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ABSTRACT
We present Schism, a novel workload-aware approach for database
partitioning and replication designed to improve scalability of shared-
nothing distributed databases. Because distributed transactions are
expensive in OLTP settings (a fact we demonstrate through a se-
ries of experiments), our partitioner attempts to minimize the num-
ber of distributed transactions, while producing balanced partitions.
Schism consists of two phases: i) a workload-driven, graph-based
replication/partitioning phase and ii) an explanation and validation
phase. The first phase creates a graph with a node per tuple (or
group of tuples) and edges between nodes accessed by the same
transaction, and then uses a graph partitioner to split the graph into
k balanced partitions that minimize the number of cross-partition
transactions. The second phase exploits machine learning tech-
niques to find a predicate-based explanation of the partitioning strat-
egy (i.e., a set of range predicates that represent the same replica-
tion/partitioning scheme produced by the partitioner).

The strengths of Schism are: i) independence from the schema
layout, ii) effectiveness on n-to-n relations, typical in social net-
work databases, iii) a unified and fine-grained approach to replica-
tion and partitioning. We implemented and tested a prototype of
Schism on a wide spectrum of test cases, ranging from classical
OLTP workloads (e.g., TPC-C and TPC-E), to more complex sce-
narios derived from social network websites (e.g., Epinions.com),
whose schema contains multiple n-to-n relationships, which are
known to be hard to partition. Schism consistently outperforms
simple partitioning schemes, and in some cases proves superior to
the best known manual partitioning, reducing the cost of distributed
transactions up to 30%.

1. INTRODUCTION
The primary way in which databases are scaled to run on multi-

ple physical machines is through horizontal partitioning. By plac-
ing partitions on different nodes, it is often possible to achieve
nearly linear speedup, especially for analytical queries where each
node can scan its partitions in parallel. Besides improving scala-
bility, partitioning can also improve availability, by ensuring that
when one partition fails the remaining partitions are able to an-
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swer some of the transactions, and increase manageability of the
database by enabling rolling upgrades and configuration changes
to be made on one partition at a time.

Although a number of automatic partitioning schemes have been
investigated [1, 23, 18], the mostly widely used approaches are
round-robin (send each successive tuple to a different partition),
range (divide up tuples according to a set of predicates), or hash-
partitioning (assign tuples to partitions by hashing them) [6]. All of
these can be effective for analytical queries that scan large datasets.

Unfortunately, for workloads consisting of small transactions that
touch a few records, none of these approaches is ideal. If more than
one tuple is accessed, then round robin and hash partitioning typi-
cally require access to multiple sites. Executing distributed trans-
actions reduces performance compared to running transactions lo-
cally. Our results in Section 3 show that using local transactions
doubles the throughput. Range partitioning may be able to do a
better job, but this requires carefully selecting ranges which may be
difficult to do by hand. The partitioning problem gets even harder
when transactions touch multiple tables, which need to be divided
along transaction boundaries. For example, it is difficult to parti-
tion the data for social networking web sites, where schemas are
often characterized by many n-to-n relationships.

In this paper, we present Schism, a novel graph-based, data-
driven partitioning system for transactional workloads. Schism rep-
resents a database and its workload using a graph, where tuples
are represented by nodes and transactions are represented by edges
connecting the tuples used within the transaction. We then apply
graph partitioning algorithms to find balanced partitions that mini-
mize the weight of cut edges, which approximately minimizes the
number multi-sited transactions. Schism can be tuned to adjust the
degree to which partitions are balanced in terms of workload or
data size, and is able to create partitions that contain records from
multiple tables.

In addition to this new graph-based approach, Schism makes sev-
eral additional contributions:

• We show that the throughput of executing small distributed
transactions is significantly worse than executing them on a
single node.
• We show that Schism is able to replicate records that are in-

frequently updated. This increases the fraction of transac-
tions that are “single-sited” (go to just one site). Unlike exist-
ing partitioning techniques, this approach is able to replicate
just a portion of a table.
• We present a scheme based on decision trees for identifying

predicates (ranges) that “explain” the partitioning identified
by the graph algorithms.
• We show that Schism’s partitioning times are reasonable for

large datasets. The tool takes on the order of just a few
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minutes, for databases containing millions of tuples. We
also propose and evaluate heuristics, including sampling and
grouping of tuples, to limit the graph size to further reduce
partitioning times.

• Finally, we demonstrate that Schism can find good parti-
tions for several challenging applications, consistently do-
ing as well or better than hash partitioning and manually
designed range partitioning. In the most difficult case we
tested, consisting of a complex n-to-n social network graph,
Schism outperformed the best manual partitioning, reducing
distributed transactions by an additional 30%.

While this paper applies our partitioning approach to disk-based
shared-nothing databases, it applies to other settings, including main-
memory databases like H-Store [21] that depend on highly parti-
tionable workloads for good performance, and in automating the
creation of “sharded” databases where it is important to minimize
the number of cross-shard joins.

The remainder of this paper is organized as follows: we provide
an overview of our approach in Section 2, discuss the cost of dis-
tributed transactions in Section 3, present the core ideas of our work
in Section 4, discuss implementation and optimization challenges
in Section 5, we show our experimental validation in Section 6,
compare with related work in Section 7, and conclude in Section 8.

2. OVERVIEW
The input to our partitioning system is a database, a represen-

tative workload (e.g., an SQL trace), and the number of partitions
that are desired. The output is a partitioning and replication strat-
egy that balances the size of the partitions while minimizing the
overall expected cost of running the workload. As we will see in
the next section, in OLTP workloads, the expected cost is directly
related to the number of distributed transactions in the workload.
The basic approach consists of five steps:

Data pre-processing: The system computes read and write sets
for each transaction in the input workload trace.

Creating the graph: A graph representation of the database and
workload is created. A node is create for each tuple. Edges rep-
resent the usage of tuples within a transaction. An edge connects
two tuples if they are accessed by the same transaction. A simple
extension of this model allows us to account for replicated tuples,
as discussed in Section 4.

Partitioning the graph: A graph partitioning algorithm is used
to produce a balanced minimum-cut partitioning of the graph into
k partitions. Each tuple is assigned to one partition (i.e., per-tuple
partitioning), and each partition is assigned to one physical node.

Explaining the partition: The system analyzes the statements
in the input trace to collect a list of attributes frequently used in the
WHERE clauses for each table, which we call a frequent attribute
set. A decision tree algorithm is used to extract a set of rules that
compactly represent the per-tuple partitioning. The rules are predi-
cates on the values of the frequent attribute set that map to partition
numbers. We call this range-predicate partitioning.

Final validation: The cost of per-tuple partitioning, and range-
predicate partitioning are compared against hash-partitioning and
full-table replication, using the total number of distributed transac-
tions as the metric. The best strategy is selected, and in the event
of a tie the simplest solution is preferred.

The resulting partitioning can be: (i) installed directly into a
DBMS that supports partitioning for a distributed shared-nothing
architecture, (ii) explicitly encoded in the application, or (iii) im-
plemented in a middleware routing component, such as the one we
developed as to test Schism.
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Figure 1: Throughput of distributed transactions

3. THE PRICE OF DISTRIBUTION
Before describing the details of our partitioning approach, we

present a series of experiments we conducted to measure the cost of
distributed transactions. These results show that distributed trans-
actions are expensive, and that finding a good partitioning is critical
for obtaining good performance from a distributed OLTP database.

In a distributed shared-nothing database, transactions that only
access data on a single node execute without additional overhead.
Statements in the transaction are sent to one database followed by
the final commit or abort command. However, if the statements are
distributed across multiple nodes, two-phase commit or a similar
distributed consensus protocol is required to ensure atomicity and
serializability. This adds network messages, decreases through-
put, increases latency, and potentially leads to expensive distributed
deadlocks. Hence, we wish to avoid distributed transactions.

To quantify the performance impact of distributed transactions,
we performed a simple experiment using MySQL. We created a
table simplecount with two integer columns: id and counter.
Clients read two rows in a single transaction by issuing two state-
ments of the form: SELECT * FROM simplecount WHERE
id = ?. Each statement returns one tuple. We tested the perfor-
mance of two partitioning strategies: (i) every transaction is run on
a single server, and (ii) every transaction is distributed across mul-
tiple machines, using MySQL’s support for two-phase commit (XA
transactions), with our own distributed transaction coordinator.

Each client selects rows at random according to one of these
two strategies, and after getting the response immediately sends
the next request. We tested this workload for up to five servers. See
Appendix A for a detailed description of our experimental config-
uration. We used 150 simultaneous clients, which was sufficient to
saturate the CPU of all five database servers. The simplecount
table contains 150k rows (1k for each client), and thus the overall
database fits entirely into the buffer pools of our servers (128 MB).
This simulates a workload that fits in RAM, which is not uncom-
mon for OLTP.

In an ideal world, the local and distributed transactions in this
test would achieve similar performance, since they access the same
number of records with the same number of statements. However,
the results in Figure 1 show that distributed transactions have a
large impact on throughput, reducing it by about a factor of 2. Since
a distributed transaction commits across all the participants, latency
is also worse. In this experiment, the distributed transactions have
approximately double the average latency. For example, for five
servers the single-site transaction latency is 3.5 ms, while it is 6.7
ms for distributed transactions. We ran similar experiments for sev-
eral other scenarios including update transactions, and transactions
that accessed more tuples, with similar results.

Real OLTP applications are far more complicated than this sim-
ple experiment, potentially introducing: (i) contention, due to trans-
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 UPDATE account SET bal=bal-1k WHERE name="carlo";
 UPDATE account SET bal=bal+1k WHERE name="evan";
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 BEGIN 
  UPDATE SET bal=bal+1k 
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 COMMIT
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actions accessing the same rows simultaneously while locks are
held—as we found in TPC-C in Section 6.3, (ii) distributed dead-
locks, and (iii) complex statements that will need to access data
from multiple servers, e.g., distributed joins. All of the above will
further reduce the overall throughput of distributed transactions.
On the other hand, more expensive transactions will reduce the im-
pact of distribution, as the work performed locally at a partition
dwarfs the cost of extra message processing for two-phase commit.

Schism is designed for OLTP or web applications. For these
workloads, the conclusion is that minimizing the number of dis-
tributed transactions while balancing the workload across nodes
substantially increases transaction throughput.

4. PARTITIONING AND REPLICATION
Having established the cost of distributed transactions, we present

our approach for partitioning and replication, which attempts to dis-
tribute data so that transactions access only a single partition.

4.1 Graph Representation
We introduce our graph representation with a simple example.

While our example only uses a single table, our approach works
with any schema, and is independent of the complexity of the SQL
statements in the workload. Suppose we have a bank database con-
taining a single account table with five tuples, and a workload of
four transactions, as shown in Figure 2. Each tuple is represented
as a node in the graph; edges connect tuples that are used within the
same transaction. Edge weights account for the number of transac-
tions that co-access a pair of tuples. These are not shown in the
figure, as each pair of tuples is accessed by at most one transaction.

In Figure 3, we introduce an extension of the basic graph rep-
resentation that captures the opportunity for tuple-level replication.
Replication is represented by “exploding” the node representing a
single tuple into a star-shaped configuration of n + 1 nodes where
n is the number of transactions that access the tuple.

As an example, consider the tuple (1, carlo, 80k) from
Figure 2. This tuple is accessed by three transactions and is there-
fore represented by four nodes in Figure 3. The weights of the
replication edges connecting each replica to the central node rep-
resent the cost of replicating the tuple. This cost is the number of
transactions that update the tuple in the workload (2 for our exam-
ple tuple). When replicating a tuple, each read can be performed
locally, but each update becomes a distributed transaction. This
graph structure allows the partitioning algorithm to naturally bal-
ance the costs and the benefits of replication.

We experimented with other graph representations, including hy-
pergraphs, but found that they did not perform as well (see Ap-
pendix B for further details on our graph representation).

The graph partitioning strategy discussed in the next section heuris-

tically minimizes the cost of a graph cut, while balancing the weight
of each partition (more precisely, by satisfying a constraint on the
permissible skew). The weight of a partition is computed as the
sum of the weights of the nodes assigned to that partition. There-
fore, we can balance partitions in different ways by assigning dif-
ferent node weights. We have experimented with two useful met-
rics for database partitioning: (i) data-size balancing, achieved by
setting node weights equal to the tuple size in bytes, and (ii) work-
load balancing, achieved by setting node weights equals to the num-
ber of times the tuple is accessed.

4.2 Graph Partitioning
Schism’s graph representation characterizes both the database

and the queries over it. Graph partitioning splits this graph into
k non-overlapping partitions such that the overall cost of the cut
edges is minimized (i.e., find a min-cut), while keeping the weight
of partitions within a constant factor of perfect balance (where the
degree of imbalance is a parameter). This graph operation approxi-
mates minimizing the number of distributed transactions while bal-
ancing the load or data size evenly across nodes.

Our unified representation of partitioning and replication allows
the graph partitioning algorithm to decide for each tuple whether it
is better to replicate it across multiple partitions and pay the cost for
distributed updates (e.g. tuple 1 in Figure 3), or to place it in a sin-
gle partition and pay the cost for distributed transactions (e.g. tuple
2 in Figure 3). When all replicas of a tuple are in the same partition,
the tuple is not replicated. Otherwise, the partitioner has decided to
replicate the tuple. The min-cut algorithm will naturally choose not
to replicate tuples that are updated frequently, since there is a high
cost for cutting the edges between the replicas of such tuples, rep-
resenting the cost of distributed updates. Conversely, it is likely to
replicate rarely updated tuples, if it reduce the cost of cutting trans-
action edges. In Section 4.3, we discuss how the tuple-level choices
can be generalized into table-wide or range partitioning decisions.

Constrained, k-way graph partitioning is a known to be an NP-
complete problem. However, given its fundamental role in VLSI
and CAD it has been the subject of substantial research and devel-
opment efforts over the past four decades [12, 10, 13], resulting in
sophisticated heuristics and well-optimized, freely-available soft-
ware libraries. Most graph partitioning algorithms exploit multi-
level coarsening techniques and provide distributed parallel imple-
mentations to deal with extremely large graphs (hundreds of mil-
lions of edges). In Schism, we use METIS [11] to partition graphs.

The result of the graph partitioning phase is a fine-grained map-
ping between individual nodes (tuples) and partition labels. Be-
cause of replication, a tuple may be assigned to more partitions.

Fined-grained Partitioning. One way to use the output of our
partitioner is to store it in a lookup table such as the one shown on
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the left-hand side of Figure 3.
In the common case of key-based access of the tuples (i.e., the

queries WHERE clauses contain equality or range predicate over the
the tuple IDs), these tables can be used directly to route queries
to the appropriate partition. In our prototype this is achieved by
means of a middleware routing component, that parses the queries
and compare their WHERE clause predicates to the content of the
lookup tables. Physically, lookup tables can be stored as indexes,
bit-arrays or bloom-filters—see Appendix C for details regarding
lookup tables. Assuming a dense set of IDs and up to 256 parti-
tions, a coordinator node with 16GB of RAM can store a lookup
table as one byte per ID and record partitioning information for
over 15 billion tuples (the coordinator has no other state that places
significant demands on RAM). This is more than sufficient for the
vast majority of OLTP applications. Furthermore, such lookup ta-
bles can stored in a distributed fashion over several machines or in
a disk-based index if they exceed available RAM.

With lookup tables, new tuples are initially inserted into a ran-
dom partition until the partitioning is re-evaluated, at which point
they may be moved to the appropriate partition. Because partition-
ing is fast, we envision running it frequently, which will prevent
newly added tuples from causing excessive distributed transactions.

While this approach is effective when a very fine-grained par-
titioning strategy is required (e.g., in some social-network appli-
cations), it is not ideal for very large databases or very extremely
insert-heavy workloads. Hence, we developed an analysis tool than
can find simpler, predicate-based partitioning of the data that closely
approximates the output of the partitioner.

4.3 Explanation Phase
The explanation phase attempts to find a compact model that

captures the (tuple, partition) mappings produced by the parti-
tioning phase. To perform this task, we use decision trees (a ma-
chine learning classifier) since they produce understandable rule-
based output that can be translated directly into predicate-based
range partitioning. A decision tree classifier takes a collection of
(value, label) pairs as input, and outputs a tree of predicates over
values leading to leaf nodes with specific labels. Given an unla-
beled value, a label can be found by descending the tree, applying
predicates at each node until a labeled leaf is reached.

In Schism, the values are database tuples and the labels are the
partitions assigned by the graph partitioning algorithm. Replicated
tuples are labeled by a special replication identifier that indicates
the set of partitions that should store the tuple (e.g. the partition set
{1, 3, 4} can be represented with label R1).

When successful, the classifier finds a simple set of rules that
capture, in a compact form, the essence of the partitioning discov-
ered by the graph partitioning algorithm. For the example in Fig-
ures 2 and 3, the decision tree classifier derives the following rules:

(id = 1)→ partitions = {0, 1}
(2 ≤ id < 4)→ partition = 0

(id ≥ 4)→ partition = 1

It is not always possible to obtain an explanation of a partition-
ing, and not every explanation is useful. An explanation is only
useful if (i) it is based on attributes used frequently in the queries
(e.g., in our example 50% of the queries use the id attribute in
their WHERE clause)—this is needed to route transactions to a sin-
gle site and avoid expensive broadcasts, (ii) it does not reduce the
partitioning quality too much by misclassifying tuples, and (iii) it
produces an explanation that works for additional queries (over-
fitting can create an explanation that works for the training set, but
uses attributes that do not represent the application).

To achieve these goals we: (i) limit the decision tree to operate
on attributes used frequently in the queries, (ii) measure the cost
in terms of number of distributed transactions (based on Section 3)
and discard explanations that degrade the graph solution, and (iii)
use aggressive pruning and cross-validation to avoid over-fitting.
More details on the implementation of our explanation process are
provided in Section 5.2.

4.4 Final Validation
The goal of the validation phase is to compare the solutions ob-

tained in the two previous phases and to select the final partitioning
scheme. Specifically, we compare the fine-grained per-tuple parti-
tioning produced by the graph partitioner, the range-predicate parti-
tioning scheme produced in the explanation phase, hash-partitioning
on the most frequently used attributes and full-table replication, us-
ing the number of distributed transactions as an estimate of the cost
of running the workload. We choose the scheme that has the small-
est number of distributed transactions, unless several schemes have
close to the same number, in which case we choose the one with
lowest complexity (e.g., we prefer hash partitioning or replication
over predicate-based partitioning, and predicate-based partitioning
over lookup tables). The importance of this process is demonstrated
in two experiments in Section 6, where the system selects sim-
ple hash-partitioning over predicate partitioning for several simple
workloads where hash partitioning works well.

5. OPTIMIZATION & IMPLEMENTATION
In this section, we briefly present some of the key engineering

challenges and design decisions we faced when building Schism.

5.1 Achieving Scalability
A practical partitioning tool must be capable of handling very

large databases. As the size of the database and the number of
tuples accessed by each transaction increases, the graph represen-
tation grows. If a workload contains many different transactions, a
larger workload trace will be needed to capture representative be-
havior. As the number of partitions increases, more cuts must be
found. These factors could impose limits on the size of database
our system is capable of handling.

As we show in Section 6, graph partitioners scale well in terms of
the number of partitions, but their runtime increases substantially
with graph size. Therefore, we focused our effort on reducing the
size of the input graph. Intuitively, this decreases the running time
of the partitioning algorithm while sacrificing the quality, since a
smaller input graph contains less information. However, we devel-
oped a number of heuristics that reduce the size of the graph with
a limited impact on the quality of the partitioning. Specifically, we
implemented the following heuristics:

Transaction-level sampling, which limits the size of the work-
load trace represented in the graph, reducing the number of edges.

Tuple-level sampling, which reduces the number of tuples (nodes)
represented in the graph.

Blanket-statement filtering, which discards occasional statements
that scan large portions of a table, since (i) they produce many
edges carrying little information, and (ii) parallelize across parti-
tions effectively, since the distributed transaction overhead is less
significant than the cost of processing the statement.

Relevance filtering, which removes tuples that are accessed very
rarely from the graph, since they carry little information. The ex-
treme case is a tuple that is never accessed.

Star-shaped replication, connecting replica nodes in a star-shaped
configuration rather than in a clique, limiting number of edges.
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Tuple-coalescing, which represents tuples that are always ac-
cessed together as a single node. This is a lossless transformation
that reduces the graph size significantly in some cases.

These heuristics have proven to be effective for reducing the
graph size for our benchmark suite, while maintaining high quality
results. For example, in Section 6.2 we show that a graph cover-
ing as little as 0.5% of the original database using a few thousand
transactions carries enough information to match the best human-
generated partitioning scheme for TPC-C.

5.2 Implementing Explanation
To implement the explanation phase described in Section 4.3 and

4.4, we used the open-source machine-learning library Weka [9].
This process involves the following steps:

Create a training set: Schism extracts queries and the tuples ac-
cessed by the workload trace—sampling is applied to reduce run-
ning time, without affecting the quality of the result. The tuples
are marked with the partition labels produced by the graph parti-
tioning algorithm. Replicated tuples are assigned virtual partition
labels that represent the set of destination partitions, as described
in Section 4.3. This constitute the training set used by the decision
tree classifier.

Attribute Selection: The system parses the SQL statements in the
workload and records for each attribute the frequency with which it
appears in the WHERE clauses. Rarely used attributes are discarded,
since they would not be effective for routing queries. As an exam-
ple, for the TPC-C stock table we obtain two frequently used at-
tributes (s i id, s w id), representing item ids and warehouse
ids. The candidate attributes are fed into Weka’s correlation-based
feature selection to select a set of attributes that are correlated with
the partition label. For TPC-C, this step discards the s i id at-
tribute, leaving s w id as the sole attribute for classification.

A more complex scenario is when tuples of one table are fre-
quently accessed via a join with another table. Our system han-
dles this by preparing the input to the classifier as the join of the
two tables. The resulting partitioning will require co-location of
the joined tuples in the same partition, and the predicates produced
will be join predicates and ranges over the other table. The resulting
predicate-based partitioning will only support queries that perform
that join. Other queries will need to be sent to all partitions. Al-
though such queries are not very common (none of applications in
our benchmark suite include any), this is supported.

Build the classifier: We train a decision tree classifier using J48,
a Java implementation of the C4.5 classifier [17]. Partition labels
are the classification attribute we wish to learn from the candidate
attributes generated from the previous step. The output of the clas-
sifier is a set of predicates that approximates the per-tuple parti-
tioning produced by the graph partitioning algorithm. The risk of
over-fitting is avoided via cross-validation and by controlling the
aggressiveness of the pruning of the decision tree to eliminate rules
with little support.

As an example, for TPC-C with two warehouses divided into two
partitions we obtain the following rules for the stock table:
s_w_id <= 1: partition: 1 (pred. error: 1.49%)
s_w_id > 1: partition: 2 (pred. error: 0.86%)

The output of the classifier for the item table is:
<empty>: partition: 0 (pred. error: 24.8%)

This indicates that all tuples in the table are replicated. The high
prediction error in this example is an artifact of the sampling, since
some tuples in the item table end up being accessed only by few
transactions, thus providing no evidence that replication is needed.
However, this does not affect the quality of the solution.

For TPC-C, the overall result is to partition the database by ware-
house, while replicating the entire item table. This is the same
strategy derived by human experts [21]. As we discuss in Section 6,
similar partitionings are found for TPC-C with more warehouses
and partitions. While TPC-C does not require multiple attributes
to define partitions, the classifier can produce rules of this form,
where appropriate.

5.3 Obtaining the Traces
To produce the graph representation, we need the set of tuples

accessed by each transaction. We developed a tool that takes a
log of SQL statements (e.g., the MySQL general log), and ex-
tracts the read and write sets. First, SQL statements from the trace
are rewritten into SELECT statements that retrieve the identifiers
(e.g., primary keys) of each tuple accessed. These SELECTs are
executed, producing a list of (tuple id, transaction) pairs used
to build the graph. This mechanism can either be used online, ex-
tracting the tuple IDs immediately after the original statement, or
offline. Extracting tuples long after the original statements were
executed still produces good partitioning strategies for our experi-
mental data sets, which suggests our approach is insensitive to the
exact tuples that are used. By combining this tolerance to stale data
with sampling, we believe that read/write sets can be extracted with
negligible performance impact on production systems.

5.4 Data Migration and Query Routing
There are two remaining implementation issues to be considered.

The first is how we migrate data from one partition to another. To
do this, Schism generates data migration SQL scripts. The current
version is designed to partition a single database into partitions.
We are extending this to solve the more general problem of repar-
titioning. Alternatively, the output of our tool can be fed into a
partition-aware DBMS such as Oracle or DB2, that can manage the
data movement.

The second important issue is how the replication and partition-
ing derived by Schism is used at run-time to route queries. We have
developed a router and distributed transaction coordinator that en-
force the replication and partitioning strategy [5]. It supports hash
partitioning, predicate-based partitioning, and lookup tables. The
router is a middleware layer that parses the SQL statements and
determines which partitions they need to access. For read-only
queries over replicated tuples, Schism attempts to choose a replica
on a partition that has already been accessed in the same transac-
tion. This strategy reduces the number of distributed transactions.
More details about the routing are in Appendix C.

6. EXPERIMENTAL EVALUATION
In this section, we present an experimental validation of Schism.

6.1 Partitioning Algorithm
In order to assess the quality of the partitioning produced by

our algorithm we experimented on a variety of workloads derived
from synthetic and real applications, described below. We com-
pare the quality of the partitioning in terms of the number of dis-
tributed transactions. The results are summarized in Figure 4. The
graph at the top compares the number of distributed transactions
produced by Schism’s graph partitioning algorithm to 1) the best
manual partitioning we could devise (manual), 2) replication of all
tables (replication), and 3) hash partitioning on the primary key or
tuple id (hashing). The table at the bottom indicates the number of
partitions used, the fraction of the dataset that was sampled, and the
recommendation of Schism’s final validation scheme.
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Figure 4: Schism database partitioning performance.

In the following sections, we describe each of the 9 experiments;
all experiments are the result of collecting a large trace of transac-
tions, separating them into training and testing sets, and then ap-
plying the sampling and workload reduction techniques described
in Section 5. The datasets are discussed in details in Appendix D.

YCSB-A The Yahoo! Cloud Serving Benchmark (YCSB) is a
suite of benchmarks designed to be simple yet representative of
workloads seen inside Yahoo [4]. Workload A is composed of reads
(50%) and updates (50%) of a single tuple selected from a 100k-
tuple table randomly with a Zipfian distribution. We use a trace
of 10k requests. This shows that Schism can handle an easy sce-
nario where any partitioning will perform well. In particular, we
wanted to show that the validation phase detects that simple hash-
partitioning is preferable to the more complicated lookup tables and
range partitioning, which it does.

YCSB-E [4], a workload of 10k transactions performing either
a short scan with a uniform random length of 0-10 tuples (95%),
or a one tuple update (5%). Tuples are generated using a Zipfian
distribution from a 100k-tuple table. The scans in this workload
make hash-partitioning ineffective. Schism’s explanation phase is
produces a range-partitioning that performs as well as manual par-
titioning (done via by careful inspection of the workload.)

TPC-C 2W, based on the popular write-intensive, OLTP work-
load (2 warehouses, 100K transactions in the training set), this ex-
periment shows that Schism can derive a high-quality predicate-
based partitioning. The partitioning produced by the tool distributes
tuples based on warehouse id, and replicates the item table—the
same strategy found by human experts [21].

TPC-C 2W, sampling, this experiment is also based on TPC-C,
but we stress-test Schism’s robustness to sampling by partitioning
a graph created from only 3% of the tuples and a training set of
only 20k transactions. We train the decision tree on a sample of
at most 250 tuples per table. This workload accesses slightly less
than 0.5% of the entire database’s tuples, but Schism still finds the
“ideal” partitioning/replication scheme discussed above1.

TPC-C 50W, in this experiment we scale the size of TPC-C to
50 warehouses (over 25M tuples) to show how Schism scales with
the size the database. We also increase the number of partitions
to 10. Using a training set of 150K transactions and sampling 1%
of the database tuples, we obtain the same partitioning: partition
by warehouse id and replicate the item table. Both Schism and
manual partitioning have fewer distributed transactions in this 50
warehouse/10 partition experiment than the 2 warehouse/2 parti-

1The small difference between Schism and manual partitioning in
the TPC-C experiment are due to sampling of the test-set.

tion experiment. This is because some TPC-C transactions access
multiple warehouses (10.7% of the workload). When partitioning a
2 warehouse database into 2 partitions, every such transaction will
access multiple partitions. However, in a 50 warehouse/10 parti-
tion configuration, there is a chance that all the warehouses will be
co-located in one partition. Thus, this configuration has few multi-
partition transactions. This is the largest workload we evaluated,
and the total running time (extracting the graph, partitioning, vali-
dation, and explanation) was 11 m 38 s.

TPC-E, a read-intensive OLTP workload derived from the pop-
ular benchmark, tested with 1k customers using a 100k transaction
training set. This experiment tests our system on a more complex
OLTP workload. The range-predicate solution provided by the sys-
tem is better than both baselines (hashing, and full replication); be-
cause this benchmark is complex (33 tables, 188 columns, 10 kinds
of transactions), we were unable to derive a high quality manual
partitioning with which to compare our results. However, the result
of 12.1% distributed transactions appears to be quite good.

Epinions.com, 2 partitions, a dataset derived from the epony-
mous social website [15]. We synthetically generated a set of nine
transactions to model the most common functionality of the Epin-
ions.com website—details in Appendix D. To compare against a
manual partitioning, we asked two MIT Masters students to derive
the best manual partitioning they could find. They found that the
multiple n-to-n relations in the schema (capturing user ratings of
items and trust relationships between users), combined with mul-
tiple access patterns in the transactions made the task challenging.
The manual strategy they found, after several hours of analysis of
the DB and the workload, uses a mix of replication and partitioning,
yielding 6% distributed transactions.

Given the same information, Schism derived a lookup-table-based
partitioning that yields just 4.5% distributed transactions. This is
possible because the tool is able to inspect the social graph at the tu-
ple level and discover clusters of users and items that are frequently
accessed together, but rarely accessed across clusters. Since this
was a read-mostly workload, tuples not present in the initial lookup
table (i.e., not touched by the training transactions) have been repli-
cated across all partitions. Hash partitioning and range partition-
ing yield significantly worse results, and thus are not selected by
Schism in the final validation phase.

Epinions.com, 10 partitions, the same dataset as the previous
test, but increasing the number of partitions to 10. The results
(6% distributed transactions) are better than both baseline strate-
gies (75.7% and 8%) and manual partitioning (6.5%).

Random, in this experiment, as in the first experiment, we test
the capability of the system to select a simple strategy when more
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Figure 5: METIS graph partitioning scalability for growing
number of partitions and graph size.

Table 1: Graph Sizes
Dataset Tuples Transactions Nodes Edges
Epinions 2.5M 100k 0.6M 5M
TPCC-50 25.0M 100k 2.5M 65M
TPC-E 2.0M 100k 3.0M 100M

complex solutions do not provide a better partitioning. The work-
load is composed of a single transaction that updates 2 tuples se-
lected uniformly at random from a table of 1M tuples. In this sce-
nario, no good partitioning exists, and lookup tables, range parti-
tioning, and hash partitioning perform equally poorly. Full replica-
tion performs even worse since every transaction is an update. As
a result the algorithm chooses to fall back to hash partitioning.

In summary, the Schism approach consistently matches or out-
performs simple automatic strategies and manually-generated par-
titioning schemes on all of our workloads.

6.2 Scalability and Robustness
In order to show the scalability of our approach we tested (i)

performance as the number of partitions increases, and (ii) perfor-
mance as the size and complexity of the database grows.

All the stages of our system, with the exception of the graph par-
titioning phase, have performance that is essentially independent of
the number of partitions, and performance that grows linearly with
the size of the database and workload trace. Therefore, to show
scalability, we focus on the performance of the graph partitioning
phase. For this experiment we use the three graphs of Table 1.

In Figure 5 we show the running times of a serial implementa-
tion of the graph partitioning algorithm kmetis for an increasing
number of partitions (see Appendix A for detailed experimental
setup). The cost of partitioning increases slightly with the number
of partitions. The size of the graph has a much stronger effect on
the running time of the algorithm (approximately linear in the num-
ber of edges), justifying our efforts to limit the graph size via the
heuristics presented in Section 5.1.

The most important heuristic for reducing the graph size is sam-
pling. It is hard to provide a precise indication of the maximum
degree of sampling that can be applied to a graph to still produce
a good partitioning. However, we have experimental evidence that
suggests that Schism produces good results even when presented
with a small sample of the database. For example, for TPC-C with
2 warehouses we were able to sample 1% of the graph while still
producing the same result as manual partitioning. A qualitative
analysis of our experiments suggests that the minimum required
graph size grows with workload complexity, the database size, and
the number of partitions. Intuitively, a more complex workload re-
quires a larger number of transactions (and thus edges) to be accu-
rately modeled. A bigger database inherently requires more tuples
in the graph. It also requires more edges, and therefore more trans-
actions, so that there are sufficient relationships between tuples to
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Figure 6: TPC-C Throughput Scaling

adequately capture how the data is accessed. Finally, a larger num-
ber of partitions requires a denser graph (more edges). Unfortu-
nately, formalizing this into a quantitative model would require a
more comprehensive set of examples, which is beyond the scope
of this paper. A simple strategy to select the degree of sampling is
to run the tool with increasing sample sizes until the partitioning
quality stops increasing. For our simple examples, this seems to
produce good results.

6.3 End-to-End Validation
In order to validate our end-to-end approach, and to showcase

how Schism produces balanced partitions that maximize through-
put, we ran a benchmark based on TPC-C with a cluster of 8 ma-
chines (see Appendix A for detailed configuration). We used Schism
to divide the database into 1, 2, 4, and 8 partitions. Each parti-
tion was then assigned to a separate server. Schism was configured
to balance the workload across partitions, which for TPC-C also
yields partitions with nearly balanced data sizes. The range parti-
tioning predicates produced are the same as discussed in the previ-
ous TPC-C experiments. We used two configurations. In the first,
we spread the 16 warehouses across the cluster. This demonstrates
scaling out a single application by adding more hardware. In the
second, we added warehouses while adding machines, so each ma-
chine always had 16 partitions. This demonstrates using Schism to
grow an application by adding more hardware. Sufficient TPC-C
clients were used in order to saturate the throughput of the system.
The throughput is shown in Figure 6.

The results show that a single server is able to achieve approx-
imately 131 transactions per second with 16 warehouses. For the
single 16 warehouse scale out configuration, the performance in-
creases approximately linearly up to 4 machines, but with 8 ma-
chines it only obtains a 4.7× speedup. This is because the con-
tention that is inherently part of the TPC-C implementation be-
comes a bottleneck when there are only 2 warehouses per machine.
It is not possible to saturate a single machine because nearly all the
transactions conflict, limiting the maximum throughput. The con-
figuration which keeps a fixed 16 warehouses per machine avoids
this bottleneck, so it shows a scalability that is very close to per-
fectly linear (7.7× for 8 machines = coefficient of 0.96).

This experiment shows that Schism is capable of producing a
high-quality partitioning scheme that allows us to obtain good scal-
ability. Our results suggest that if we used hash partitioning on this
workload, we would see 99% distributed transactions, which would
lead to a significant throughput penalty.

7. RELATED WORK
Partitioning in databases has been widely studied, for both sin-

gle system servers (e.g. [1]) and shared-nothing systems (e.g. [23,
18]). These approaches typically use the schema to produce possi-

54



ble range or hash partitions, which are then evaluated using heuris-
tics and cost models. They offer limited support for OLTP work-
loads, and are usually not capable of generating sensible partition-
ing scheme for schemas containing multiple n-to-n relations.

Tsangaris and Naughton’s stochastic approach relies on graph
partitioning heuristics for clustering in object-oriented databases
[22]. However, our system also integrates replication and is de-
signed for the different requirements of distributed databases.

Recently there has been significant interest in “simpler” distributed
storage systems, such as BigTable [2] or PNUTS [3]. These sys-
tems repartition data continuously to balance data sizes and work-
load across multiple servers. Despite being more dynamic, these
techniques do not handle OLTP transactions on multiple tables.

Scaling social network applications has been widely reported to
be challenging due to the highly interconnected nature of the data.
One Hop Replication is an approach to scale these applications by
replicate the relationships, providing immediate access to all data
items within “one hop” of a given record [16]. This approach relies
on a partitioning algorithm to assign the initial partitions, which
means that Schism could be used with this system.

The hybrid-range partitioning strategy (HRPS) [8] is a hybrid
approach to hash- and range-partitioning based on query analy-
sis. The scheme attempts to decluster (run in parallel on several
nodes by spreading data across them) long-running queries and lo-
calize small range queries. HRPS applies only to single-table range
queries over one dimension, and does not consider replication.

At the opposite end of the spectrum with respect to Schism there
are pure declustering research efforts [19] and partitioning advi-
sors often included in commercial DBMSs [7, 18] that mainly fo-
cus on OLAP workloads and single-system data-on-disk optimiza-
tions. Like us, Liu et al. [19] employ graph partitioning, but for
the opposite purpose (declustering) and without consideration for
replication or predicate-based explanation.

8. CONCLUSIONS
We presented Schism, a system for fine-grained partitioning of

OLTP databases. Our approach views records in a database as
nodes in a graph, with edges between nodes that are co-accessed
by transactions. We then use graph-partitioning algorithms to find
partitionings that minimize the number of distributed transactions.
We further propose a number of heuristics, including sampling and
record grouping, which reduce graph complexity and optimize per-
formance. We also introduce a technique based on decision-tree
classifiers to explain the partitioning in terms of compact set of
predicates that indicate which partition a given tuple belongs to.

Our results show that Schism is highly practical, demonstrating
(i) modest runtimes, within few minutes in all our tests, (ii) ex-
cellent partitioning performance, finding partitions of a variety of
OLTP databases where only a few transactions are multi-partition,
often matching or exceeding the best known manual partitionings,
and (iii) ease of integration into existing databases, via support for
range-based partitioning in parallel databases like DB2, or via our
distributed transaction middleware.
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Table 2: Experimental Systems
Num. Machines Environment Description
8 CPU 2 × Intel Xeon 3.2 GHz

Memory 2 GB
Hard Disk 1 × 7200 RPM SATA (WD1600JS, 8.9 ms latency)

1 CPUs 2 × Quad-Core Intel Xeon E5520 2.26GHz
Memory 24 GB
Hard Disk 6 × 7200 RPM SAS (ST32000444SS, 5 ms latency)

Hardware RAID 5 (Dell PERC6/i)
All OS Distribution Linux Ubuntu Server 9.10

OS Kernel Linux 2.6.31-19 server
Java Sun Java 1.6.0 20-b02
DBMS MySQL 5.4.3-beta

APPENDIX
A. HW/SW CONFIGURATION

The experiments in Section 3 and Section 6.3 were run on 8
servers running MySQL connected via a single Gigabit Ethernet
switch. A more powerful machine was used to generate traffic, and
for the run-time performance experiments in Section 6.2. Details
about the hardware and software are shown in Table 2.

B. HYPERGRAPHS
Rather than representing transactions as a collection of edges be-

tween nodes, we explored representing them as a single hyperedge
connecting the nodes accessed by the transaction. This formula-
tion is somewhat more natural, because the cost of the cut hyper-
edges exactly matches the number of distributed transactions. Ad-
ditionally, we expected that hypergraph partitioning would produce
higher quality, based on previous results in the graph partitioning
literature [20] and on previous papers in the database community
that have used graph partitioners [14]. However, after an extensive
set of tests with the most popular hypergraph partitioning libraries
(hMETIS and Zoltan-PHG), we found that graph partitioning was
far faster and produced better results. Our assumption is that graph
partitioning is more widely used and studied, and thus the tools are
more mature.

As a result, we needed to choose to approximate a hyperedge as
a set of edges in the graph. This is a known hard task. After many
tests, we decided to use a clique to represent transactions (more
amenable to sampling) and a star-shaped representation for repli-
cation (fewer edges for tuples that are touched very frequently).
This combination of representations provided good output and rea-
sonable graph sizes.

C. PARTITIONING AND ROUTING
In this appendix, we discuss two query routing problems: i) how

to handle lookup tables, ii) how to use the partitioning scheme
(lookup tables, range predicates, hashing) to route queries/updates
to the right machines.

C.1 Lookup Tables
As described in Section 4.2, lookup tables are useful when there

is some locality in the data that is not obvious from the schema. In
order to capture the best partitioning for this type of data, it is nec-
essary to maintain partition information for each tuple individually.
At the logical level this is a mapping between tuples and partition
ids. Maintaining this mapping for all tuple attributes is infeasible.
However, many applications access data primarily by specifying
the primary key, which is typically a system-generated, dense set
of integers. For this type of application, storing and maintaining
lookup tables can be very efficient. This information can be treated
as “soft state” because it can be easily recovered by a scanning the

database in case of a crash.
At the physical level we experimented with three different im-

plementations of lookup tables: traditional indexes, bit arrays and
bloom filters. The most general is a traditional index, which can
be used with any type of data in the partitioning column(s), and is
efficient and well studied. However, indices require the most of the
three solutions. Bit arrays work for (almost) dense integer keys,
by using the key as an offset into an array of partition ids. This
is a very compact and fast way to store lookup tables, which is a
natural fit for the many applications that use integer autoincrement
primary keys. With a few gigabytes of RAM, it is possible to store
the partition ids for several billion tuples in an array.

Finally, we performed some preliminary testing with using bloom
filters, which should provide a more compact representation, with
the disadvantage that it will produce some false positives. These
false positives decrease performance with no impact on correct-
ness. When routing queries, a false positive means that a partition
will be involved in executing a statement, even though it does not
need to be. The actual space savings depend on many parameters,
such as the number of tuples, the number of partitions, and the false
positive rate.

We are currently investigating how to best implement lookup ta-
bles for distributed databases, to establish when they are a better
choice than traditional hash or range partitioning, and which phys-
ical implementation works best for each scenario.

C.2 Routing Queries and Updates
Another important problem to be solved within the middleware

layer is how to route a query or an update in order to guarantee the
correct execution and minimize the participants involved in execut-
ing the statement.

Our system provides a JDBC interface for applications to submit
statements. Given an input statement our router component per-
forms the following steps: i) parses the statement, ii) extracts pred-
icates on table attributes from the WHERE clause, iii) compares the
attributes to the partitioning scheme to obtain a list of destination
partitions. A distributed transaction coordinator then manages the
transactional execution of the statement across multiple machines.

Statements that access tuples using the partitioning attribute(s)
are sent only to the partition(s) that store the tuples. Statements that
access a single table using other attributes are handled by broad-
casting the statement to all partitions of the table, then taking the
union of the result. More complex statements that access multi-
ple tables using attributes that are not the partitioning attributes are
not currently handled as they require communicating intermediate
results in order to compute the join.

Partitioning is most efficient when most statements use the parti-
tioning attributes in the WHERE clause. This is why Schism tries to
use the most common WHERE clause attributes for the explanation
phase.

D. DATASETS
In this section we provide some additional details about the bench-

marks used in Section 6.

D.1 Yahoo! Cloud Serving Benchmark
The Yahoo! Cloud Serving Benchmark (YCSB) is a collection of

simple micro-benchmarks designed to represent data management
applications that are simple, but that require high scalability [4].
This benchmark is designed to evaluate distributed key/value stor-
age systems, such as those created by Yahoo, Google and various
open source projects. In this work, the benchmark is used to pro-
vide insight in some of the capabilities of our tool, e.g., its ability
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fall back to cheaper partitioning strategies in case of a tie, on a
standardized and simple test case.

From the five core YCSB workloads, we selected workload A
and workload E. Workload A consists of a 50/50 mix of reads/writes
on a single tuple chosen with a Zipfian distribution. Ignoring the
potential challenges to achieve good performance with Internet-
scale data, this is a very easy problem to partition. In fact, with
the exception of full-replication, every partitioning strategy leads
to zero distribution cost because transactions touch only one tuple.
Hence, the goal of running this test is to show how our system is
capable of selecting a cheaper partitioning strategy (e.g., hash par-
titioning) when one exists.

Workload E consists of a 95-5 mix of read and writes, where
the reads perform a short scan (of length uniformly chosen from 1–
100), and writes touch a single record. The starting point of the read
scan and the write are chosen at random with Zipfian distribution.
This workload shows that hashing fails for range queries, and that
our tool can automatically chose range-predicate split points that
produce a close-to-optimal partitioning strategy.

D.2 TPC-C
The TPC-C benchmark is designed to simulate the OLTP work-

load of an order processing system. The implementation we used
does not strictly adhere to the requirements of the TPC-C speci-
fication. In particular, in order to generate high throughput with
small dataset sizes, the client simulators do not use the specified
“think times” and instead submits the next transaction as soon as it
receives the response from the first. Thus, our results in Section 6.3
are not meant to be compared with other systems, but rather indi-
cate the relative performance of the configurations we tested.

The TPC-C schema contains 9 tables with a total of 92 columns,
8 primary keys, and 9 foreign keys. TPC-C workload contains 5
types of transactions.

D.3 TPC-E
The TPC-E benchmark is an OLTP benchmark that is more com-

plex than TPC-C. It models a brokerage firm that is handling trades
on behalf of clients. Again, the implementation we use is not com-
pletely faithful to the specification, but it tries to generate the cor-
rect data and transactions. The TPC-E schema contains 33 tables
with a total of 188 columns, 33 primary keys, 50 foreign keys, and
22 constraints. The workload contains 10 types of transactions.

D.4 Epinions.com
The Epinions.com experiment aims to challenge our system with

a scenario that is difficult to partition. It verifies it effectiveness in
discovering intrinsic correlations between data items that are not
visible at the schema or query level. Our Epinions.com schema
contains four relations: users, items, reviews and trust.
The reviews relation represents an n-to-n relationship between
users and items (capturing user reviews and ratings of items). The
trust relation represents a n-to-n relationship between pairs of
users indicating a unidirectional “trust” value. The data was ob-
tained by Paolo Massa from the Epinions.com development team [15].
Since no workload is provided, we created requests that approxi-
mate the functionality of the website:

Q1. For a given user and item, retrieve ratings from trusted users

Q2. Retrieve the list of users trusted by a given user

Q3. Given an item, retrieve the weighted average of all ratings

Q4. Given an item, obtain the 10 most popular reviews

Q5. List the 10 most popular reviews of a user

Q6. Insert/update the user profile

Q7. Insert/update the metadata of an item

Q8. Insert/update a review

Q9. Update the trust relation between two users

In our comparison against manual partitioning, the above queries
and the input database were provided to the students acting as database
administrators in charge of partitioning of the database. Finding a
good partitioning is non-trivial, since the queries involve multiple
n-to-n relations with opposing requirements on how to group tables
and tuples. For example, Q1 will access a single partition if the data
is partitioned by item, and ratings and trust are stored with items,
while Q2 will access a single partition if the data is partitioned by
user, and trust is stored with users. The students’ proposed solution
was to optimize for the most frequent queries in the workload (Q1
and Q4) by partitioning item and review via the same hash function,
and replicating users and trust on every node.

D.5 Random
This final synthetic dataset is designed to be an “impossible” to

partition workload. Each request writes a pair of tuples selected
uniformly at random from the entire table. Here again the goal is
to show how, when a tie happens, the algorithm chooses the sim-
plest and more robust partitioning strategy—hash partitioning, in
this case.
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