DBLP
DB as there is not any long text field in DBLP DB. NTPC
delivers larger MAP for IMDB DB. More results on effec-

tiveness of EXTRUCT are in [7, 8].

5. DEMONSTRATION
In this demo, we present the challenges in XML keyword

search. We show how current approaches deliver low recall,
precision, and ranking quality because they use pruning in-
stead of ranking and do not use deep structural information
of the data. We discuss the NTC and NTPC based rank-
ing methods, justify their approaches, and show how they
overcome the effectiveness deficiencies of other XML key-
word search methods. We have implemented all methods
discusses in Section 2. We have created a GUI interface for
these methods which allows users to select the XML DB,
submit queries, and observe the search results. Throughout
the demo we show how NTC and NTPC provide better rank-
ing than other approaches using sample queries we collected
in our user studies. The audience can also submit queries
and observe the importance of using deep structural infor-
mation in XML keyword search. Furthermore, the results
from our user study will be available.
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