Massively Parallel Data Analysis with PACTs on Nephele

Alexander Alexandrov
Max Heimel
Volker Markl™

Dominic Battré*
Fabian Hueske*
Erik Nijkamp

Stephan Ewen*
Odej Kao*
Daniel Warneke*

Technische Universitat Berlin, Germany
* firstname.lastname@tu-berlin.de

1. INTRODUCTION

Large-scale data analysis applications require processing
and analyzing of Terabytes or even Petabytes of data, par-
ticularly in the areas of web analysis or scientific data man-
agement. This trend has been discussed as “web-scale data
management” in a panel at VLDB 2009. Formerly, parallel
data processing was the domain of parallel database systems.
Today, novel requirements like scaling out to thousands of ma-
chines, improved fault-tolerance, and schema free processing
have made a case for new approaches.

Among these approaches, the map/reduce programming
model [4] and its open-source implementation Hadoop [1]
have gained the most attention. Developed for simple logfile
analysis, map/reduce systems execute sequential user code
in a parallel and fault-tolerant manner, once it has been
written to fit the second-order functions map and reduce.

However, with the success of map/reduce, many projects
have started to push more complex (e.g., SQL-like) operations
into the programming model, thereby violating some of its
initial design goals (i.e., separation of parallelization and
user code) and paying significant performance penalties.

To eliminate these shortcomings we have developed the
Nephele/PACTs [3, 7] system, a parallel data processor cen-
tered around a programming model of so-called Paralleliza-
tion Contracts (PACTs) and the scalable parallel execution
engine Nephele. Our system pursues the same design goals
as map/reduce and is highlighted by three properties:

1. A richer programming model than map/reduce that
preserves the same abstraction level: Our program-
ming model is based on Input and Output Contracts.
Input Contracts are second-order functions which allow
developers to express complex data analytical opera-
tions naturally and parallelize them independent of the
user code. Qutput Contracts annotate properties of
first-order functions and enable certain optimizations.

2. A separation of the programming model from the con-
crete execution strategy: The PACT programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.

Proceedings of the VLDB Endowment, Vol. 3, No. 2

Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

model exhibits a declarative character. Data process-
ing tasks implemented as PACT programs can be ex-
ecuted in several ways. A compiler determines the
most efficient execution plan for a PACT program and
translates it into a parallel data flow program.

3. The flexible execution engine Nephele: Nephele exe-
cutes data flow programs modeled as directed acyclic
graphs (DAGs) in a parallel and fault-tolerant way. Job
annotations enable the PACT compiler to influence the
execution in a very fine-grained manner.

To highlight the expressiveness of our programming model,
we have implemented a suite of diverse data processing tasks
as PACT programs. We will showcase the optimization and
compilation of these programs using the visual explain facility
of our PACT compiler. The parallel execution of compiled
programs will be visualized by a graphical interface that
provides immediate feedback on the node utilization, data
flow congestions and execution bottlenecks.

Section 2 gives a high-level overview of the Nephele/PACTs
system and briefly explains its fundamental concepts. Section
3 discusses the demonstration in detail.

2. BACKGROUND

This section provides an overview of the PACT program-
ming model and the architecture of the Nephele/PACTs
query processor. Due to space constraints, some aspects
are explained in a highly simplified manner. A detailed
description of the architecture and formalized presentation
of PACTSs can be found in [3], together with a conclusive
discussion of related work.

2.1 The PACT Programming Model

The PACT programming model is a generalization of
map/reduce [4]. It is based on a key/value data model
and the concept of Parallelization Contracts (PACTs). A
PACT consists of exactly one second-order function which is
called Imput Contract and an optional OQutput Contract. An
Input Contract takes a first-order function with task-specific
user code and one or more data sets as input parameters.
The Input Contract invokes its associated first-order function
with independent subsets of its input data in a data-parallel
fashion. In this context, the well-known functions map and
reduce are examples of Input Contracts. The first-order func-
tion has to implement an interface that is specific to the
PACT it uses, as it is known from map/reduce.

1625

J‘ Input B
v __

]

Ke{ Yalue

I <

Aluls
=

Input Independent Input A Independent
Subsets Subsets

Figure 1: a) Reduce | b) Match

The programmer can attach optional Output Contracts to
PACTSs to denote certain properties of the user code’s output
data, which are relevant to the parallelization. The compiler
can exploit that information and deduce in some cases, that
suitable partitionings or orders exist and reuse them.

Data processing tasks are implemented by providing cus-
tom code to PACTSs and assembling them to a work flow
graph. In the following we list an initial set of Input Con-
tracts and describe them shortly:

Map The Map contract is used to process each key/value
pair independently. Every key/value pair becomes an
independent subset consisting solely of itself.

Reduce The Reduce contract partitions key/value pairs by
their keys. Every group becomes an independent subset
as shown in Figure 1 a). Similar to map/reduce we
allow the use of a combiner.

Cross The Cross contract operates on multiple inputs and
builds a distributed Cartesian product over its input
sets. Each element of the Cartesian product becomes
an independent subset.

CoGroup The CoGroup contract partitions each of its mul-
tiple inputs along the key. Independent subsets are
built by combining equal keys of all inputs. Hence,
the key/value pairs of all inputs with the same key are
assigned to the same subset.

Match The Match contract operates on multiple inputs.
It matches key/value pairs from all input data sets
with the same key. All key/value pairs within an inde-
pendent subset have the same key, but in contrast to
CoGroup each subset contains only one key/value pair
from each input (cf. Figure 1 b)). Hence, the Maich
contract associates key/value pairs from its inputs like
an inner join on the key, without actually joining them.

While Input Contracts are mandatory components of
PACTs, Output Contracts are optional. They allow de-
velopers to guarantee certain behaviors of the user code
with respect to the properties of the output data. As an
example, the developer can attach the Same-Key Output
Contract to a function that returns the same key as it was
invoked with. The PACT compiler exploits these guarantees
to generate more efficient data flow programs. With the
mentioned Same-Key Output Contract, the compiler can for
example deduce that any key-partitioning on the input data
of the function still exists on the output data. The compiler
can hence avoid unnecessary repartitioning and therefore
expensive data shipping.

PACT
Program

PACT Compiler

Data Flow
Program

| Nephele Execution Engine |

| Distributed Filesystem (HDFS) |

Figure 2: Architecture of the Nephele/PACTSs pro-
totype

2.2 Architecture

Our prototype has a three—tier architecture as shown in
Figure 2. To execute a PACT program it is submitted to
the PACT Compiler. The compiler translates the program
into a data flow program and hands it to the Nephele system
for parallel execution. Input/output data is stored in the
distributed filesystem HDF'S [1]. We will briefly introduce
the Nephele system and the PACT compiler in the following.

2.2.1 Nephele

The Nephele system [7] executes the compiled PACT pro-
grams in a parallel fashion. Similar to systems like Dryad [5],
Nephele considers incoming jobs to be DAGs with vertices be-
ing subtasks and edges representing communication channels
between these subtasks. Each subtask is a sequential pro-
gram, which reads data from its input channels and writes to
its output channels. The initial DAG representation does not
reflect parallel execution. Prior execution, Nephele generates
the parallel data flow graph by spanning the received DAG.
Thereby, vertices are multiplied to the desired degree of par-
allelism. Connection patterns that are attached to channels
define how the multiplied vertices are rewired after spanning.
During execution Nephele takes care of resource scheduling,
task distribution, communication as well as synchronization
issues. Moreover, Nephele’s fault-tolerance mechanisms help
to mitigate the impact of hardware outages.

Unlike existing systems, Nephele offers to annotate jobs
with a rich set of parameters, which influence the physical
execution. For example, it is possible to set the desired degree
of data parallelism for each subtask, assign particular sets
of subtasks to particular sets of compute nodes or explicitly
specify the type of communication channels between subtasks.
With respect to the PACT layer we leverage these parameters
to translate optimization strategies of the PACT compiler
into scheduling hints for the execution engine.

Currently, Nephele supports three different types of com-
munication channels: Network, in-memory, and file channels.
While network and in-memory channels allow the PACT com-
piler to construct low-latency execution pipelines in which
one task can immediately consume the output of another, file
channels collect the entire output of a task in a temporary
file before passing its content on to the next task. As a result,
file channels can be considered check points, which help to
recover from execution failures.

Further details about Nephele can be found in [7].

1626

2.2.2 The PACT Compiler

The PACT compiler translates a PACT program into a
Nephele DAG. In contrast to map/reduce [4], our system sep-
arates programming model and execution strategy. Due to
the declarative character of the PACT programming model,
the PACT compiler can choose from several execution plans
with varying costs for a single PACT program. In the follow-
ing, we discuss some optimization opportunities and describe
the generation of Nephele DAGs.

Optimizing a single PACT PACTSs exhibit a declarative
character. They define which independent subsets are
generated from the input data and provided to separate
instances of the user function, but do not define how
that is actually achieved. A single Input Contract can
be fulfilled by multiple execution strategies. Among
the strategies we consider, several were devised by re-
search on parallel database systems such as repartition-
ing, broadcasting, and symmetric-fragmentation-and-
replication. As an example, the Match contract can be
satisfied using either a repartition strategy which par-
titions all inputs by keys or a broadcast strategy that
fully replicates one input to every partition of the other
input. Choosing the right strategy can tremendously
reduce network traffic and execution time.

Optimizing a PACT program Similar as in query opti-
mization for relational DBMS, the optimal execution
strategy for a PACT program cannot be found by com-
bining the locally optimal choices for all PACTs. The
evaluation of a PACT becomes significantly cheaper
when existing properties of the data such as partition-
ings or sort orders can be exploited. Therefore, our
PACT compiler works similar as a Selinger-style SQL
optimizer [6] which tracks so-called interesting prop-
erties. During optimization more expensive plans are
spared from pruning if they provide an interesting prop-
erty which can be utilized later. The PACT compiler
exploits information provided by the Output Contracts
to infer that the user code preserves certain properties.

Our compiler’s cost model considers data shipping costs.
Starting with file size information, we use user anno-
tations, such as factors for changing data volume and
key cardinalities, to derive reasonable estimations. If
reasonable estimates are impossible due to missing an-
notations, the compiler picks the strategy that performs
best on large input sizes.

Transformation to Nephele DAGs After choosing the
execution plan for a PACT program, the PACT com-
piler must transform it into a Nephele DAG. As de-
scribed in Section 2.2.1, a Nephele DAG consists of
sequential code blocks (vertices) and communication
channels (edges). The compiler wraps the user func-
tion of each PACT with PACT code and maps it to a
vertex in the Nephele DAG. The wrapping PACT code
invokes the user code with an independent subset of
data according to its Input Contract and receives its
output. The execution strategy for a PACT is reflected
in three aspects within the Nephele DAG: First, in the
wiring pattern between the subtasks. Second, in the
PACT code that calls the user code, and finally in the
PACT code which receives and forwards the data in
the preceding vertex.

3. DEMONSTRATION

To demonstrate the power and applicability of our ap-
proach we will give a live demonstration of the Nephele/
PACTSs prototype. Our demo will cover all steps from task
implementation to result computation. First, we will show
how data processing tasks are implemented as PACT pro-
grams. The demo continues with the compilation of a task.
A visualization of the compiled task provides insight into
the optimization capabilities of Nephele/PACTs. Finally, a
graphical interface displays the progress of the task’s parallel
execution. In the remainder of this section we will discuss
these steps in details and present a running example.

3.1 Writing a PACT Program

We have implemented a suite of data analysis tasks to
demonstrate the expressive power of the PACT programming
model. These tasks include selected relational OLAP queries
originating from the TPC-H benchmark [2] as well as data
mining tasks such as K-Means clustering and frequent-item-
set mining on synthetic data sets. Furthermore, we will
provide graph algorithms to analyze a previously crawled
data set of linked open data. We will show how these tasks
are implemented as PACT programs. The compilation and
execution of each of these tasks can be shown during the
demo.

For the running example we have chosen a simplified query
from the TPC-H workload:

SELECT 1_orderkey, o_shippriority,
sum(1l_extendedprice) as revenue
FROM orders, lineitem
WHERE 1_orderkey = o_orderkey
AND o_custkey IN [X]
AND o_orderdate > [Y]
GROUP BY 1_orderkey, o_shippriority

UF-Project Outputkey =

(map) super-key(input)
UF-Join _>| UF-Agg
(match) (reduce)

(map)

6)>_> UF-Select |

Figure 3: The example PACT program

Figure 3 shows a simplified, graphical representation of the
PACT program for the query. Selection and projection are
implemented using Map PACTSs. The join is expressed using
a Match PACT. The Super-Key Output Contract states that
the keys produced by the user code are superkeys of the input
keys. Finally, the Reduce PACT performs the aggregation.

3.2 Compiling a PACT Program

As emphasized in Section 2.2.2, transforming a PACT pro-
gram to a Nephele DAG inherits large optimization potential.
In contrast to classic relational database systems, the PACT
compiler must cope with arbitrary user code with unknown
semantics. We will present how the PACT compiler generates
efficient data flow graphs from our suite of data processing
tasks for varying degrees of parallelism. A visual explain tool
shows the result of the optimization as depicted in Figure 4.
The tool displays the data shipping strategy, local strategy,

1627

[E=5Ech =<
[Data Sink 2]
In-Memory
Reduce (Agg) =]
Class de.tuberlin.dima.AggReduce
DoP 2
Est. Out Size 4 MB
Ship Strategy Repartition
Local Strategy Sort-Merge
ANetwork
[[Combine (PartAgg) H
In-Memory
Match (Join) =]
Class de.tuberlin.dima.JoinMatch
DoP 6
Est. Out Size 362 MB
Ship Strategy Broadcast
Broadcast Side left
Local Strategy Sort-Merge
Network In-Memory
[Map (Filter0) = [Map (ProjectL) =
Network In-Memory

[Data Source (orders.txt) | [Data Source (lineitems.txt)]|

Figure 4: Screenshot of the visual explain of a com-
piled PACT program

degree of parallelism (DoP), and channel types. Furthermore,
the estimated output sizes are shown.

Figure 4 shows the optimized data flow graph for the
example query. The Match PACT which implements the
join is realized by broadcasting the filtered orders relation.
The lineitem relation is locally projected, joined, and pre-
aggregated as indicated by the in-memory channels). The
final aggregation is performed using a repartition strategy.

3.3 Executing a PACT Program

WNephele

HDFSFi...

Reducer

Matcher

r———

EEEEm

Figure 5: Screenshot of Nephele’s graphical execu-
tion interface

Linelte..

i
§
g

HDFSFi...

The Nephele execution engine evaluates the Nephele DAG
generated by the PACT compiler in parallel. In order to
do so, it spans the received DAG to a parallel data flow
and distributes the respective subtasks among the available

compute resources. Our demonstration setup will feature
a medium-sized cloud system which is accessible through a
commodity Internet connection.

During the task execution Nephele will monitor the in-
volved compute nodes and record statistics on the CPU and
network utilization. A graphical interface will display the
collected statistics. Hence, immediate visual feedback on the
efficiency of the parallel execution strategies chosen by the
PACT compiler is provided. Furthermore, performance bot-
tlenecks resulting from network congestions or inappropriate
degrees of parallelism can be detected.

Figure 5 shows the execution of our example task. The
local pipelining of the lineitem relation can be observed
following the wiring from the bottom left tasks up to the pre-
aggregation tasks. Furthermore, the broadcast of the orders
relation and the partitioning for the final aggregation can be
identified. The tasks’ degree of parallelism corresponds to
the output of the compiler (Figure 4).

4. CONCLUSIONS

We will demonstrate the Nephele/PACTs query processor,
a system for massively parallel data processing based on
the concept of Parallelization Contracts. The demonstration
will show the implementation, compilation, optimization,
and parallel execution of PACT programs on the Nephele
execution engine. A suite complex data analysis tasks will
highlight the expressive power of the PACT programming
model. We will showcase the usage of our system step-by-
step, starting with the definition of PACT programs until
their execution finishes. Visualization tools will give insight
into each step of the processing of a PACT program.

Acknowledgments

We thank HP for supporting this work through an Open
Collaboration Grant as well as IBM for a Shared University
Research hardware grant.

S. REFERENCES

[1] Hadoop. URL: http://hadoop.apache.org.
[2] TPC-H. URL: http://www.tpc.org/tpch/.
[3] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and
D. Warneke. Nephele/PACTs: A Programming Model
and Execution Framework for Web-Scale Analytical
Processing. In Symposium on Cloud Computing, 2010.
J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, pages 137-150,
2004.
M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks. In P. Ferreira, T. R. Gross,
and L. Veiga, editors, FuroSys, pages 59-72. ACM, 2007.
P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a
relational database management system. In P. A.
Bernstein, editor, SIGMOD Conference, pages 23-34.
ACM, 1979.
[7] D. Warneke and O. Kao. Nephele: Efficient Parallel
Data Processing in the Cloud. In I. Raicu, I. T. Foster,
and Y. Zhao, editors, SC-MTAGS. ACM, 2009.

4

[5

6

1628

