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ABSTRACT
Recent legislation has increased the requirements of organizations
to report data breaches, or unauthorized access to data. While ac-
cess control policies are used to restrict access to a database, these
policies are complex and difficult to configure. As a result, miscon-
figurations sometimes allow users access to unauthorized data.

In this paper, we consider the problem of reporting data breaches
after such a misconfiguration is detected. To locate past SQL queries
that may have revealed unauthorized information, we introduce the
novel idea of a misconfiguration response (MR) query. The MR-
query cleanly addresses the challenges of information propagation
within the database by replaying the log of operations and returning
all logged queries for which the result has changed due to the mis-
configuration. A strawman implementation of the MR-query would
go back in time and replay all the operations that occurred in the in-
terim, with the correct policy. However, re-executing all operations
is inefficient. Instead, we develop techniques to improve report-
ing efficiency by reducing the number of operations that must be
re-executed and reducing the cost of replaying the operations. An
extensive evaluation shows that our method can reduce the total
runtime by up to an order of magnitude.

1. INTRODUCTION
During the past several years, there has been growing interest in

building support for regulatory compliance into database systems.
One emerging class of regulations requires organizations to report
data breaches (instances of unauthorized access). In healthcare,
for example, the United States’ 2009 Health Information Technol-
ogy for Economic and Clinical Health Act (HITECH), greatly ex-
panded the security and privacy protections afforded by the earlier
HIPAA legislation. Among the new protections, HITECH requires
that “covered entities” (e.g., hospitals) notify individuals and the
government about any breach of protected health information.

Under normal circumstances, data in databases are protected by
access control policies, which designate which users can access
which data. However, access control policies are notoriously dif-
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ficult to configure, and mistakes are common [18]. In this paper,
we consider a common problem: A misconfiguration is detected in
an access control policy after that policy has already been deployed
for a period of time. To comply with data breach reporting rules, it
is necessary to go back in time and determine which queries may
have revealed unauthorized information.

An obvious approach to this problem is to maintain a log of all
SQL queries and to retrieve those queries that explicitly accessed
unauthorized data. However, if done naively, this fails to account
for the fact that unauthorized information may have propagated (ex-
plicitly or implicitly) via updates. For example, when an insert
operation copies a row from one table to another, this operation
creates an explicit flow of information; a user who reads the copied
row learns the original value. Similarly, when a row is updated
based on a condition (e.g., UPDATE Patients SET Age = ’XXX’
WHERE Name = ’Bob’), the operation creates an implicit flow of
information since the value XXX implicitly reveals that Name =
Bob. Thus, not only may a misconfigured access control policy
allow a user to access unauthorized parts of the database, but the
unauthorized data can be propagated to other parts of the database
that can be read by future queries. Past work on database audit-
ing considered the task of retrieving logged SQL queries that were
affected by user-specified “sensitive” data, but did not address the
challenge of updates [1].

1.1 Challenges
Effectively responding to database access control misconfigura-

tions presents several challenges:
• Updates: The solution should be able to find all past queries

that revealed unauthorized information, either by directly access-
ing unauthorized data or as the result of information propagation
caused by update operations.
• Lightweight/Non-disruptive: The solution should easily inte-

grate with existing DBMS infrastructure and introduce minimal
overhead during normal database operation.
• Efficient Response: When a policy misconfiguration is detected,

the solution should efficiently identify past queries that may have
revealed unauthorized information.

1.2 Our Contributions
In response to these challenges, we propose the PolicyReplay

framework, which is highlighted by the following contributions:
• We introduce the novel idea of a declarative misconfiguration re-

sponse (MR) query, which retrieves all past database queries that
may have revealed unauthorized information. Our approach is
based on the following insight, which cleanly addresses the prob-
lem of information propagation: Conceptually, the MR-query re-
turns to the point of the misconfiguration, and completely replays
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the log of operations (updates and queries) using the new (cor-
rect) policy. If a query returns exactly the same result under the
old (incorrect) and new (correct) policies, we know that the query
has not revealed any unauthorized information. However, if the
result has changed, the query is marked as “suspicious” since
unauthorized information may have been revealed. The formal
semantics are described in Section 3.

• Of course, the naive algorithm of returning to the point of the
misconfiguration and completely replaying all past database op-
erations is inefficient. To improve efficiency, in Section 4 we
introduce a set of optimizations based on static pruning, delta
tables, and partial and simultaneous re-execution. Our exper-
iments (Section 5) indicate that by replaying operations in an
efficient manner we are able to reduce the total runtime by an
order of magnitude in several common cases.

2. PRELIMINARIES
The PolicyReplay framework supports a modern row-level ac-

cess control model. During normal database operation, we main-
tain an operation log, which records the text of all SQL operations,
as well as a transaction-time backlog database representation of
historical data [10]. These structures are easily incorporated into
an existing DBMS, and past work has shown that they can be main-
tained with little impact on normal database operation [1].

2.1 Row-Level Access Control Policies
The goal of our work is to develop methods for responding to

misconfigurations in database access control policies. While the
access control model itself is not our main contribution, we will use
a modern row-level access control model (e.g., as found in Oracle’s
fine-grained access controls [17]) throughout the paper.

Formally, we will consider an old policy Pold and a new policy
Pnew. For each database user U , policy Pold (respectively, Pnew)
contains a selection of the form σSold(S) (respectively, σSnew (S))
for every table S in the database, where Sold (respectively, Snew) is
a boolean condition involving only the attributes in table S. A user
U is given access to the subset of the database specified by the se-
lection conditions in the policy. When the user executes a database
command (i.e., a SELECT, INSERT, UPDATE, or DELETE state-
ment), each table S referenced by the command is transparently
replaced with the view defined by the additional selection.

EXAMPLE 2.1. As a simple example, consider a hospital database
that contains a single table Patients. Consider a user Dan, and
suppose that under policy Pold Dan is allowed to see the rows of the
Patients table with Age < 30 (i.e., Patientsold = (Age < 30)).
If Dan issues the query SELECT * FROM PATIENTSwhilePold
is in effect, then the query is automatically rewritten as SELECT *
FROM PATIENTS WHERE Age < 30.

Updates are handled similarly. Suppose that Dan issues the data
modification command UPDATE Patients SET Department
= ’Pediatrics’; this is rewritten as UPDATE Patients SET
Department = ’Pediatrics’ WHERE Age < 30.

Of course, row-level access control has its shortcomings, and
alternatives have been proposed [12, 19]. Nonetheless, the row-
level approach remains popular.

2.2 Operation Log
During normal database operation, a log is maintained, which

records the text of all DML operations (SELECT, INSERT, UP-
DATE, and DELETE) that are performed. The operation log it-
self is an append-only table; each entry in the log contains the
timestamp at which the operation was executed, as well as the

associated sql (a string). It may also contain additional fields, such
as usernames, etc. Figure 1 shows a (pared-down) operation log.

Many existing database systems already support this kind of log-
ging [11, 17, 21], and past work has demonstrated that the perfor-
mance impact during normal database operation is minimal [1]. For
the purposes of this work, we will assume that log entries are writ-
ten within the same transaction as the recorded operation; this guar-
antees that the timestamp ordering on the log records is equivalent
to the serialization order of the operations.

2.3 Transaction-Time Backlog Database
In addition to the operation log, we will make use of a simplified

transaction-time backlog database [10], which supports two basic
operations: insert a row and delete a row. Each time a row is in-
serted or deleted, the system records the following information: the
time, the type of operation (insert or delete), and the value of the
row being inserted or deleted.1 Under this representation, rows are
never modified or deleted in place; instead, the new or updated row
is appended to the end of the table.

Formally, we will use the notation DBb to refer to a transaction-
time backlog database, and Sb to refer to a single backlog table
in the database. We will use DBτ to refer to the static snapshot
database that exists at time τ and Sτ to refer to the static snapshot
of table S at time τ . AnyDBτ can be constructed fromDBb using
methods described in [10].

EXAMPLE 2.2. Consider the backlog table Patientsb shown
in Figure 2(a), and suppose that Id is the primary key forPatients.
Patients3, the static snapshot of the table at time 3, is as follows:

Id Name Age Disease
1 Alice 10 Flu
2 XXX 20 Ulcer
3 Carlos 35 Broken Arm

3. MR-QUERIES: PROBLEM DEFINITION
When a policy misconfiguration is detected, a security adminis-

trator or compliance officer needs to take steps to respond to the
misconfiguration (e.g., report the incident to government regula-
tors). In order to do this, she must determine which queries have
revealed unauthorized information. We will refer to this task as
a misconfiguration-response (MR) query. The MR-query plays a
central role in breach reporting (see Appendix B).

The goal of the MR-query is to retrieve every logged SQL query
that disclosed unauthorized information. In the simplest case, a
logged query is returned by the MR-query if it explicitly reads
unauthorized data. However, this simple approach does not capture
the propagation of information via updates. Instead, our problem
formulation is based on the observation that a query is guaranteed
not to reveal unauthorized information if its result is the same un-
der the old (incorrect) and new (correct) policies. In contrast, when
the query results are not the same, there is no such guarantee; we
will refer to these SQL queries as suspicious queries.

DEFINITION 1 (MR-QUERY). The MR-query takes as input
the old policy Pold, the new policy Pnew, timestamps t1 and t2
(t1 ≤ t2), the operation log, and the transaction-time backlog
database DBb. The MR-query returns the set of all entries e in
the operation log that contain SELECT queries, have timestamps
between t1 and t2, and such that the results of the queries would
have been different if Pold had been replaced with Pnew, effective
at time t1.
1The effects of SQL UPDATE commands are captured as follows:
If a tuple is modified, we model this as a delete (of the old tuple),
followed by an insert (of the new tuple).
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lid timestamp sql
L1 1 SELECT *

FROM Patients
L2 2 SELECT *

FROM Patients
WHERE Age < 12

L3 3 UPDATE Patients
SET Name = ’XXX’
WHERE Name = ’Bob’

L4 4 SELECT *
FROM Patients
WHERE Name = ’XXX’

L5 5 INSERT INTO Temp
SELECT Id, Name, Age, Disease
FROM Patients

L6 6 SELECT * FROM Temp

Figure 1: Sample Operation Log

Time Op Id Name Age Disease
0 Ins 1 Alice 10 Flu
0 Ins 2 Bob 20 Ulcer
0 Ins 3 Carlos 35 Broken arm
3 Del 2 Bob 20 Ulcer
3 Ins 2 XXX 20 Ulcer

(a) Patientsb

Time Op Id A B C
5 Ins 1 Alice 10 Flu
5 Ins 2 XXX 20 Ulcer

(b) Tempb

Figure 2: The backlog database DBb is the result of the actual
execution (when Pold was in place).

The semantics of an MR-query are easily understood in terms
of a naive algorithm. It begins by constructing a second backlog

database dDBb by creating a new backlog table bSb for each table Sb

in DBb, and copying into bSb every row in Sb with timestamp ≤
t1. Starting from t1, the algorithm replays the operation log (up-
dates and queries) using the new policy Pnew, and applying all

data modifications to dDBb. For every SELECT query in the log,

it compares the result obtained using Pnew and dDBb to the result
obtained using Pold and DBb. Details are provided in Algorithm 1
in Appendix A.

EXAMPLE 3.1. Consider a database consisting of two tables:
Patients(Id,Name,Age,Disease) and Temp(Id,A,B, C).
In both tables, Id is the primary key.

Suppose that at time 1 the administrator deploys a policy allow-
ing user Dan to see only those rows of Patients with Age < 30
(i.e., Patientsold = (Age < 30)), and all rows of Temp (i.e.,
Tempold = true). Later, at time 7, she discovers that the policy
was misconfigured, and she corrects the policy so that Dan can see

Time Op Id Name Age Disease
0 Ins 1 Alice 10 Flu
0 Ins 2 Bob 20 Ulcer
0 Ins 3 Carlos 35 Broken arm

(a) ̂Patients
b

Time Op Id A B C
5 Ins 1 Alice 10 Flu

(b) T̂ emp
b

Figure 3: The backlog database dDBb is what would have re-
sulted if Pold were replaced with Pnew, effective at time 1.

Id Name Age Disease
1 Alice 10 Flu
2 Bob 20 Ulcer

(a) L1 (Old)

Id Name Age Disease
1 Alice 10 Flu

(b) L1 (New)

Id Name Age Disease
1 Alice 10 Flu

(c) L2 (Old)

Id Name Age Disease
1 Alice 10 Flu

(d) L2 (New)

Id Name Age Disease
2 XXX 20 Ulcer

(e) L4 (Old)

Id Name Age Disease
(f) L4 (New)

Id A B C
1 Alice 10 Flu
2 XXX 20 Ulcer

(g) L6 (Old)

Id A B C
1 Alice 10 Flu

(h) L6 (New)

Figure 4: Comparing the results of logged queries to illustrate
the semantics of MR-queries

only those Patients with Age < 15 (i.e., Patientsnew = (Age <
15) and Tempnew = true). Unfortunately, the misconfigured pol-
icy was in effect for the period between t1 = 1 and t2 = 7. In
order to respond to the misconfiguration, the administrator needs
to figure out which queries, evaluated during this time, would have
produced different results if the correct policy had been in place.

Figure 1 shows an example operation log, and Figure 2 shows
the backlog databaseDBb. Observe that if Pold had been replaced
with Pnew at time 1, some of the resulting data modifications would
have been different. The backlog database resulting from this case

(denoted dDBb) is shown in Figure 3. For example, notice that
the update in L3 will not affect any tuples when Pnew is in effect
because user Dan does not have access to Patients with Age > 15
(i.e., Bob) in this case.

Finally, Figure 4 compares the results of each SELECT query

when evaluated using DBb and Pold and using dDBb and Pnew.
Notice that the queries in L1, L4, and L6 return different results;
thus these log entries are returned as the result of the MR-query.

Less strict approaches may be insufficient to detect the disclosure
of unauthorized information. For example, an alternative method
might attach annotations to each row (e.g., [5]) and propagate these
annotations from row to row as the log of operations is executed to
track dependencies. A query would be marked suspicious if a row
in the result is dependent on a row that is only accessible due to the
misconfiguration. Therefore, by only executing the log under the
old policy and combining the query results with annotation infor-
mation, this approach can detect some suspicious activity; however,
it has significant weaknesses that are managed by the MR-query.

EXAMPLE 3.2. Consider the policies Patientsold = (Age <
30), Patientsnew = (Age < 18) and Tempnew = Tempold =
true and the log of operations and data in Figure 5. Initially, the
user learns from operation O1 that Bob has flu. Then, the delete
operation deletes those rows in Temp that have the same disease as
a row in the Patients table. In this example, Bob is deleted because
Alice also has the flu; however, Alice is only accessible due to the
misconfiguration. Therefore, the user inappropriately learns from
the empty set result of operation O3 that someone in the Patients
table has the flu. Unfortunately, the annotation method cannot de-
tect this unauthorized access because the result of O3 on Temp is
the empty set and contains no annotations to analyze. In contrast,
the MR-query will mark operation O3 as suspicious since the result
is different between the policies.

As the example shows, the absence of a row in the result can
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Time Op Id Name Age Disease Annotations
0 Ins 1 Alice 25 Flu P1

(a) Patientsb

Time Op Id Name Age Disease Annotations
0 Ins 1 Bob 10 Flu T1
2 Del 1 Bob 10 Flu P1, T1

(b) Tempb

lid time sql
O1 1 SELECT * FROM Temp
O2 2 DELETE FROM Temp t USING Patients p

WHERE t.disease = p.disease
O3 3 SELECT * FROM Temp

(c) Operation Log

Id Name Age Disease
(d) Result for O3 on Temp

Id Name Age Disease
1 Bob 10 Flu

(e) Result for O3 on T̂ emp
Figure 5: A backlog database and log to demonstrate the weak-
nesses of annotation methods.

result in the disclosure of unauthorized information when com-
bined with the result of other queries. Unfortunately, annotation
approaches are not able to detect these breaches. 2

4. MR-QUERY EVALUATION
The naive algorithm is useful for expressing the semantics of an

MR-query, but it would be inefficient to actually evaluate an MR-
query in this way. In this section, we describe a set of optimiza-
tions, which greatly improve the efficiency of MR-queries:

• Static Pruning: When the operation log contains only queries
(SELECT statements), in Section 4.2 we provide a static pruning
condition by which we can determine that certain queries are
unsuspicious, without re-executing them.
• Delta Tables: In Section 4.3, we extend the static pruning con-

dition to an operation log that also contains data modifications
(INSERT, UPDATE, and DELETE statements). The idea is to
store a concise description of how the database has changed as

a result of the new policy (i.e., the difference between dDBb and
DBb) using structures called delta tables. Then, we extend the
pruning conditions from the query-only case.
• Partial and Simultaneous Re-Execution: When the above prun-

ing strategies fail, it is necessary to re-execute certain operations.
To improve performance in this case, in Section 4.4, we intro-
duce two further optimizations: The first is based on the obser-
vation that we may be able to determine mid-execution that an
operation is unsuspicious, in which case we can stop executing
the operation. While the naive algorithm requires that we en-
tirely re-execute each query twice (once on dDB using Pnew and
once onDB using Pold), our second optimization is based on the
observation that these two queries actually share much computa-
tion; thus we propose to execute the two queries simultaneously.

4.1 Class of Operations
For the remainder of this paper, we will restrict our discussion to

the following classes of logged SQL operations: (i) select-project-
join (SPJ) queries, (ii) insert operations where the rows to be in-
serted are determined by an SPJ query, (iii) update operations where
2There are more subtle cases as well. For example, consider the
case where the old policy is too strict (e.g., for some table S,
Sold ⊆ Snew). Operations like MINUS or EXCEPT can produce
unauthorized accesses.

attributes of a row are set to constant values if the row satisfies
a selection condition, and (iv) delete operations where a row is
deleted if it satisfies a selection condition. For simplicity, we will
not address the larger class of aggregate-select-project-join (ASPJ)
queries, but many of our techniques can be applied to this case.

4.2 Static Pruning (Queries Only)
We begin with the simplest case, where the operation log con-

tains only queries (i.e., SELECT statements). In this case, it is
sometimes possible to determine statically that a query is not sus-
picious (i.e., without re-executing the query). As we will see, this
case is not particularly practical on its own, but it provides a build-
ing block for the general case in Section 4.3. This static pruning
condition is formalized through delta expressions.

DEFINITION 2 (DELTA EXPRESSIONS). Delta expressions log-
ically describe the differences between the old and new policies.
Specifically, for table S:
• δ−S = Sold ∧ ¬Snew is a logical description of the tuples from
S that are visible to the user under the old policy, but not under
the new policy.

• δ+S = Snew ∧ ¬Sold is a logical description of the tuples from
S that are visible to the user under the new policy, but were not
visible under the old policy.

The intuition for the static pruning condition is straightforward.
Each table S can be broken down, logically, into three components:
(1) tuples that were visible under the old policy, but are no longer
visible under the new policy (δ−S ), (2) tuples that were not visible
under the old policy, but are visible under the new policy (δ+S ),
and (3) tuples whose visibility is unchanged. If we can determine
that a query’s selection condition filters out all tuples in δ+S and δ−S
(i.e., any tuples whose visibility has changed), and no rows from
S have been modified, then we know that the result of the query
was not affected by the policy misconfiguration. This intuition is
formalized by the following theorem. (The proof can be found in
Appendix C.)

THEOREM 1. Consider a database with relations S1, ..., Sn,
and suppose that the operation log contains only queries (no up-
dates). Let Q be a query in the log with associated selection con-
dition C.3 If the expression C ∧ (δ−S1

∨ δ+S1
∨ ... ∨ δ−Sn

∨ δ+Sn
) is

not satisfiable, then Q must not be suspicious.4

EXAMPLE 4.1. To illustrate the static pruning condition, con-
sider the first two log records in the operation log shown in Fig-
ure 1, and suppose again that Patientsold = (Age < 30) and
Patientsnew = (Age < 15). Thus, δ−Patients = (15 ≤ Age <
30) and δ+Patients = false.

We are not able to prune L1 using Theorem 1. For the second
query (L2), however, we have C = (Age < 12). Notice that
C ∧ (δ−Patients ∨ δ

+
Patients) = (Age < 12) ∧ ((15 ≤ Age <

30) ∨ false) is not satisfiable. This means that, regardless of the
underlying database instance, the query result could not have been
affected by the misconfiguration. Thus, we know that L2 is not
suspicious, and we can prune it.

3C is a standard propositional formula consisting of atoms of the
form attrΘconstant and attr1Θattr2 connected by logical op-
erations (∧, ∨, ¬), where Θ ∈ {=, >,<,≤,≥, 6=}.
4Of course, the satisfiability problem is NP-complete [9]. How-
ever, the size of the input to the satisfiability problem here grows
with the complexity of the conditions (δ−S , δ

+
S ), not the data. Thus,

we expect that in practice, where selection conditions are usually
simple, this will perform reasonably well.
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4.3 Handling Data Updates
Unfortunately, the static pruning described in the last section is

only valid in the case where there are no data modifications or up-
dates. When there are updates, we must also consider the possibil-
ity that the underlying database instances may have been modified
as a result of the policy misconfiguration. This challenge is illus-
trated by the following example.

EXAMPLE 4.2. Consider again the operation log in Figure 1,
and suppose thatPatientsold = (Age < 30) andPatientsnew =
(Age < 15). Suppose also that there is no access control condi-
tion on the table Temp (i.e., Tempold = Tempnew = true).
Logically, the portion of Temp that is visible under both policies
is unchanged. Indeed, we have δ−Temp = δ+Temp = false, so
the static pruning condition from the previous section is technically
satisfied, for example, for L6.

Unfortunately, this does not take into account the occurrence
of data modifications. In the example, notice that the rows in-
serted into Temp are different under the old and new policies (i.e.,
Patientsold and Patientsnew). For this reason, the result of the
query in L6 is actually different in the two cases, and L6 should be
returned by the MR-query!

To address this problem, we propose to construct delta tables,
which store the difference between backlog tables Sb and bSb. As
we replay the operation log, rather than applying updates to a full
database copy (like the naive algorithm), our optimized algorithm
(Algorithm 2 in Appendix A) will use the delta tables to capture the
difference between the updates that occurred when operating under
the old policy and the updates that would have occurred under the
new policy.

DEFINITION 3 (DELTA TABLES). Delta tables store the dif-
ference between the backlog versions of each table when using Pold
and when using Pnew. Specifically, for table S at time t:

• ∆−S = σtime≤t(S
b − bSb) is the set of rows that get added to

the backlog table when operating under the old policy, but not
under the new policy.

• ∆+
S = σtime≤t( bSb − Sb) is the set of rows that get added to

the backlog table when operating under the new policy, but not
under the old policy.

Thus, σtime≤t( bSb) = σtime≤t(S
b) ∪∆+

S −∆−S .

Delta expressions and delta tables can be used in combination to
develop a pruning condition that is valid in the presence of updates.
For simplicity, consider first a logged operation that mentions a
single table S. Suppose that the operation has timestamp t, and let
C be the selection condition associated with the operation.5 In this
case, the following conditions are sufficient to guarantee that (i) If
the operation is a query, it is not suspicious, and (ii) If the operation
is a data modification, its effects are exactly the same under the old
and new policies. Thus, we can safely ignore the operation if:

1. The expressions C ∧ δ+S and C ∧ δ−S are not satisfiable.

2. σC(∆+
S ) = σC(∆−S ) = ∅.

5Both queries (SELECT statements) and data modification oper-
ations (INSERT, UPDATE, and DELETE) can include selection
conditions. For example, in our sample operation log, log record
L3 includes the selection condition WHERE Name = “Bob.” In the
case of an SQL statement that contains no explicit selection condi-
tion, let C = true.

Time Op Id Name Age Disease
3 Del 2 Bob 20 Ulcer
3 Ins 2 XXX 20 Ulcer

(a) ∆−Patients

Time Op Id Name Age Disease
(b) ∆+

Patients

Time Op Id A B C
5 Ins 2 XXX 20 Ulcer

(c) ∆−Temp

Time Op Id A B C
(d) ∆+

Temp

Figure 6: Delta-Tables for Running Example

The intuition is mostly analogous to the query-only case. Con-
dition (1) allows us to determine statically that the logged opera-
tion relies only upon the portion of the data that is logically visible
under both the old and new policies. Condition (2) additionally
guarantees that none of the data selected by the operation has been
altered (i.e., updated in a different way as a result of the old pol-
icy vs. the new policy). Of course, unlike the condition described
in the previous section, this pruning condition is not completely
static, since condition (2) depends on the specific data in the delta
tables. However, this only requires re-processing the logged selec-
tion condition on the data that has been changed (i.e., the delta ta-
bles), rather than re-processing the query on the full database. For
small misconfigurations, we observe that the sizes of delta tables
are often small when compared to the size of the full database.

This intuition is formalized, and generalized to operations in-
volving multiple tables, via the following theorem. (The proof can
be found in Appendix C.)

THEOREM 2. Consider an operation in the log with selection
condition C and that references relations S1, ..., Sn. Without loss
of generality, letC be expressed in conjunctive normal form (CNF);
that is, C is a conjunction of clauses, each of which is a disjunction
of literals. The operation can be pruned if both of the following
conditions are satisfied:

1. The expression C ∧ (δ−S1
∨ δ+S1

∨ ... ∨ δ−Sn
∨ δ+Sn

) is not
satisfiable.

2. Let CSi be the conjunction of clauses in C that mention only
attributes in Si. (If no such clauses exist, let CSi = true.)
For each relation Si, σCSi

(∆+
Si

) = σCSi
(∆−Si

) = ∅.

EXAMPLE 4.3. To illustrate, consider the operation log shown
in Figure 1. Consider also the backlog table Patientsb shown
in Figure 3. Suppose again that Patientsold = (Age < 30),
Patientsnew = (Age < 15), and Tempold = Tempnew =
true. Thus, δ−Patients = (15 ≤ Age < 30), δ+Patients = false,
δ−Temp = false, and δ+Temp = false.

The alternate backlog database dDBb, which would be constructed
if the new policy was in place, is shown in Figure 3. The delta ta-
bles ∆−Patients, ∆+

Patients, ∆−Temp, and ∆+
Temp for this example

are shown in Figure 6. Using the above conditions, L2 can be
pruned. However, the remaining operations (L1, L3, L4, L5, L6)
have to be at least partially re-executed, as we will describe in the
next section.

4.4 Simultaneous and Partial Re-Execution
If the pruning strategies described in the previous subsections

fail, it is necessary to at least partially re-execute the remaining
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!(R Old)! !(S Old)!

!(T Old)!
!(R.A > 10 v S.B < 20)!

!(R New)! !(S New)!

!(T New)!
!(R.A > 10 v S.B < 20)!

Rt! St!

Tt!

Rt! St!

Tt!

Figure 7: Query Plans For The Old and New Policies

T!

S!R!

T!

S!R!

T!

S!R!

Figure 8: Possible Query Plan Cuts

logged operations. In this section, we introduce two additional
optimizations. The first is based on partial re-execution; we can
sometimes determine mid-execution that an operation can be ig-
nored. The second is based on simultaneous re-execution; rather
than executing each logged query twice (once with the old data and
policy, and once with the new data and policy), we can often save
computation by combining the two into a single query plan.

4.4.1 Partial Re-Execution
Our first optimization is based on the observation that it may

not be necessary to completely re-execute every un-pruned logged
operation; in some cases, we can determine mid-execution that the
operation can be ignored / pruned.

Our basic approach is illustrated with a simple example. Con-
sider the following SQL query, which was logged at time t:

SELECT *
FROM R, S, T
WHERE (R.A > 10 OR S.B < 20)
AND R.ID = S.ID AND S.ID = T.ID

Two sample plans for this query (under the old and new policies)
are shown in Figure 7. For any time t, we can compute static snap-
shot St from the backlog Sb and bSt from bSb = Sb ∪∆+

S −∆−S .
Extending the intuition from the previous section, we can safely

ignore this query if we can conclude that the two plans produce the
same result. In the general case, we can establish this by identifying
a cut in the query plan such that the intermediate results of both
queries at every point in the cut are equivalent. Figure 8 shows
three possible cuts for the example plan.

One way to check whether a cut exists is to evaluate both queries
in a “side-by-side” manner using the backlog database and delta
tables. This approach re-evaluates both queries (old and new) from
the bottom up; after evaluating each operator, it checks whether
the results are the same in both cases. If a cut is found, there is
no need to continue executing the queries. If no cut is found, the
process continues until both queries are completely re-executed. A
discussion of implementation tradeoffs is in Appendix E.

Of course, the weakness of this approach is that each operation
must be run twice (once on the old data and policy, and once on
the new data and policy). For this reason, we introduce one more
optimization that allows us to evaluate both queries simultaneously.

!(R.A > 10 v S.B < 20)
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Figure 9: Combined Query Plan. Tuples flagged “New” are
shown in blue (bottom third of each table), “Old” in yellow (top
third), and “Unchanged” in white (middle third).

4.4.2 Simultaneous Re-Execution
One way to test if a cut exists is to evaluate both queries (old

and new) in a “side-by-side” manner, using the backlog database
and delta tables. However, in the worst case, this process wastes a
lot of work. Notice, for example, in Figure 7, if there is significant
overlap between Rt and bRt, and between St and bSt, then the two
queries are joining many of the same tuples.

As a more efficient alternative, we instead propose merging the
two (old and new) query plans to produce a single plan.6 Figure 9
shows the merger of the plans in Figure 7. In this figure, the policy-
based selection conditions (e.g., Sold and Snew) are pushed all the
way down, and shown as part of the data. For each table S, we
combine the rows from σSold(St) and σSnew ( bSt), and we add a
flag to each row to indicate where it came from. “New” tuples are
those that are emitted only under the new plan. “Old” tuples are
emitted only under the old plan. “Unchanged” tuples are emitted
under both plans. During query re-execution, these flags are cre-
ated dynamically and propagated through the plan to ensure result
correctness. More information on creating and propagating flags
through the query plan can be found in Appendix D.

When evaluating the combined query plan, we can conclude that
the query was unaffected by the misconfiguration if there exists a
cut in the plan such that the intermediate results along all points in
the cut contain no tuples flagged as “Old” or “New.”

4.5 Putting it All Together
Using the optimizations that we have described so far, we are

now ready to describe our general algorithm for processing MR-
queries, which addresses many of the inefficiencies of the naive
algorithm. The algorithm begins by creating, for each table Sb in
DBb, tables ∆−S and ∆+

S , which are initially empty. Then, starting
from t1, it replays the operation log forward. For each logged op-
eration, it first checks whether it is possible to prune the operation
using the criterion in Theorem 2. If the pruning condition fails, then
the algorithm must (at least partially) re-execute the logged opera-
tion. More specifically, we use the simultaneous re-execution plan
described in Section 4.4.2. During re-execution, if a cut is found
(as described in Section 4.4.1), then re-execution is aborted. Other-
wise, the re-execution is carried to completion, at which point the
results are compared (in the case of logged queries), or the delta-
tables are updated (in the case of logged data modification opera-
tions). Pseudo-code is provided in Algorithm 2 in Appendix A.
6In some ways, this is related to the idea of multi-query optimiza-
tion [20, 22], the goal of which is to simultaneously evaluate mul-
tiple queries, with shared sub-expressions, on a single database. In
contrast, in our setting, we need to evaluate the same query on two
slightly different databases.
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5. EXPERIMENTAL EVALUATION
To evaluate our ideas, we implemented the PolicyReplay system

(Figure 14). Given information about a policy misconfiguration, a
critical component of the system is the efficient evaluation of MR-
queries. We compare the performance of our optimized MR-query
processing algorithm (Algorithm 2) and the naive algorithm (Algo-
rithm 1). We utilize numerous simulated data sets and workloads
that are tuned by specific parameters (Section 5.2) to determine un-
der what conditions our optimizations improve performance.

5.1 Implementation and Environment
Our prototype system is implemented as a thin Java layer on

top of PostgreSQL7; it currently supports the static pruning, delta
tables, and simultaneous re-execution optimizations, as well as a
rudimentary implementation of partial re-execution. We use the
Java Constraint Programming Solver (JaCoP)8 to implement static
pruning. SQL parsing is assisted by Zql, a Java SQL Parser9. The
experiments were executed on a dual core CPU with 2 GB of RAM,
running Red Hat Linux.

5.2 Data and Workload
MR-query performance is evaluated with multiple simulated data

sets and workloads of logged SQL operations. The underlying
database contains tables T1, ...Tn that are each composed of ten at-
tributes a1, ..., a10. We added an indexed primary key, timestamp
attribute and operation-type attribute to each table in order to con-
struct the backlog database. Table Ti consists of Ri rows. The val-
ues for attribute aj are selected from a uniform distribution in the
range [1, min(100× j2, Ri)]; the different ranges are used to vary
the selectivity of selection conditions on each attribute. The simu-
lated logged SQL workload contains INSERT, UPDATE, DELETE
and SELECT operations as described in Section 4.1. The logged
workload is generated by tuning the parameters in Figure 10.

Parameter Description
Policy Misconfigura-
tion (PM)

The selectivity of the disjunction of the delta
expressions on the underlying tables

Operation Selectivity
(Sel)

The selectivity of a logged operation on each
table

Select to Update Ratio
(Ratio, R)

The proportion of all logged operations that
are SELECT statements (1.0 implies all SE-
LECTs)

Predicate Attributes
(P)

The number of attributes that may be used to
create a literal in the selection condition, one
of which is the attribute with the policy mis-
configuration (P = 1 implies the attribute with
the misconfiguration is always chosen for a
literal, while P = 8 implies there is a 1

8
prob-

ability that the attribute with the misconfigu-
ration is chosen for a given literal.)

Database Size (Rows) Number of rows initially in the database
Number of Logged
Operations (Ops)

The total number of logged operations

Figure 10: Experimental SQL Workload Parameters

5.3 Results
5.3.1 Static Pruning (No Updates)

Our first set of experiments measures the effectiveness of static
pruning in the simple case, where the operation log only contains
queries. Figure 11 compares the runtime performance of evalu-
ating an MR-query using the naive approach, which re-executes

7http://www.postgresql.org
8http://jacop.osolpro.com/
9http://www.gibello.com/code/zql/

all logged queries, and the static pruning method, which only re-
executes the queries that cannot be pruned. The figure shows per-
formance across a range of policy misconfigurations for a workload
with 1% selectivity on a single table. For small misconfigurations,
static pruning is able to prune a large proportion of queries, re-
sulting in improved performance. As the size of the misconfigu-
ration grows, more operations must be re-executed. This trend is
expected because, with a larger misconfiguration, it is more likely
that a logged query’s selection condition will intersect the delta ex-
pression. Additional pruning results can be found in Appendix F.

5.3.2 Pruning (With Updates)
Next, when the logged workload also contains updates, we mea-

sure the benefits of pruning with delta tables (Theorem 2). If a
logged operation cannot be pruned, it is re-executed. Consider a
workload on a single table where the all the parameters are fixed ex-
cept for the size of the policy misconfiguration. When the miscon-
figuration is small (1% and 10%) as shown in Figures 12 and 13, it
is more efficient to evaluate the MR-query using pruning with delta
tables (Pruning + Delta Tables) than the naive method; the MR-
query is evaluated more quickly because fewer operations must be
re-executed. Another benefit of the delta tables is that they remove
the cost of copying the database prior to evaluating the MR-query;
for large databases, this cost can be large.

While pruning reduces the number of operations that must be
re-executed, re-executing an operation using delta tables is more
costly than re-executing an operation without delta tables because
there is an extra cost to construct the table bS from S, ∆−S , and ∆+

S .
Thus, as the size of the delta tables grows, the re-execution cost
increases. We observe that there exists a tradeoff point when it is
no longer advisable to use pruning with delta tables, but is more
efficient to use the naive method. This tradeoff point is determined
by the parameters in the workload such as the size of the miscon-
figuration, the ratio of selects to updates, and the selectivity of the
operations. Additional experimental results are in Appendix F.

5.3.3 Simultaneous Query Evaluation
Finally, we evaluate the effectiveness of simultaneous re-execution.

Figures 12 and 13 show the performance of the naive, naive plus
simultaneous re-execution (Naive + Simult.), pruning with delta ta-
bles (Pruning + Delta Tables) and pruning with delta tables plus si-
multaneous re-execution (Pruning + Delta + Simult.) methods for
different policy misconfigurations on a single table. We find that
the performance of the naive method is improved when queries are
simultaneously re-executed. The performance of the pruning with
simultaneous approach improves slightly for small misconfigura-
tions because only a few queries are re-executed; for larger mis-
configurations, the benefits of simultaneous re-execution decrease.

6. RELATED WORK
Most related to our work are two recent proposals for auditing

SQL queries [1, 16]. At a high level, this work considers a log
that records every SQL query that has been issued to a database.
The task of the auditor is the following: given an audit expression
that describes some sensitive data (e.g., a particular patient’s medi-
cal record), retrieve every logged query that was influenced by this
data. Agrawal et al. [1] formalize the idea of influence through the
concept of indispensable tuples. While this is related to our work,
there are clear differences. While one might try to capture the dif-
ference between old and new policies (i.e., our delta expressions)
using the audit expressions of Agrawal et al. [1], this is problematic
because their work does not consider the flow of information via
updates. For example, if a record r is copied from one location to
another location, say r′, the auditor does not understand this. Thus,
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Figure 11: Static Pruning Performance
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Figure 12: Performance - 1% PM
(1% PM, 1% Sel., 250K Rows, P=1, R=0.9)
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Figure 13: Performance - 10% PM
(10% PM, 1% Sel., 250K Rows, P=1, R=0.9)

an audit on r would fail to retrieve SQL queries to which r′ was
indispensable. Our work addresses this problem cleanly through
the definition of MR-queries (Section 3), which conceptually re-
play the entire database history, including updates, and retrieve all
queries whose results have changed.

The problem of tracking how data evolves via updates and views
has been studied in the areas of data provenance [6], lineage [8],
and annotation [5]. While this is related to our work, as shown in
Section 3, it is not clear whether these techniques can address the
full scope of our problem.

Lu and Miklau consider auditing a database under data reten-
tion restrictions [15]; this work is concerned only with database
updates, not auditing queries (i.e., SELECT statements).

Agrawal et al. consider auditing disclosure by relevance ranking
[2]: Given a sensitive table that has been “leaked” from an orga-
nization, and a log of past SQL queries, determine which queries
were most likely to have been the source of the leak.

Recent work has also focused on the problem of recovering from
malicious database transactions [4, 7, 13, 14]. At a high level, if
a committed transaction is discovered to have been malicious, its
effects, and the effects of those transactions that depended on it,
must be undone. One important difference between this and our
approach is the level at which we reason about data dependencies.
In transaction theory, a transaction T2 is usually said to depend on
another transaction T1 if it reads a data object (e.g., a tuple) written
by T1. When defining the semantics of MR-queries, we are oper-
ating at a higher level of abstraction; notably, a query Q may read
a tuple that was updated by some other command, but unless that
tuple changes the result of Q, it is not considered to have influ-
enced Q. Thus, while one might suggest taking a “transactional”
approach to our problem (i.e., by tracking reads and writes), this
approach would likely lead to larger result sets for MR-queries.
Further, we consider it desirable to define the semantics on MR-
queries based only on the syntax of the logged operations, rather
than the specific plans used to execute them. Notice, for example,
that the tuples read by a query vary based on the plan (e.g., scan vs.
index lookup), which would affect the MR-query result if we were
to take a transactional approach.

7. CONCLUSION
In this paper, we introduced the PolicyReplay framework for

responding to database access control misconfigurations. One of
the critical components of this framework is the misconfiguration-
response (MR) query, which retrieves those queries that may have
revealed unauthorized information. The naive algorithm for evalu-
ating MR-queries can be expensive. Thus, we have developed and
evaluated a suite of techniques (including pruning, delta tables, par-
tial re-execution, and simultaneous re-execution) for improving the
performance of this operation.
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APPENDIX
A. ALGORITHM DETAILS

Pseudo-code for the naive algorithm, which is used to help illus-
trate the semantics of MR-queries, is provided in Algorithm 1.

Algorithm 1 Naive Algorithm for Evaluating an MR-Query

Input: Pold, Pnew, t1, t2, operation log, backlog database DBb

Output: Set of suspicious queries

1: Construct a second backlog database dDBb by creating a new
backlog table bSb for each table Sb inDBb. Copy into bSb every
row in Sb with timestamp ≤ t1.

2: Let e be the first entry in the operation log such that
e.timestamp ≥ t1

3: while e.timestamp ≤ t2 do
4: Let t = e.timestamp
5: if e.sql is a data modification operation then
6: Evaluate e.sql using policy Pnew and dDBt. Any data

modifications are applied to dDBb.
7: else if e.sql is a SELECT statement then
8: Let Q = e.sql

9: EvaluateQ on dDBt (usingPnew) and also onDBt (using
Pold).

10: if Q(Pnew(dDBt)) 6= Q(Pold(DB
t)) then

11: Add e to the MR-query result set
12: e = next entry in the operation log

Pseudo-code for the optimized algorithm, which includes static
pruning, delta-tables, simultaneous and partial re-execution, is shown
in Algorithm 2. In the pseudo-code, Prunable(C, delta tables)
returns true if the condition in Theorem 2 is satisfied.

Algorithm 2 Optimized Algorithm for Evaluating an MR-Query

Input: Pold, Pnew, t1, t2, operation log, backlog database DBb

Output: Set of suspicious queries
1: For each table Sb in DBb, create tables ∆−S and ∆+

S , which
are initially empty

2: Let e be the first entry in the operation log such that
e.timestamp ≥ t1

3: while e.timestamp ≤ t2 do
4: Let t = e.timestamp
5: Let C be the selection condition associated with e.sql
6: if Prunable(C, delta tables) then
7: skip the operation e
8: else
9: For every table Sb inDBb, let view bSb = Sb∪∆+

S−∆−S .

10: Simultaneously re-execute e.sql on dDBt with Pnew and
on DBt with Pold

11: if a cut is found then
12: skip the operation e
13: else if e.sql is a SELECT statement then
14: Add e to the MR-query result set
15: else if e.sql is a data modification operation then
16: Suppose that during the original execution, e.sql added

tuple set T to Sb, but now e.sql adds T ′ to Sb. Update
the delta-tables accordingly: ∆+

S = ∆+
S ∪ (T ′ − T );

∆−S = ∆−S ∪ (T − T ′)
17: e = next entry in the operation log

Operation 
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Figure 14: MR-Query Processor Components

B. CONSTRUCTING BREACH REPORTS
Misconfiguration-response queries are at the core of a broader

framework for reporting data breaches. In this section, we provide
a brief overview of how such reports can be constructed, and what
information they can contain.

At a high level, there are two different kinds of reporting, with
somewhat different goals and requirements:

• Organizational Reporting: In the basic setting, the organiza-
tion that has experienced the breach must construct a single re-
port summarizing the entire event. In the case of HITECH, for
example, a covered entity (e.g., hospital) needs to compile a re-
port to be sent to the regulatory government agency (in this case,
the office of the Secretary of Health and Human Services). Sim-
ilarly, contractors doing work on behalf of a covered entity must
report breaches to the covered entity. For example, if a hospital
has outsourced billing to a separate company, and that company
experiences a breach, it must send a report to the hospital.

• Individual Reporting: In the second case, when an organiza-
tion has experienced a breach, in addition to compiling a single
report summarizing the event, it may also be necessary to no-
tify individuals whose personal information was compromised
as part of the breach.

We will focus primarily on organizational reporting, but we will
also describe our initial ideas for extensions to individual reporting.

Throughout the main body of the paper, for ease of exposition,
we used very simplistic operation logs as examples. In practice,
the operation log contains the timestamp and sql text, but it
also contains additional attributes, including but not limited to: the
database and/or application username of the individual who is-
sued the SQL command, an application identifier appID, and some-
times the purpose for which the query was issued, or a descrip-
tion of an external data recipient [3].

For each suspicious query Q, we can also explain how the query
was affected by the misconfiguration. In particular, we can sum-
marize the difference between the result that occurred under the
old policy Pold and the result that would have occurred if Pold had
been replaced with Pnew. Suppose Q was logged at time t. Let
Q1 be the result of evaluating Q on DBt using Pold, and let Q2

be the result of evaluating Q on dDBt using Pnew. The difference
between the two result sets can be summarized by two tuple sets:
Qnew = Q2 −Q1 and Qold = Q1 −Q2.

Following a misconfiguration, the most detailed organizational
breach report contains information about every suspicious query
Q in the operation log (i.e., each record in the result of the MR-
query). This information includes the attributes from the log (e.g.,
timestamp, sql, username, appID, purpose, recipient),
Qold, and Qnew. Of course, we can further restrict and summarize
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the information in this detailed report based on the requirements
of the regulation. For example, HITECH requires reports to doc-
ument to whom data was disclosed (which can be explained using
username or recipient) and the type and amount of data dis-
closed (which can be explained using Qnew and Qold).

Individual reports can be constructed in a similar way, but they
present several additional challenges. Specifically, we only need
to send a report to a user U if her information was involved in the
breach, and the report should only explain how U ’s information
was disclosed. In the future, we plan to extend the MR-query using
an approach related to SQL GROUP BY. At a high level, the idea
is to first divide the data into buckets, based on some attribute (e.g.,
a separate bucket for each patient’s information). Then, the MR-
query with GROUP BY (conceptually) processes the MR-query
once per bucket, using only the data in that bucket.

C. PROOFS
Proof of Theorem 1: The proof is straightforward. Suppose that
Q was logged at t. If there are no updates, and σC(Pold(DB

t)) =
σC(Pnew(DBt)) (i.e., the result of applying policy Pold and se-
lection condition C is the same as applying Pnew and C), then it is
safe to prune Q.

Given the following definitions, we must show that R1 = R2.

R1 = σC(σS1new (St1)× ...× σSnnew (Stn))

R2 = σC(σS1old(St1)× ...× σSnold(Stn))

If C ∧ (δ−S1
∨ δ+S1

∨ ...∨ δ−Sn
∨ δ+Sn

) is not satisfiable, this means
that none of the following expressions is satisfiable:

(C ∧ S1old ∧ ¬S1new), (C ∧ S1new ∧ ¬S1old), ...,

(C ∧ Snold ∧ ¬Snnew), (C ∧ Snnew ∧ ¬Snold)

Using this, it is easy to show thatR1−R2 = ∅ andR2−R1 = ∅.

Proof of Theorem 2: Suppose that the operation occurred at time
t. If σC(Pold(DB

t)) = σC(Pnew(dDBt)), then it is safe to prune
the operation.

Given the following definitions, we must show that R1 = R2.

R1 = σC(σS1new (cS1

t
)× ...× σSnnew (cSnt))

R2 = σC(σS1old(St1)× ...× σSnold(Stn))

These can be rewritten as follows (by pushing down selection
conjuncts that refer only to a single table):

R1 = σC(σS1new (σCS1
(cS1

t
))× ...× σSnnew (σCSn

(cSnt)))
R2 = σC(σS1old(σCS1

(St1))× ...× σSnold(σCSn
(Stn)))

Condition (2) is sufficient to guarantee that, for i ∈ 1..n,

σCSi
( bSit) = σCSi

(Sti ).

The reason for this is that no tuples satisfying the condition CSi

have been modified differently as the result of the different policies,
since σCSi

(∆+
Si

) = σCSi
(∆−Si

) = ∅.
Finally, per the same argument in the proof or Theorem 1, we

can show that R1 −R2 = ∅ and R2 −R1 = ∅.

D. SIMULTANEOUS RE-EXECUTION

D.1 Combined Tables and Flags
When executing a combined query on table S, we retrieve σSold(St)∪

σSnew ( bSt), and we flag the input as follows:

• “New” Flags: σSnew ( bSt)− σSold(St)

• “Old” Flags: σSold(St)− σSnew ( bSt)
• “Unchanged” Flags: σSold(St) ∩ σSnew ( bSt)
This can be explained as follows. When accessing a table S,

under the old policy and data, we would have retrieved Old(S) =

σSold(St). Under the new policy, we retrieveNew(S) = σSnew ( bSt).
This is shown, for example, in Figure 7.

When evaluating the combined policy, we will take all tuples
from New(S) ∪ Old(S) as input. We want to flag all tuples in
New(S) − Old(S) as “New”, tuples in Old(S) − New(S) as
“Old”, and tuples in New(S) ∩Old(S) as “Unchanged”.

During query re-execution, these flags are created dynamically
and propagated through the plan according to the following rules
(This can be done in SQL, without modification to the DBMS en-
gine):
• Selection: If a selection takes a tuple as input, and the tuple

passes the selection filter, the output tuple keeps the same flag.
• Projection: Similarly, if a projection operator takes a tuple as

input, the corresponding output tuple has the same flag.
• Join: The challenging operator is join. If a join takes as input

two tuples with the same flag (i.e., both “New”, both “Old”, or
both “Unchanged”), the emitted result tuple maintains that same
flag. If the join takes as input two tuples such that one tuple is
“Old” or “New”, and the other “Unchanged”, the resulting tuple
inherits the “Old” or “New” flag. Finally, if a join takes as input
two tuples such that one is “Old” and the other “New,” even if the
two tuples satisfy the join condition, no result tuple is produced.
The reason for the final case is due to the fact that these input
tuples are actually part of different conceptual query executions.

D.2 Implementation
The combined tables (and flags) described above can be com-

puted using standard SQL. This implementation is for the class of
queries described in Section 4.1.

The following outlines how to create a combined table, and as-
signs the appropriate flags to each row of the table (New = 1,
Old = −1, Unchanged = 0). This is accomplished with SQL by
taking the union of St with cSt; additionally, for each row from St,
we add a flag of -1, while for each row from cSt, we add a flag of 1.
We then group by all attributes in the table except the dynamically
generated flag. If the sum of the flags in a group is -1, this means
that the row only exists under the old policy. If the sum of the flags
in a group is 0, this means that the row exists under the new and
old policies (-1 + 1 = 0). If the sum of the flags in a group is 1, this
means that the row only exists under the new policy.

When executing the combined query, we can propagate flags ac-
cording to the rules outlined in Appendix D.1 by adding the follow-
ing constraint for all pairs of tables R and S referenced in the from
clause of the query:

((S.flag != (-1) * R.flag) OR
(S.flag = 0 AND R.flag = 0))

Finally, if a query result contains only tuples with flags = 0 (i.e.,
unchanged rows), then the query is not suspicious. More generally,
if the result of the query under the new policy is the same as the
result under the old policy (even if the result contains flagged rows),
then the query is not suspicious. For SPJ queries, we can check
if the results under the two policies are the same by grouping by
all attributes and summing the value of the flag; thus, if the old
policy and new policy produce the same result for a given row, the
resulting sum for the row will be zero.
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E. PARTIAL RE-EXECUTION
We can safely ignore a query if we can conclude that the query

plans from the old and new policy produce the same result. In the
general case, we can establish this by identifying a cut in the query
plan such that the intermediate results of both queries at every point
in the cut are equivalent. Figure 8 shows three possible cuts for the
example plan. The second cut, for example, would require that both
of the following conditions be satisfied:

1. σR.A>10∨S.B<20(σRNew ( bRt) ./ σSNew ( bSt))
= σR.A>10∨S.B<20(σROld(Rt) ./ σSOld(St))

2. σTNew ( bT t) = σTOld(T t)

There are several possible ways that partial re-execution can be
implemented. Our current prototype supports a rudimentary ver-
sion of option (3). However, in this section, we describe alternative
implementation strategies, as well as the important design consid-
erations.

1. Internal Database Filters: The goal of partial re-execution is
to execute the query plan until we can guarantee that the result
is not affected by the misconfiguration. One possible imple-
mentation strategy is to add filters inside the query proces-
sor that examine the propagation of rows through a pipelined
query plan. If information from the filters can be used to de-
termine that old and new flagged rows do not pass the filters
across a cut in the query plan, then the execution of the query
can be stopped. This strategy has the least impact on the query
processor, and does not alter query plans. On the other hand,
this method may not be practical since the internals of the
database engine must be modified.

2. Materialize and Check Intermediate Results: For many
query plans, the query optimizer chooses to materialize, rather
than pipeline, some portions of the query plan. We can lever-
age these materialized intermediate results to check if there
exits a cut in the plan that does not contain an old or new
flagged row. If there exits a cut, then the execution of the
query can be stopped. If old or new flagged rows do exist, the
materialized results can be used as input to the next part of
the query plan. The extra cost of this approach is storing the
intermediate result, scanning the result for flags, and, in the
cases when the result contains old or new flags, reading the
intermediate result and sending it to the next part of the query
plan. Overall, this approach appears practical only when the
optimizer is already materializing certain intermediate query
results.

3. Left-Deep Query Plan Analyzer: The third implementation
strategy for partial re-execution relies on a left-deep query
plan, which is commonly generated by modern query opti-
mizers. In a left-deep plan, the input tables are joined one at a
time, according to a total order. (For example, in Figure 7, R
is joined with S, and then the result is joined with T . Thus,
the join order is R,S, T .)
Briefly, the partial re-execution algorithm for left-deep plans
works as follows: We begin with the last table in the join order
(In Figure 7, this is T .), and we check whether this table can
be pruned according to Theorem 2. If not, we must re-execute
the entire query (i.e., the only possible cut is the rightmost cut
in Figure 8). If it can be pruned, then we consider the previous
table in the join order (in this case, S), and check whether S
can be pruned according to Theorem 2. This algorithm con-
tinues until it reaches a table that cannot be pruned, at which
point we must execute the subquery rooted at that position

of the plan. For example, if we find that we can prune T ,
but not S, then we consider the second cut in Figure 8 by re-
executingR ./ S, and checking the flagged rows in the result.
If the result contains no tuples flagged as “Old” or “New,” we
can stop. Otherwise, we must execute the entire query.

F. ADDITIONAL EXPERIMENTS

F.1 Static Pruning (No Updates)
In addition to measuring the runtime performance of evaluating

the MR-query, we also measured the effectiveness of static pruning
by counting the number of logged queries that were suspicious, un-
suspicious, and pruned. (Recall that the number of pruned queries
must be ≤ the total number of unsuspicious queries.) Intuitively,
as more queries are pruned, performance improves, since fewer
queries must be re-executed.

Figure 15 shows the pruning information across a range of pol-
icy misconfigurations with a workload that has 1% selectivity on a
single table, where the policy misconfiguration is on one attribute.
For small misconfigurations (PM=1%), the static pruning is able
to prune a large proportion of queries (484 pruned out of 500, in
this case). As the misconfiguration gets larger (PM=50%), fewer
queries can be pruned; however, we are able to prune all operations
that are unsuspicious. This trend is expected because, with a lager
misconfiguration, it is more likely that a logged query’s selection
condition will intersect with the delta expressions.

In order for an operation to be statically pruned, there must exist
a literal in the selection condition that contradicts the delta expres-
sions. Thus, when the attribute with the policy misconfiguration is
not in the selection condition, it is less likely that a contradiction ex-
ists and the operation can be pruned. Figure 16 shows the pruning
effectiveness as the number of predicate attributes (P) increases. As
the number of predicate attributes increases, fewer operations are
pruned. It is important to note that in some cases we are not able
to prune all unsuspicious operations using the static pruning con-
dition. In these cases, even though the delta expressions intersect
the selection condition (statically), there does not exist a row in the
specific database instance that is affected by the misconfiguration.

F.2 Pruning (With Updates)
When updates are considered, in addition to measuring the run-

time performance of evaluating the MR-query, we also counted the
number of logged operations that were suspicious, unsuspicious,
and pruned. Figure 17 shows these statistics when the log contains
updates. As expected, for small misconfigurations, we are able to
prune a large portion of the operations. As the misconfiguration
gets larger, fewer operations are pruned.

While pruning reduces the number of operations that must be re-
executed, as mentioned in Section 5.3.2, the cost of re-executing an
operation using delta tables is larger than re-executing an operation
without delta tables because there is an extra cost to construct the
table bS, which is formed by removing the rows in ∆−S from S and
appending the rows from ∆+

S . Thus, as the size of the delta tables
grows, the cost of re-executing an operation increases. Figure 18
shows the number of rows in the database after using the naive
method, which includes the rows in S and bS, the number of rows
contained in the delta tables, and the total number of rows when
the delta tables are used, which includes S, ∆−S , ∆+

S and rows
used to store the results of update operations that cannot be pruned.
As expected, for small misconfigurations, the delta tables are small
and the extra cost of constructing bS is small (see Figures 12 and 13).
In contrast, for larger misconfigurations (50%), the delta tables are
large, which slows down the performance of the pruning method

46



0	


100	


200	


300	


400	


500	


1%	
 10%	
 20%	
 30%	
 40%	
 50%	


N
um

be
r o

f L
og

ge
d 

Q
ue

rie
s	


% Policy Misconfiguration	


Susp.	
 Pruned	
 Not Susp.	


Figure 15: Static Pruning Statistics
(1% Sel., 250K Rows, P=1)
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Figure 16: Static Pruning Statistics
(1% Sel., 250K Rows, 10% PM)
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Figure 17: Pruning With Updates
(1% Sel., 250K Rows, P=1, R=0.9)
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Figure 18: Database Size
(1% Sel., 250K Rows, P=1, R=0.9)
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Figure 19: Performance - 50% PM
(50%PM, 1%Sel., 250K Rows,P=1,0.9 Ratio)
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Figure 20: Ratio Impacts Performance
(10% PM, 0.1% Sel., 250K Rows, P=1)

(Figure 19); in this case, it is more efficient to evaluate the MR-
query using the naive method.

The select to update ratio can impact the performance of evalu-
ating an MR-query. Figure 20 shows the time to evaluate an MR-
query for the naive method, and the pruning with delta tables plus
simultaneous re-execution method for a range of ratios. When the
log contains many updates (i.e., has a low ratio), the performance
of both methods worsens due to the higher cost of writing to the
database than reading. Additionally, a larger number of updates
typically will increase the size of the delta tables, resulting in fewer
operations being pruned and increasing the time to re-execute a
query. For a ratio of 0.5, the naive method and pruning method
have similar performance for the specified set of parameters. As
the ratio gets larger (fewer updates), the pruning method outper-
forms the naive approach.

The challenge is to determine, before the MR-query is evaluated,
which method (naive plus simultaneous re-execution, or pruning
with delta tables plus simultaneous re-execution) is the most effi-
cient given the workload parameters. We believe this decision can
be made by developing a cost-based optimizer. One promising ap-
proach would use the database’s query optimizer to estimate the
cost of re-executing each logged operation using each of the two
methods; given the total estimated cost, the appropriate method can
be chosen.

F.3 Partial Re-Execution
We observed that pruning with delta tables as described by The-

orem 2 captures many of the cases where partial re-execution is
applicable. Intuitively, pruning with delta tables is a form of par-
tial re-execution where the query plan is cut across the leaf selec-
tion conditions. However, we did find a few cases where partial
re-execution did provide additional performance benefits. Particu-
larly, partial re-execution is beneficial when the selection condition
contains a clause that is composed of a disjunction of literals that
references multiple tables. In some cases, new or old rows may

not be filtered by the conjunction of clauses that only refer to a
single table, but are then filtered out by the clause that references
multiple tables. In such a case, partial re-execution can improve re-
execution performance by only re-executing a subset of the query
plan.

We used the rudimentary Left-Deep Query Plan Analyzer as de-
scribed in Section E to determine what cuts in the query plan should
be tested. We crafted a workload of an update operation and a query
that would benefit from partial re-execution. The query had three
tables R, S and T, and a selectivity of 1% for each table. The query
plan analyzer determined that the table T could be removed so that
the sub-query of R and S only needed to be evaluated. For this ex-
ample, we found that partial re-execution reduced the run time of
the query by 28%.
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