
iGraph: A Framework for Comparisons of Disk­Based
Graph Indexing Techniques

Wook­Shin Han
Department of Computer

Engineering
Kyungpook National

University, Korea

wshan@knu.ac.kr

Jinsoo Lee
Department of Computer

Engineering
Kyungpook National

University, Korea

jslee@www­db.knu.ac.kr

Minh­Duc Pham
Department of Computer

Engineering
Kyungpook National

University, Korea

duc@www­db.knu.ac.kr
Jeffrey Xu Yu

Department of Systems
Engineering and Engineering

Management
Chinese University of Hong

Kong, Hong Kong

yu@se.cuhk.edu.hk

ABSTRACT
Graphs are of growing importance in modeling complex structures
such as chemical compounds, proteins, images, and program de-
pendence. Given a query graph Q, the subgraph isomorphism prob-
lem is to find a set of graphs containing Q from a graph database,
which is NP-complete. Recently, there have been a lot of research
efforts to solve the subgraph isomorphism problem for a large graph
database by utilizing graph indexes. By using a graph index as a fil-
ter, we prune graphs that are not real answers at an inexpensive cost.
Then, we need to use expensive subgraph isomorphism tests to ver-
ify filtered candidates only. This way, the number of disk I/Os and
subgraph isomorphism tests can be significantly minimized. The
current practice for experiments in graph indexing techniques is
that the author of a newly proposed technique does not implement
existing indexes on his own code base, but instead uses the original
authors’ binary executables and reports only the wall clock time.
However, we observe this practice may result in several problems.
In order to address these problems, we have made significant efforts
in implementing all representative indexing methods on a common
framework called iGraph. Unlike existing implementations which
either use (full or partial) in-memory representations or rely on OS
file system cache without guaranteeing real disk I/Os, we have im-
plemented these indexes on top of a storage engine that guarantees
real disk I/Os. Through extensive experiments using many syn-
thetic and real datasets, we also provide new empirical findings in
the performance of the full disk-based implementations of these
methods.

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13­17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150­8097/10/09... $ 10.00.

Graphs are of growing importance in modeling complicated struc-
tures such as chemical compounds [7, 8], proteins [11], images
[17], and program dependence [16]. The number of graphs in
a database can grow up to tens of millions. For example, Pub-
Chem [8] contains more than 30 million chemical compounds in
its database.

One of most important graph queries is the graph containment.
That is, given a query graph Q and a database D of graphs, find all
graphs in D that contain Q. This problem is also called the sub-
graph isomorphism problem, which belongs to NP-complete [23].

Recently, there have been a lot of research efforts to solve the
subgraph isomorphism problem by utilizing graph indexes and a
filter-and-refinement strategy. Thus, using a graph index as a fil-
ter, we first prune graphs that are not real answers at a low cost.
Then, we need to use expensive subgraph isomorphism tests to ver-
ify filtered candidates only. This way, the number of disk I/Os and
subgraph isomorphism tests can be significantly minimized.

Note that there are two different research streams processing
graph queries. One stream handles a large number of small graphs
such as chemical compounds using subgraph isomorphism. Most
existing approaches [12, 20, 21, 26, 27, 29, 30, 31] belong to this
stream. The other stream handles a small number of large graphs
using approximate graph search such as for a large ontology and
for protein structures [22, 28]. The former is the focus of our study.

The current practice for experiments in graph indexing techniques
is that the author of a newly proposed technique does not imple-
ment existing indexes on his own code base, but instead uses the
original authors’ binary executables and reports only the wall clock
time. However, we observe this practice may result in several prob-
lems as follows:

• The elapsed time can be a very brittle measure unless all im-
plementations are done on the same code base.

• The number of disk I/Os, a very robust measure, is not used.

• Existing experiments use small data and index files (less than
20 MBytes in most cases), and thus, all files are already
cached in the OS file system during experiments. Thus, real
disk I/Os are not properly obtained. This can be very prob-

449

lematic when we deal with large data and index files. Fur-
thermore, some index techniques use only in-memory repre-
sentations, i.e., all graphs and indexes are resident in mem-
ory.

• Thus, instead of minimizing disk I/Os, recent algorithms have
focused on minimizing CPU costs by using different data
structures and algorithms (such as subgraph isomorphism al-
gorithms) optimized for their environments.

• Only small numbers of graphs are tested. Most of the ex-
isting executables fail with a large number of graphs. The
maximum number of graphs tested in previous experiments
is 100,000.

• Deep analysis of experiments is very hard; it is difficult to
see why one method is better than another.

In order to address the aforementioned problems, we have made
significant efforts in implementing all representative indexing meth-
ods on a common framework called iGraph. Since we were unable
to acquire the source code of any technique from its authors, we use
best-effort re-implementations based on the original papers. Espe-
cially, for all indexing methods, we use the same subgraph isomor-
phism algorithm and a common storage engine that guarantees real
disk I/Os by bypassing the OS file system cache. Note that all cur-
rent DBMSs support this function by using either a raw device or
a special OS API. Our storage engine supports standard disk-based
structures and algorithms including heap files, B+-trees, inverted
indexes, disk-based prefix trees, binary large object (BLOB) files,
an LRU buffer manager, m-way posting list intersection, and exter-
nal sorting. By using iGraph, the effects of using different struc-
tures and algorithms can be minimized. In addition, we can easily
see the effect of the buffer size. The source code of the graph in-
dexes that we implement will be released following publication of
this paper.

Our goal is to provide a fair comparison of disk-based graph in-
dexing techniques by using a common framework and full disk-
based implementations rather than (full or partial) in-memory based
implementations. We also perform a thorough experimental evalu-
ation of the existing graph indexing methods using many small and
large datasets and present a detailed analysis.

The remainder of this paper is organized as follows. Section 2
reviews the background information as well as existing work on
graph indexing. Section 3 presents the details of our implemen-
tations. Section 4 presents the results of performance evaluation.
Section 5 summarizes and concludes our paper.

2. BACKGROUND

2.1 Problem Definition
In this paper, we use an undirected labeled graph for modeling

complicated structures. A graph g is defined as a quadruple (V,E,
Lv, Le) where V is the set of vertices, E (⊆ V × V) is the set
of undirected edges, and Lv and Le are label functions that map a
vertex or an edge to a label, respectively.

Now, we formally define our problem as follows:

Definition 1. [26] A graph G1 = (V1, E1, L1v, L1e) is subgraph
isomorphic to G2 = (V2, E2, L2v, L2e) if there is an injective
function f : V1 → V2 such that (1) ∀v ∈ V1, L1v(u) = L2v(f(u)),
and (2) ∀(v, u) ∈ E1, (f(u), f(v))∈E2 and L1e(u, v) = L2e(f(u),
f(v)). Here, we can say G1 is a subgraph of G2 or G2 is a super-
graph of G1.

2.2 Related Work
We can classify existing algorithms into two categories depend-

ing on whether or they use frequent graph mining.

2.2.1 Mining Based Approaches
Indexing: Representative indexing techniques in this category are
gIndex [26, 27], FG-Index [12], Tree+∆ [30], and SwiftIndex
[20]. In their indexing algorithms, they first extract subgraphs as
features using (modified) frequent graph mining algorithms. Thus,
we can obtain a set of features F where each f in F is associated
with a posting list of graph IDs for the graphs containing f . We
say a feature f is frequent if |Df | ≥ minSup where Df is a set
of graphs in a given graph database D such that f is a subgraph of
every graph in Df . |Df | is called the support of f .

The gIndex and FG-Index exploit gSpan, a frequent graph min-
ing algorithm. gIndex generates all frequent subgraphs of size up
to maxL as well as a subset of infrequent subgraphs of size up to
maxL using the so-called size-increasing support function while
FG-Index generates all frequent subgraphs regardless of their size.
With the size-increasing support function, the smaller the size of
features, the more infrequent subgraphs are included. FG-Index
additionally includes all infrequent edges (of size 1) for complete-
ness of its algorithm. After generating all features using the mining
algorithm, gIndex then removes all non-discriminative features. A

feature f is discriminative with respect to F if
|
∩

f′∈F ∧f′(f Df′ |
|Df | ≥

γmin.
The Tree+∆ and SwiftIndex perform their own tree mining al-

gorithms to extract trees from graphs since the most frequent fea-
tures are trees, and the cost of tree mining from graphs may be
cheaper than that of graph mining. Tree+∆ generates all frequent
trees of size up to maxL− 11, while SwiftIndex generates all fre-
quent and discriminative trees of size up to maxL. Both also gen-
erate all infrequent edges as features for the completeness of their
algorithms.

In addition to tree features, Tree+∆ generates graph features on
the fly while processing queries in order to improve the pruning
power. The process of choosing graph features on the fly is as fol-
lows: Tree+∆ chooses all simple cycles C from a query graph
without checking whether or not they are discriminative, and then,
for each cycle c in C, Tree+∆ extends c by growing one vertex and
checks whether the extended graph g is discriminative with respect
to c only, which does not guarantee that g is a discriminative fea-
ture. If g is qualified, g is added to ∆. We repeat the enlargement
of g until it reaches maxL. Thus, Tree+∆ may generate a lot of
features in ∆ if the queries have many cycles. In the worst case,
the size of ∆ may exceed the size of all graph features in gIndex
as we will see in our experiments with dense datasets.
Query Processing: Algorithm 1 shows a framework for process-
ing a subgraph containment query. First, it finds features associated
with their posting lists. Next, it intersects all posting lists to obtain
candidate graphs. Finally, it executes a subgraph isomorphism test
for each candidate for refinement.

In FindFeatures, gIndex and Tree+∆ enumerate all subgraphs
or subtrees of size up to maxL for a given query q, respectively,
and check whether such features are in their indexes. To eliminate
unnecessary features, they remove a feature f ′ if f exists in their
indexes such that f ′ (f , since the graph IDs in the posting list of
f is a subset of the graph IDs in the posting list of f ′. To minimize
the enumeration cost, we don’t enumerate any supergraph of f ′ if
f ′ is not in the index. Tree+∆ further finds graph features in its ∆.

1In [30], the size of a graph pattern is defined as the number of
vertices rather than the number of edges.

450

Algorithm 1 QueryProcessing(q, I , D)
• q: an input graph
• I: a graph index
•D: a graph database

1: F ← FindFeatures(q, I);
2: C ← IntersectPostingLists(F); /*|F |-way merge join*/
3: R← ∅;
4: for each candidate c in C
5: if SubgraphIsomorphism(c, q) = true
6: R← R ∪ {c};
7: return R;

In order to minimize the enumeration cost, FindFeatures of
FG-Index does not enumerate all possible features. Our new find-
ing is that this strategy reduces the enumeration cost but could re-
sult in poor pruning power, which might result in poor performance
especially for graph databases having a large number of graphs as
we will see in the experiment. FG-Index also proposes a simple
yet effective strategy called verification-free strategy. That is, if a
feature f corresponding to a query graph g is in the index, we can
be sure that all graph IDs in the posting list of f are answers with-
out performing subgraph isomorphism tests with g. We note that
this strategy can be readily applied to any feature-based indexing
techniques. We also note that, in their implementation, part of the
features as well as their posting lists are resident in memory.

SwiftIndex supports a fast, feature finding algorithm called Prefix-
QuickSI. Without enumerating all subtrees of a query, it executes
subgraph isomorphism tests between a query and all features in the
index in “batch fashion.” For this purpose, [20] encodes a feature
as QI-Sequence and stores all features in a prefix tree (please refer
to [20] for details). Their original implementation, however, is in-
memory based (that is, all graphs in the database and indexes are
resident in memory), and thus, it is not clear whether it would still
be fast in a disk-based version.

2.2.2 Non­Mining Based Approaches
The representative indexing techniques in this category are Graph-

Grep [21], C-Tree [29], and gCode [31]. Since their indexing and
query processing methods are very different from each other, we
explain each method individually.

The GraphGrep enumerates as features all paths of size up to
a threshold length. For query processing, it follows Algorithm 1,
which is a common framework for filtering-and-verification. As
shown in [26, 27], its pruning power is significantly lower than
that of gIndex, since paths as features do not preserve structural
information of graphs compared with subgraphs and subtrees.

The C-Tree uses the concept of graph closure, which is a “bound-
ing graph” that contains a set of graphs. C-Tree builds a hier-
archical tree using this concept. In query processing, it traverses
from the root node to the leaf node by performing the pseudo sub-
graph isomorphism test for each node. If the graph closure for a
node N is disqualified by the pseudo subgraph isomorphism test,
C-Tree does not access N , so that all graphs recursively contained
by N are pruned. However, our new findings show that there are
three serious problems in this framework. 1) If we reach the leaf
node, we first access each graph in the node and execute a pseudo
subgraph isomorphism test before executing the subgraph isomor-
phism test algorithm. The original implementation of C-Tree uses
the Ullmann’s algorithm [23] as a subgraph isomorphism algo-
rithm, which is slower than the pseudo subgraph isomorphism test,
which is much slower than the state-of-the art subgraph isomor-
phism algorithms such as VF2 [9] and QuickSI [20]. 2) Unlike

a fixed size bounding box in R*-tree, a graph closure is variable-
sized, and the sizes of graph closures in upper-level nodes can be
very large (exceeding a page size of 8 KBytes). Thus, the pseu-
dograph isomorphism test for non-leaf nodes is very expensive. 3)
The dead space of a graph closure (i.e., space inside a graph clo-
sure that contains no graph) is very large so that the pruning power
of C-Tree is the lowest among all representative indexing methods
we consider. Thus, in some cases, C-Tree is even slower than the
naive sequential scan performing a subgraph isomorphism test for
each graph in the database as we will see in the experiment.

The gCode proposes a two-step filtering strategy: one at the
index-level and the other at the object-level. In indexing, for each
graph g in the graph database, gCode first computes a vertex signa-
ture for each vertex v which is a combination of neighborhood in-
formation around v (that is, v’s local structure) and the two largest
Eigenvalues for local structures (by mapping neighborhood infor-
mation to an adjacency matrix and computing Eigenvalues from
the matrix). It then generates a graph signature for g by combining
all vertex signatures. These graph signatures are indexed in a tree
structure called GCode-Tree. gCode also maintains a vertex signa-
ture dictionary to store all distinct vertex signatures. In addition, for
each graph g, gCode maintains a list of pairs <sid, cnt>. Here,
sid is a vertex signature ID which is a key to probe the vertex signa-
ture dictionary; cnt refers to how many times this signature appears
in g. In query processing of a query graph q, gCode extracts vertex
signatures and a graph signature from q. As index-level filtering,
gCode finds all qualified signatures from GCode-Tree. For object-
level filtering, for each qualified graph g, it accesses the list of pairs
(vertex signature ID, the frequency of this signature) of g and per-
forms pruning (refer to [31] for details about pruning rules). In this
case, we have to probe the vertex signature dictionary to obtain ver-
tex signatures for g. Our new findings show that the index-filtering
alone is not powerful for real spare datasets, and thus, the number
of candidates after the index-level filtering can be very large. This
can result in many disk I/Os to access candidate graphs as we will
see in the experiment.

3. IMPLEMENTATION
We first explain how iGraph stores graphs in a database. A graph

consists of a list of vertices and a list of edges. A graph g is stored
as a tuple in a heap page if the size of g is less than the page size.
Otherwise, g is stored as a BLOB. The storage format of g is as
follows: 1) For representing each vertex, we store a pair of (vid,
vlabel). Since we store vertices in vid order, we omit storing vid;
2) For representing each edge, we store a triple (svid, tvid, elabel)
where svid and tvid represent IDs of vertices forming this edge,
and elabel represents the label of the edge. Each graph is assigned
a unique graph ID. To efficiently find a tuple containing the cor-
responding graph using a given graph ID gid, we build a B+-tree
whose key is a graph ID.

To store graph/tree features, gIndex and Tree+∆ use an inverted
index such that the search key is the hash value of a canonical graph
code of a graph. A posting list can be stored as a tuple if the size of
the posting list is smaller than the page size; otherwise, it is stored
as a BLOB. gIndex uses the DFS code as a canonical graph code
[25] and Tree+∆ uses the BFS code as a canonical tree code, which
is similar to this DFS code. In Tree+∆, ∆ is implemented as an
inverted index for graph features where each feature is encoded as
the CAM code [15]. We use djb2 [19] as the hash function, which
is considered robust.

The gCode uses GCode-Tree as an index-level filter for storing
a set of graph signatures. Each graph signature for g contains a
hash value and a list of Eigenvalues for all vertices of g. Each leaf

451

entry of the GCode-Tree points to a list of Eigenvalues, which are
stored in a tuple of a heap page. gCode also maintains a vertex
signature dictionary, which is implemented as a B+-tree where its
key and value are a vertex signature ID and a vertex signature. In
addition, for each graph g, gCode maintains a list of pairs (vertex
signature ID, the frequency of this signature). To minimize the disk
I/O cost, we store this list together with the list of Eigenvalues in a
tuple of a heap file so that we don’t need any extra I/O.

The SwiftIndex uses a prefix tree to store QI-Sequences of fea-
tures [20]. In the original implementation of SwiftIndex, all graphs
and the prefix tree in the database are first loaded in memory before
query execution. For a fair comparison, we instead use a disk-based
prefix tree where each node is stored as a mini-page [10] rather than
a full page, since each node can be much smaller than the regular
page. However, the size of the root node of the prefix tree can be
large, and thus, the root node is stored as a full page. In case a node
is larger than a mini-page, an overflow page is used. To efficiently
mine frequent and discriminative features, we use a tree mining al-
gorithm rather than following the original algorithm which is very
slow with VF2.

The FG-Index uses a multi-level index tree called core FG-Index
where each node is an Inverted-Graph-Index (IGI). FG-Index par-
titions frequent features into groups, and each group is assigned to
an IGI. Note that the size of each IGI is variable and could be very
large. Each IGI consists of a list of features and an inverted index
for efficiently finding these features in this IGI. The list of features
is stored in a list of heap pages since the size of the list can be much
larger than one page. In the original implementation of FG-Index,
the root IGI is loaded in memory before executing queries. Since
this kind of optimization can be applied to any other feature-based
indexing techniques, for a fair comparison, we don’t make the IGI
resident in memory but instead let the buffer manager handle index
pages in memory.

Regarding C-Tree, we follow the original implementation ex-
actly using a java bytecode analyzer. We allocate a page for each
node in the C-Tree unless the size of a node exceeds the page size.
If the size of a node is larger than the page size, an overflow page
is used.

To efficiently intersect a set of posting lists, we exploit an m-
way, external, merge join for all feature-based indexing techniques.
For sorting, we use an m-way, external, merge sort algorithm. In
order to minimize the disk I/Os, we don’t generate the last run in
disk.

4. EXPERIMENTS
We evaluate the performance of all representative graph index-

ing techniques. The algorithms considered are as follows: gIndex
[26, 27], C-Tree [29], FG-Index [12], Tree+∆ [30], gCode [31],
and SwiftIndex [20]. We also tested SeqScan (a naive sequen-
tial scan) as a sanity check. Since we were unable to acquire the
source code of any technique from its authors, we use best-effort
re-implementations based on the original papers. However, for
C-Tree, we followed the original implementation exactly using a
java bytecode analyzer. In order to mine features for gIndex and
FG-Index, we used gboost [5], an open source implementation of
gSpan2. All techniques are implemented with a common storage
engine using Microsoft Visual C++.

2We can use Gaston for faster tree/graph mining instead of
gSpan.

4.1 Experiment Setup
Datasets: For small datasets, we use a real AIDS Antiviral dataset
(refereed to here as AIDS) [3] and five synthetic datasets. AIDS
consists of 10,000 graphs and is a subset of the AIDS Antiviral
dataset3. Note that the AIDS Antiviral dataset is the standard graph
dataset utilized in virtually all related work [12, 14, 20, 25, 26, 27,
29, 30, 31]. AIDS has 25.42 vertices and 27.40 edges, on average.
The numbers of distinct vertex labels and distinct edge labels are
51 and 4, respectively.

In order to generate synthetic datasets, we use GraphGen [6],
a synthetic graph generator. GraphGen can generate a collection
of graphs with controlling input parameters, such as the number of
graphs, the average size of each graph, the number of unique ver-
tex/edge labels, and the average density of each graph. The density
d of a graph g = (V,E) is defined as # of edges in g

of edges in a complete graph . That

is, the denominator is |V |×(|V |−1)
2

. The density has a normal dis-
tribution with the input value as the mean and 0.01 as the variance.
We generated five datasets by varying the density (0.3, 0.5, 0.7) and
setting the number of vertex/edge labels to 50, and by varying the
number of vertex/edge labels (20, 50, 80) and setting the number
of density to 0.5. The average size of a graph is 30. For example, a
data set Synthetic.10K.E30.D5.L20 means that it contains 10,000
graphs; the average size (the number of edges) of each graph is 30;
the density for each graph is 0.5; and the number of distinct ver-
tex/edge labels is 20.

For the large dataset, we use a real chemical compound dataset
(referred to here as PubChem). PubChem consists of 1 mil-
lion graphs and is a subset of the PubChem chemical structure
database4. PubChem has 23.98 vertices and 25.76 edges, on aver-
age. The numbers of distinct vertex labels and distinct edge labels
are 81 and 3, respectively.

Since C-Tree does not support edge labels, we instead insert an
additional vertex for each edge label as in [31].
Query sets: For AIDS, we use the existing query sets Q4, Q8,
· · · , Q24 which can be downloaded from [3]. This query set has
been used in [12, 20, 27, 26]. Each query set Qn contains 1000
graphs where each graph size is n. In order to generate query sets
for the other datasets, we first randomly select 1000 graphs from
each dataset whose size is larger than or equal to 24. Then, for
each graph g, we remove edges until g is still connected and con-
tains 24 edges. This query set is called Q24. In order to generate
Q20, we remove edges from each graph in Q24 until the remain-
ing graph contains 20 edges. We repeat this process to generate the
remaining query sets. For AIDS, we also generate queries using
our query generator and perform experiments. Since the trends of
experimental results are similar to those using the existing query
sets in [3], we omit these experimental results for brevity.
Setup: We conducted all the experiments on a Window Vista ma-
chine with Xeon Quad Core 2.27 GHz CPU and 8 GBytes RAM.
We used LRU as the buffer replacement algorithm, and set the page
size to 8 KBytes. We used a Barracuda SATA 1TB 7,200 RPM
hard disk; the average latency is 4.16ms; the maximum random
read seek time is 8.5ms; and the maximum random write seek time
is 9.5ms [1].

We adopt the default parameter values used in each technique:
for all feature-based indexing techniques, the support threshold is
set to 10%, and the maximum feature size maxL = 10. For gIndex
and SwiftIndex, γmin is set to 2. For FG-Index, δ is set to 0.1. For
gIndex, we follow the same size-increasing function as in [26].

3http://dtp.nci.nih.gov/
4ftp://ftp.ncbi.nlm.nih.gov/pubchem/

452

We use the average number of candidates, the average number
of page accesses, and the average wall clock time as the perfor-
mance metrics. We use VF2 [13] for the subgraph isomorphism
test, which can be downloaded from [9]. To avoid the buffering
effect of the OS file system and to guarantee actual disk I/Os, we
use the FILE FLAG NO BUFFERING flag [2] when opening data
and index files.

Since each query set contains 1000 queries, we can either clean
the current buffer for each query execution or reuse the current
buffer for the next queries. We name the former cold run while
the latter is named hot run. We performed experiments with both
hot run and cold run.

4.2 Results for Small Graph Databases

4.2.1 AIDS dataset
Database construction Cost: Table 1 shows database construc-
tion costs for AIDS. Since SeqScan does not have any indexes,
its construction cost (i.e., database loading cost only) is the min-
imum among all techniques. Except for SeqScan, the database
construction cost contains 1) the database loading cost and 2) the
index construction cost. To calculate the index construction cost
of an indexing technique T , we need to deduct the database con-
struction cost of SeqScan from the database construction cost of
T . Note that there are no features in C-Tree or gCode.

Table 1: Database construction cost for AIDS.

Construction time (sec.) # of features Size (MByte)
SeqScan 1.59 NA 3.90
C-Tree 3.88 NA 10.51
gIndex 26.57 1220 5.95

FG-Index 19.53 664 10.43
Tree+∆ 15.05 640 7.94
gCode 6.50 NA 9.45

SwiftIndex 16.22 283 4.80

The database construction costs of C-Tree and gCode are the
lowest, since they do not perform the expensive mining process.
This result is consistent with those reported in [12, 20, 27, 30].

The database construction cost of gIndex is comparable to all
feature selection methods such as Tree+∆, FG-Index, and SwiftIndex.
This result differs significantly from those reported in [12, 20, 27,
30]. This is due to the fact that these papers 1) ignore edge labels
without any clear reason5 and 2) do not utilize their own gIndex
implementation on the same code base, but instead use the binary
executable of the original implementation. The main reason for
this discrepancy between our implementation and the original is
that the discriminative feature selection algorithm of the original
“might use a slower implementation” than ours.6 Note that the
major cost in indexing is the mining cost, and there is no signif-
icant performance differences between tree mining “from graphs”
and graph mining since most features are trees. We confirm this
fact with Gaston [4, 24], a state-of-the-art tree/graph mining tool,

5We have communicated with Xifeng Yan who first ignored the
edge label. He did that simply in order to “make the problem more
difficult.” Subsequent work imitated his setting without clear rea-
son.
6Regarding this fact, we have communicated with Xifeng Yan. He
also believes that wall-clock comparisons should be avoided unless
the implementations are done on the same code base.

which supports tree/graph mining “from graphs” within the same
framework. However, since gIndex generates all infrequent and
discriminative features of small sizes (by up to three), its indexing
cost might significantly increase if there are too many small, infre-
quent features as we will see in experiments with synthetic datasets.
We also note that gIndex has the largest number of features but it
index size is smaller than FG-Index and Tree+∆, since its average
posting size is much smaller than those of FG-Index and Tree+∆.
That is, non-discriminative features whose posting sizes are large
are removed from gIndex.
Query Processing Cost: Figure 1 shows the average number of
candidates by varying query sets. Note that the average number
of candidates is invariant to the buffer size. Although gCode and
C-Tree perform well for most query sets, this information might be
misleading, since both methods execute additional object-level fil-
tering before running the subgraph isomorphism test for each can-
didate; gCode executes vertex signature based filtering for each
candidate, while C-Tree runs a pseudo subgraph isomorphism test
for each candidate leaf entry (i.e., each candidate graph). Thus,
we added two additional curves, gCode (I) (gCode with index-
level filtering only) and C-Tree (I) (C-Tree with index-level filter-
ing only), to plot the average number of candidates at the index
level. As we see here, C-Tree (I) and gCode (I) perform the worst
since their indexing-level pruning power is the lowest. This new
finding can explain why C-Tree and gCode perform poorly as we
will see.

The gIndex performs the best for most queries since it has the
largest number of (frequent and discriminative) features in its in-
dex, and thus its pruning power is the best. FG-Index performs the
worst among all feature-based indexing techniques in terms of the
average number of candidates (7.80 times more candidates gener-
ated compared with gIndex). In fact, [12] did not report the number
of candidates. This is because FG-Index does not find all features
from its index that are subgraphs of a given query, but instead uses
a strategy to find a subset of index features to minimize the feature
finding cost. However, this strategy may incur a lot of candidates
for sparse graph databases, which might lead to poor performance
in large databases as we will see in experiments for the one mil-
lion database, PubChem. SwiftIndex ranks in between Tree+∆
and FG-Index in terms of the average number of candidates, since
it uses a subset of features in Tree+∆ but exploits all necessary
features in its index for query processing unlike FG-Index.

 1

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree

C-Tree (I)

gCode

gCode (I)

FG-Index

gIndex

SwiftIndex

Tree+∆

Figure 1: Average number of candidates by varying query sets
(AIDS).

453

Figure 2 shows the average number of I/Os by varying query sets
(from Q4 to Q24) when the buffer size is set to 1 MByte7. gIndex
shows the best performance for all query sets except Q4. For Q4,
FG-Index performs the best since it exploits the verification-free
strategy. Note that the other feature-based indexing techniques
such as gIndex, SwiftIndex, and Tree+∆ can easily support this
verification-free strategy as well. Thus, gIndex can perform simi-
larly to FG-Index even for a very small query size. gCode per-
forms the worst. This phenomenon is explained as follows: 1)
gCode (I) generates up to 17.45 times more candidates in the in-
dex level than gIndex; 2) For a given query Q = (V , E), |V | index
lookups over the vertex signature dictionary are required for each
candidate. Therefore, if the buffer size is insufficient for buffering
all pages necessary for such lookups, gCode performs very poorly.
We also notice that, gIndex and SwiftIndex achieve slightly better
performance with hot run (see Figure 2(b)) since it accesses the
smallest number of pages, and some pages accessed for the pre-
vious query execution can reside in the buffer and thus, can be
used for the current and next queries. Regardless of query sets,
SeqScan accesses a constant number of disk I/Os since it must
scan the whole graph database. Unlike the other indexing meth-
ods, the number of disk I/Os in Tree+∆ increases as the query size
increases. This is because Tree+∆ mines graph features on the
fly during query execution, and larger query sizes may have more
graph features.

 1

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree
FG-Index

gCode
gIndex

SeqScan
SwiftIndex

Tree+∆

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(a) Cold Run.

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(b) Hot Run.

Figure 2: Number of I/Os by varying query sets (AIDS, buffer
size = 1 MByte).

Figure 3 shows the average number of I/Os by varying query
sets when the buffer size is set to 10 MBytes. Note that the buffer
size (1,200 pages) is larger than the database of each technique
except C-Tree (1,345 pages). As shown in Figure 3(a), all tech-
niques except gCode show almost the same performance as Figure
2(a). However, we observe that a drastic improvement occurs with
gCode compared with the buffer size being set to 1 MByte, since
the cost of index lookups over the vertex signature dictionary can
be minimized with a large buffer size. As shown in Figure 3(b),
with hot run, all techniques except C-Tree show constant perfor-
mance regardless of query sizes, since all database pages can re-
side in the buffer after their initial access. As for C-Tree, the num-
ber of disk I/Os is slightly reduced compared with a small buffer
size, since the database size of C-Tree is still larger than the buffer
size, and tree traversal incurs the sequential flooding effect [18]
(i.e., pages buffered are replaced before they are reused). We per-
formed additional experiments with the buffer size being set 100
MBytes. C-Tree also showed constant performance. With hot run,
SeqScan performs the best in terms of disk I/Os which does not
need to access additional index pages.
7In our storage manager, the number of buffer pages allocated must
be a multiple of 100. Thus, 100 pages (not 120 pages) are allocated
in this case. This is about 20% of the database size of SeqScan.

 1

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree
FG-Index

gCode
gIndex

SeqScan
SwiftIndex

Tree+∆

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(a) Cold Run.

 0.1

 1

 10

 100

 1000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(b) Hot Run.

Figure 3: Number of I/Os by varying query sets (AIDS, buffer
size = 10 MBytes).

Figure 4 shows the average elapsed time by varying query sets
when the buffer size is set to 1 MByte. The trends of all curves
are consistent with those for the number of I/Os. This is because
the disk I/O cost is dominant in overall performance unless there
are significant differences among the numbers of subgraph isomor-
phism tests. For gIndex, although its cost is lowest in terms of the
average numbers of candidates and disk I/Os, it is slightly slower
than FG-Index and SwiftIndex in terms of the average elapsed
time. This is due to slow subgraph enumeration from a query in
gIndex. For Q24, the subgraph enumeration cost in gIndex con-
stitutes 57.3% of the total query processing time. We note that
there is room to optimize since gIndex enumerates subgraphs us-
ing gSpan, which is not optimized for extracting subgraphs from a
single graph. We also note that VF2 performs very well for labeled
graphs. We may accelerate the subgraph isomorphism test further
by using QuickSI [20]. This fact indicates that the I/O cost must be
carefully optimized to obtain good performance. With the buffer
size set to 10 MBytes, the trends of elapsed times are similar to
those in Figure 3.

 1

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree
FG-Index

gCode
gIndex

SeqScan
SwiftIndex

Tree+∆

 0.01

 0.1

 1

 10

 4 8 12 16 20 24A
vg

 e
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Query size

(a) Cold Run.

 0.01

 0.1

 1

 10

 4 8 12 16 20 24A
vg

 e
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Query size

(b) Hot Run.

Figure 4: Average elapsed time by varying query sets (AIDS,
buffer size = 1 MByte).

4.2.2 Synthetic dataset
The default dataset we use is Synthetic.10K.E30.D5.L50. The

purpose of this experiment is to see how performance changes with
varying parameter values.
Database Construction Cost: Table 2 shows database construc-
tion costs for the default synthetic dataset. Compared with Ta-
ble 1, there exist remarkable changes in the database construc-
tion costs. First, the number of frequent features for these dense
graphs is only 37. Almost all features in FG-Index, Tree+∆, and
SwiftIndex are infrequent features. Second, a very small num-
ber of frequent features enable fast indexing times for FG-Index,
Tree+∆, andSwiftIndex. C-Tree also performs fast indexing since
it does not generate features. The indexing cost of gCode is much

454

higher than those of these indexing methods. Third, the indexing
cost of gIndex is much more expensive than other feature-based
indexing methods since it mines all infrequent and discriminative
features of size up to 3.

Table 2: Database construction cost for the default synthetic
dataset.

Construction time (sec.) # of features Size (MBytes)
SeqScan 1.42 NA 3.57
C-Tree 8.92 NA 11.69
gIndex 290.02 44250 12.99

FG-Index 6.55 13616 5.22
Tree+∆ 6.42 13614 5.59
gCode 70.36 NA 29.57

SwiftIndex 8.00 13606 4.77

Query Processing Cost: Figure 5 shows the average number of
candidates by varying query sets for Synthetic.10K.E30.D5.L50.
Compared with the results in Figure 1, there are drastic changes to
gCode (I), C-Tree (I), and Tree+∆. gCode (I) is much more ef-
fective with large query sizes for dense graph databases. C-Tree (I)
performs more effective for dense datasets. Tree+∆ performs much
better than the other feature based indexing techniques especially
for large query sizes. This is explained as follows: we run exper-
iments using Q4, Q8, · · · , and Q24 in this order (i.e., in order of
increasing query size). Thus, graph features reclaimed (i.e., mined
graphs at query processing time) at small sizes are used for larger
query sizes. However, in return, Tree+∆ suffers from very slow
performance in terms of disk I/Os and the elapse time as we will
see in the next paragraph.

 1

 10

 100

 1000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree

C-Tree (I)

gCode

gCode (I)

FG-Index

gIndex

SwiftIndex

Tree+∆

Figure 5: Average number of candidates by varying query sets
(synthetic dataset).

Figure 6 shows the average number of I/Os by varying query
sets when the buffer size is set to 1 MByte. gIndex shows the
best performance for Q4 through Q16. FG-Index does not outper-
form gIndex even for Q4 since there exist no frequent features of
size 4, and thus, the verification-free strategy is of no use in this
case. gCode performs the best for Q20 and Q24 since the graph
code based filtering performs very well with large query sizes for
denser graph databases. Regarding Tree+∆, its performance be-
comes worse with larger query sizes. This is because, queries in
this dense synthetic dataset contain many cycles, and thus, the cost
of mining graph features on the fly is very high (see Table 3), es-
pecially for a small buffer size. Again, with a small buffer size, we
notice that, there is little change in the number of disk I/Os with hot
run as shown in Figure 6(b).

 1

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree
FG-Index

gCode
gIndex

SeqScan
SwiftIndex

Tree+∆

 10

 100

 1000

 10000

 100000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(a) Cold Run.

 10

 100

 1000

 10000

 100000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(b) Hot Run.

Figure 6: Number of I/Os by varying query sets (synthetic
dataset, buffer size = 1 MByte).

Table 3: # of graph features for each query size mined by
Tree+∆ during query processing.

of graph features

AIDS

Q4 2
Q8 64
Q12 101
Q16 148
Q20 139
Q24 111

Synthetic.10K.E30.D5.L50

Q4 165
Q8 1203
Q12 5146
Q16 18976
Q20 57306
Q24 129923

Figure 7 shows the average number of I/Os by varying query sets
when the buffer size is set to 10 MBytes. Since Tree+∆ reclaims
graph features on the fly, a larger buffer size significantly affects
its overall performance. This is why Tree+∆ performs much bet-
ter when the buffer size is set to 10 MBytes. However, its mining
cost during query processing time is still very expensive and per-
forms worse than SeqScan for large query sizes (Q20 and Q24).
With hot run, there is a notable change in gIndex. Since the num-
ber of index features used by FG-Index or SwiftIndex is much
smaller than gIndex, it is highly likely that the pages accessed by
FG-Index or SwiftIndex are reused for hot run. This result indi-
cates that more features in the index simply do not guarantee better
performance.

 1

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree
FG-Index

gCode
gIndex

SeqScan
SwiftIndex

Tree+∆

 10

 100

 1000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(a) Cold Run.

 0.1

 1

 10

 100

 1000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(b) Hot Run.

Figure 7: Number of I/Os by varying query sets (synthetic
dataset, buffer size = 10 MBytes).

We also perform experiments (see Figure 8) with the buffer size
set to 100 MBytes (much larger than the database size). There is
drastic improvement with “hot run” in Tree+∆ since the graph fea-

455

ture reclamation cost is significantly reduced with the very large
buffer size. This is because all pages including newly created pages
containing graph features can reside in the buffer, and we only need
to flush out the newly created pages at the end of all query exe-
cutions. Regarding all methods except Tree+∆ with hot run, they
now show constant performance regardless of query size since most
(or all) pages can reside in the buffer.

 1

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree
FG-Index

gCode
gIndex

SeqScan
SwiftIndex

Tree+∆

 10

 100

 1000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(a) Cold Run.

 0.1

 1

 10

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(b) Hot Run.

Figure 8: Number of I/Os by varying query sets (synthetic
dataset, buffer size = 100 MBytes).

Figure 9 shows the average elapsed time by varying query sets
when the buffer size is set to 1 MByte. The trends of all curves
are consistent with those for the number of I/Os, since the disk
I/O cost is dominant in overall performance. Regarding Q20 and
Q24, although gCode performs slightly better than gIndex and
FG-Index in terms of the number of I/Os, gCode is slightly slower
than gIndex and FG-Index in terms of elapsed time since 1) the
cost of generating vertex signatures (including the Eigenvalue com-
putation for each vertex signature) from a large query size and 2)
the object-level filtering cost are significant. gIndex shows the best
performance in both cold and hot runs for a moderate dense dataset.

 1

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree
FG-Index

gCode
gIndex

SeqScan
SwiftIndex

Tree+∆

 0.01

 0.1

 1

 10

 100

 4 8 12 16 20 24A
vg

 e
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Query size

(a) Cold Run.

 0.01

 0.1

 1

 10

 100

 4 8 12 16 20 24A
vg

 e
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Query size

(b) Hot Run.

Figure 9: Average elapsed time by varying query sets (synthetic
dataset, buffer size = 1 MByte).

Now, we show the effect of density. For this purpose, we run ex-
periments with two more datasets with density being set to 0.3 and
0.7, respectively. Figure 10 shows experimental results with cold
run for varying density when the buffer size is set to 1 MByte. As
the density increases, the performance of gIndex becomes worse
than FG-Index. This is because gIndex uses a lot more (small-
sized) features than FG-Index but the posting-list intersection cost
exceeds the benefit of having smaller candidates. This indicates
that features must be carefully selected to minimize the total cost
of query execution rather than simply minimizing the number of
candidates. We omit experimental results with hot run when the
buffer size is set to 1 MByte, since there is very little change com-
pared with cold run.

 1

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree
FG-Index

gCode
gIndex

SeqScan
SwiftIndex

Tree+∆

 10

 100

 1000

 10000

 100000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(a) Density=0.3

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(b) Density=0.7

Figure 10: Number of I/Os by varying density (synthetic
dataset, buffer size = 1 MByte, cold run).

Figure 11 shows experimental results with cold run for varying
density when the buffer size is set to 10 MBytes. gIndex performs
the best again with density=0.3, while it is slower than other in-
dexing methods with density=0.7. FG-Index performs better than
gIndex for large query sizes with density=0.7 since it uses the
smallest number of features to intersect the posting lists of those
features. gCode performs the best for large query sizes with den-
sity=0.7.

 1

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree
FG-Index

gCode
gIndex

SeqScan
SwiftIndex

Tree+∆

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(a) Density=0.3

 10

 100

 1000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(b) Density=0.7

Figure 11: Number of I/Os by varying density (synthetic
dataset, buffer size = 10 MBytes, cold run).

Next, we show the experimental results by varying the number
of vertex/edge labels. For this purpose, we run experiments with
two more datasets with the number of vertex/edge labels being set
to 20 and 80, respectively. Figure 12 shows experimental result
with cold run for varying density when the buffer size is set to 1
MByte. gIndex performs comparatively better for a larger number
of labels since its pruning cost is relatively more effective, while it
performs worse than SwiftIndex, FG-Index, and gCode for large
query sizes (≥ 12) when the number of labels is set to 20.

 1

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree
FG-Index

gCode
gIndex

SeqScan
SwiftIndex

Tree+∆

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(a) # of labels=20

 10

 100

 1000

 10000

 100000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(b) # of labels=80

Figure 12: Number of I/Os by varying the number of labels
(buffer size = 1 MByte, cold run).

456

Figure 13 shows experimental results with cold run for varying
the number of labels when the buffer size is set to 10 MBytes. There
is no drastic performance change except for Tree+∆. With a large
buffer size, its graph mining cost at run time can be significantly
reduced.

 1

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

C-Tree
FG-Index

gCode
gIndex

SeqScan
SwiftIndex

Tree+∆

 10

 100

 1000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(a) # of labels=20

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(b) # of labels=80

Figure 13: Number of I/Os by varying the number of labels
(buffer size = 10 MBytes, cold run).

4.3 Results for Large Graph Database
Note that, in our research, a real one million graph dataset is

used for the first time. Since both SeqScan and C-Tree require
prohibitive times to finish the experiments even with large buffer
sizes, we exclude them from a large graph database. As for gCode,
we can run experiments with a 1 GByte buffer and hot run; with
smaller buffer sizes than 1 GByte and cold run, we are unable to
finish the experiments within a week.
Database construction Cost: Table 4 shows database construc-
tion costs for PubChem. The trends of the results are similar
to those of Table 1 since PubChem also contains sparse graphs.
Note that, although gIndex has more features than FG-Index and
Tree+∆, its size is smaller than FG-Index and Tree+∆. This is
because frequent and non-discriminative features that have large
posting lists are removed from gIndex.

Table 4: Database construction cost for the large dataset.

Construction time (sec.) # of features Size (MBytes)
SeqScan 94.49 NA 370.06
C-Tree 4575.18 NA 1013.10
gIndex 4074.01 2370 662.27

FG-Index 2375.62 1837 1329.85
Tree+∆ 1613.84 1733 1261.72
gCode 575.69 NA 848.66

SwiftIndex 2112.05 753 490.24

Figure 14 shows the average number of candidates by varying
query sets for PubChem. Compared with the results in Figure 1,
there are drastic changes to FG-Index. Its pruning power is up
to 13.09 times lower than gIndex, since FG-Index uses a strategy
to select a subset of features in its index to minimize the filtering
cost. However, this strategy incurs a serious performance problem
in dealing with a large dataset such as PubChem, as we will see.
SwiftIndex ranks between gIndex and FG-Index.
Query Processing Cost: Figure 15 shows the average number of
I/Os by varying query sets for PubChem when the buffer size is
set to 100 MBytes. Detailed experimental results with cold run
are as follows: for Q4, FG-Index performs the best due to its
verification-free strategy; for Q8 ∼ Q12, gIndex performs the
best since its pruning power is the best; for Q16 ∼ Q24, either
SwiftIndex or FG-Index performs the best since their posting list
intersection costs are the least. For Q24, gIndex performs worse
than SwiftIndex and FG-Index although its pruning power is the

 100

 1000

 10000

 100000

 1e+006

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

FG-Index
gCode
gIndex

SwiftIndex
Tree+∆

Figure 14: Average number of candidates by varying query sets
(PubChem).

highest. This is because the cost of intersecting more posting lists
leads to lower performance. SwiftIndex performs the best with hot
run for larger query sizes (Q16 ∼ Q24), since the number of its in-
dex pages accessed is the smallest, and these index pages are highly
likely to be resident in memory.

 1000

 10000

 100000

 1e+006

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

FG-Index gIndex SwiftIndex Tree+∆

 1000

 10000

 100000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(a) Cold Run.

 1000

 10000

 100000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(b) Hot Run.

Figure 15: Number of I/Os by varying query sets (PubChem,
buffer size = 100 MBytes).

Figure 16 shows the average number of I/Os by varying query
sets for PubChem when the buffer size is set to 1 GByte. Com-
pared with Figure 15, all methods except Tree+∆ show constant
performance with hot run since most pages accessed are resident
in the buffer. Tree+∆ incurs about 10 times more disk I/Os due to
run-time graph feature mining.

 100

 1000

 10000

 100000

 1e+006

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

FG-Index
gCode

gIndex
SwiftIndex

Tree+∆

 1000

 10000

 100000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(a) Cold Run.

 10

 100

 1000

 10000

 4 8 12 16 20 24

A
vg

 #
 o

f I
/O

s

Query size

(b) Hot Run.

Figure 16: Number of I/Os by varying query sets (PubChem,
buffer size = 1000 MBytes).

Figure 17 shows the average elapsed time by varying query sets
when the buffer size is set to 1 GByte. The trends of all curves
except the one for gIndex are consistent with those for the number

457

of I/Os, since the disk I/O cost is dominant in overall performance.
Although gIndex performs worse than SwiftIndex and FG-Index
in the number of I/Os for large query sizes, it performs the best for
all query sizes except Q4 due to a good combination of the lowest
number of candidates and low disk I/O costs. This is because it
significantly outperforms FG-Index and SwiftIndex in terms of the
average number of candidates, although gIndex performs slightly
worse than them in terms of disk I/Os.

 100

 1000

 10000

 100000

 1e+006

 4 8 12 16 20 24

A
vg

 #
 o

f c
an

di
da

te
s

Query size

FG-Index
gCode

gIndex
SwiftIndex

Tree+∆

 1

 10

 100

 1000

 4 8 12 16 20 24A
vg

 e
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Query size

(a) Cold Run.

 0.1

 1

 10

 100

 4 8 12 16 20 24A
vg

 e
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Query size

(b) Hot Run.

Figure 17: Average elapsed time by varying query sets
(PubChem, buffer size = 1000 MBytes).

4.4 Summary of New Findings

• There is no single winner for all experiments.

• To our surprise, although gIndex is the oldest method among
all representative graph indexing techniques we consider, it
performs the best for sparse datasets (AIDS and PubChem)
since its pruning power is the best, and thus, the I/O cost is
usually the lowest. Here, we obtain real disk I/O costs by
bypassing the OS filesystem caching. Note that all existing
work uses small datasets, and these files are already in OS
filesystem cache during query processing. Thus, the disk I/O
cost is marginal in existing experiments. However, in reality,
with large databases, the disk I/O cost is dominant in query
processing.

• gIndex performs slower than FG-Index dense datasets with
small labels, since it uses many ineffective features to mini-
mize the number of candidates, and thus the number of “in-
dex pages” (i.e., posting lists) accessed is the largest.

• The database construction costs of gIndex and FG-Index are
comparable to the tree feature based indexing techniques for
sparse datasets (only a couple of times slower). We also con-
firm this fact with Gaston [4, 24], a state-of-the-art tree/graph
mining tool, which supports tree/graph mining “from graphs”
within the same framework.

• For a small sparse dataset using large query sizes, SwiftIndex
performs the best in terms of elapsed time since it utilizes a
fast feature selection algorithm called PrefixQuickSI.

• Tree+∆ performs the best with large query sizes for dense
datasets in terms of the number of candidates since the previ-
ously reclaimed graph feature sets have good pruning power.
However, due to the cost of graph mining on the fly, it per-
forms very poor with small buffer sizes for dense queries and
datasets.

• gCode performs the worst with small buffer sizes for sparse
graph sets since 1) its index-level pruning power is much

lower than other feature-based indexing techniques, and 2)
index lookups over the vertex signature dictionary are very
expensive with small buffer sizes. Instead, gCode performs
the best in cold runs with large query sizes (Q20 and Q24)
for dense graphs in terms of disk I/Os.

• C-Tree performs poor for most cases since its index-level
pruning power is the lowest, and the cost of its pseudo graph
isomorphism test is more expensive than VF2. It is even
slower than SeqScan with small buffer sizes.

5. CONCLUSION
In this paper, we provide a comparison of disk-based graph in-

dexing techniques by using a common framework called iGraph
and full disk-based implementations rather than (full or partial) in-
memory based implementations. We performed extensive experi-
ments with small and large real datasets by varying parameter val-
ues such as the buffer size.

Although there is no single winner for all experiments, to our sur-
prise, gIndex, the oldest method among all representative graph in-
dexing techniques we considered, performs the best for most queries
for sparse datasets (AIDS and PubChem) since its pruning power
is the best, and thus, the I/O cost is usually the lowest. Tree+∆ per-
formed the best for dense datasets in terms of the number of candi-
dates, although it performed very poor with small buffer sizes for
dense queries and datasets. For dense graphs, gCode performed
the best with large query sizes (Q20 and Q24) with cold run in
terms of disk I/Os, while it performed the worst with small buffer
sizes for sparse datasets, since its index-level pruning power is
much lower than other feature-based indexing techniques. C-Tree
performs poor for most cases (even slower than SeqScan with
small buffer sizes) since its index-level pruning power is the lowest,
and the cost of its pseudo graph isomorphism test is more expensive
than VF2.

We believe that our community will benefit greatly from our im-
plementations and new findings. The source code of the graph in-
dexes that we implemented will be released at http://www.igraph.or.kr/.

6. ACKNOWLEDGMENTS
This paper is based on research supported by the R&D program

of MKE/KEIT (KI10033545). This paper is also supported in part
by MEST/KOSEF (R11-2008-007-03003-0).

7. REFERENCES
[1] http://www.seagate.com.
[2] http://msdn.microsoft.com/en-

us/library/cc644950(VS.85).aspx.
[3] Aids antiviral dataset used for gindex.

http://www.xifengyan.net/software.htm.
[4] Gaston. http://www.liacs.nl/ snijssen/gaston/iccs.html.
[5] gboost. http://www.kyb.mpg.de/bs/people/nowozin/gboost/.
[6] Graphgen — a synthetic graph data generator.

http://www.cse.ust.hk/graphgen/.
[7] National cancer institute. http://dtp.nci.nih.gov/.
[8] The pubchem project. pubchem.ncbi.nlm.nih.gov.
[9] Vf2 library. http://amalfi.dis.unina.it/graph/db/vflib-2.0/.

[10] A. Ailamaki, D. DeWitt, M. Hill, and M. Skounakis.
Weaving relations for cache performance. The VLDB
Journal, pages 169–180, 2001.

[11] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N.
Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. The
protein data bank. Nucleic Acids Res, 28:235–242, 2000.

458

[12] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards
verification-free query processing on graph databases. In
SIGMOD, pages 857–872, 2007.

[13] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A
(sub)graph isomorphism algorithm for matching large
graphs. IEEE Trans. Pattern Anal. Mach. Intell.,
26(10):1367–1372, 2004.

[14] H. He and A. K. Singh. Closure-tree: An index structure for
graph queries. In ICDE, pages 38–49, 2006.

[15] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent
subgraphs in the presence of isomorphism. In ICDM, page
549, 2003.

[16] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober:
statistical model-based bug localization. In ESEC/FSE, pages
286–295, 2005.

[17] E. G. M. Petrakis and C. Faloutsos. Similarity searching in
medical image databases. TKDE, 9(3), 1997.

[18] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill, Inc., New York, NY, USA, 2003.

[19] V. Roussev, G. G. R. III, and L. Marziale. Multi-resolution
similarity hashing. Digital Investigation, 4(Supplement
1):105 – 113, 2007.

[20] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming
verification hardness: an efficient algorithm for testing
subgraph isomorphism. PVLDB, 1(1):364–375, 2008.

[21] D. Shasha, J. T.-L. Wang, and R. Giugno. Algorithmics and
applications of tree and graph searching. In PODS, pages
39–52, 2002.

[22] Y. Tian and J. M. Patel. Tale: A tool for approximate large
graph matching. In ICDE, pages 963–972, 2008.

[23] J. R. Ullmann. An algorithm for subgraph isomorphism. J.
ACM, 23(1):31–42, 1976.

[24] M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen. A
quantitative comparison of the subgraph miners mofa, gspan,
ffsm, and gaston. In PKDD, pages 392–403, 2005.

[25] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In ICDM, pages 721–724, 2002.

[26] X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent
structure-based approach. In SIGMOD, pages 335–346,
2004.

[27] X. Yan, P. S. Yu, and J. Han. Graph indexing based on
discriminative frequent structure analysis. ACM Trans.
Database Syst., 30(4):960–993, 2005.

[28] X. Yan, P. S. Yu, and J. Han. Substructure similarity search
in graph databases. In SIGMOD, pages 766–777, 2005.

[29] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph
indexing method. In ICDE, pages 966–975, 2007.

[30] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: Tree + delta
>= graph. In VLDB, pages 938–949, 2007.

[31] L. Zou, L. Chen, J. X. Yu, and Y. Lu. A novel spectral coding
in a large graph database. In EDBT, pages 181–192, 2008.

459

