
Ten Thousand SQLs: Parallel Keyword Queries Computing

Lu Qin
The Chinese University of

Hong Kong

lqin@se.cuhk.edu.hk

Jeffrey Xu Yu
The Chinese University of

Hong Kong

yu@se.cuhk.edu.hk

Lijun Chang
The Chinese University of

Hong Kong

ljchang@se.cuhk.edu.hk

ABSTRACT
Keyword search in relational databases has been extensively stud-
ied. Given a relational database, a keyword query finds a set of in-
terconnected tuple structures connected by foreign key references.
On rdbms, a keyword query is processed in two steps, namely, can-
didate networks (CNs) generation and CNs evaluation, where a CN
is an sql. In common, a keyword query needs to be processed us-
ing over 10,000 sqls. There are several approaches to process a
keyword query on rdbms, but there is a limit to achieve high per-
formance on a uniprocessor architecture. In this paper, we study
parallel computing keyword queries on a multicore architecture.
We give three observations on keyword query computing, namely,
a large number of sqls that needs to be processed, high sharing
possibility among sqls, and large intermediate results with small
number of final results. All make it challenging for parallel key-
word queries computing. We investigate three approaches. We first
study the query level parallelism, where each sql is processed by
one core. We distribute the sqls into different cores based on three
objectives, regarding minimizing workload skew, minimizing inter-
core sharing and maximizing intra-core sharing respectively. Such
an approach has the potential risk of load unbalancing through ac-
cumulating errors of cost estimation. We then study the operation
level parallelism, where each operation of an sql is processed by
one core. All operations are processed in stages, where in each
stage the costs of operations are re-estimated to reduce the accu-
mulated error. Such operation level parallelism still has drawbacks
of workload skew when large operations are involved and a large
number of cores are used. Finally, we propose a new algorithm that
partitions relations adaptively in order to minimize the extra cost of
partitioning and at the same time reduce workload skew. We con-
ducted extensive performance studies using two large real datasets,
DBLP and IMDB, and we report the efficiency of our approaches
in this paper.

1. INTRODUCTION
Keyword search on relational databases (RDBs) has been exten-

sively studied in recent years. A keyword query is a set of keywords
that allows users to find interconnected tuple structures containing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 1317,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

the given keywords in an RDB [1, 14, 12, 21, 22, 25, 3, 15, 17, 7, 9,
11, 6, 18, 26]. On rdbms, a keyword query is processed in two steps,
namely, candidate networks (CNs) generation and CNs evaluation.
In the CNs generation step, it generates all needed CNs. In the CNs
evaluation step, it evaluates all CNs using sqls. The main cost is
on the CNs evaluation. The challenging is due to a large number of
CNs to be evaluated. It is common that over ten thousand CNs are
generated for a keyword query. As an indicator, the number of CNs
generated for a keyword query can achieve 194,034, as shown in
our performance studies. Given such a large number of CNs, evalu-
ating each CN individually using an sql is impractical when the size
of the RDB is large. However, we observe that the CNs generated
for a keyword query are usually tightly coupled with each other. For
example, in the DBLP dataset (Fig. 1) with 4 relations, a keyword
query of 4 keywords with max 11 tuples in an interconnected tuple
structure can generate CNs with 539,052 join operations without
sharing, and 53,008 join operations after sharing. The probability
for any two CNs to share computational cost is about 59.64%. In
the literature, several algorithms are studied that focus themselves
on finding how the computational cost among different CNs can
be largely shared [14, 22, 27, 25]. However, the problem is still
not well solved, because for keyword queries with large number of
keywords or with high selective keywords, the processing time for
the state of art algorithm is still slow.

In this paper, we study parallel keyword queries computing on a
multicore architecture. The main issue discussed is on how to com-
pute an extremely large number of highly coupled sqls in parallel.
In the literature, parallel multiquery processing has been studied in
rdbms. [33] gave an survey of such problems. The existing tech-
niques can not be used to solve our problem for the following two
reasons. (1) They focus on allocating a large number of processors
to a relatively small number of sqls, thus each processor only com-
putes a part of an sql. (2) sqls do not share computational cost with
each other. In our problem, each core needs to process a large num-
ber of CNs and the portion of the shared computational cost among
CNs is very large. On a multicore architecture, since the communi-
cation cost among cores is small, the main issues making the prob-
lem challenging come from three folds. (a) There are always a bil-
lion ways to distribute the CNs to be processed in different cores.
We have to find a way such that CNs in the same core share most
computational cost and CNs in different cores share least computa-
tional cost, and at the same time, the workload of different cores are
well balanced. (b) We must find an algorithm that allows each CN
to be processed by multiple cores, with adaptive scheduling in or-
der to handle high workload skew when processing CNs. (c) Since
the scheduling is needed based on cost estimation, the algorithm
must be able to handle the errors caused by estimation adaptively,
and avoid errors to be accumulated.

58

Author

TID

Name

Write

TID

AID

PID

Paper

TID

Title

Cite

TID

PID1

PID2

Figure 1: DBLP Database Schema
The main contributions of this work are summarized below. First,

we analyze the parallelism based on three properties of the key-
word query computing, namely, a large number of sqls, large shar-
ing among sqls, and a large number of intermediate tuples gener-
ated. Second, we propose three approaches to compute keyword
queries in parallel on a multicore architecture. The first approach
distributes CNs into different cores that achieves three objectives,
namely, minimizing workload skew, minimizing inter-core sharing,
and maximizing intra-core sharing. We then show that the first ap-
proach is error sensitive, and propose the second approach that al-
lows each CN to be processed in different cores adaptively. We al-
low staging in this approach, where in each stage all cores only read
the shared memory allocated in previous stages and write results to
their allocated new memory individually. The memory in the previ-
ous stages will be freed as soon as it will not be used anymore. We
show that the second approach can largely reduce the accumulated
error caused by the first approach as well as reduce the memory
used by the large intermediate result. We also show that the second
approach can not handle well when the workloads of operations in
CNs are highly skewed. We propose the third approach to allow
each relation to be adaptively partitioned and processed in different
cores. Using the third approach, we can limit the number of par-
titions used, reduce the sensitivity of estimation error, and achieve
a good approximate bound regarding workload balancing. Finally,
we conducted extensive performance studies using two large real
datasets and confirmed the efficiency of our approaches. We can
improve the performance of the state of art sequential algorithm to
be 10 times faster on average using 16 cores.

The remainder of the paper is organized as follows. In Section 2,
we give the formal problem definition. In Section 3, we show the
state of art sequential algorithm to solve the problem. In Section
4, we analyze the properties of the problem to be parallelized. In
Section 5, Section 6, and Section 7, we discuss three approached
with different levels of parallelism. We discuss the related work
in Section 8. We conducted experimental studies and discuss our
findings in Section 9, and conclude our paper in Section 10.

2. PROBLEM DEFINITION
We consider a database schema in a relational database as a di-

rected graph GS (V, E), called a schema graph, where V represents
the set of relation schemas {R1,R2, · · · } and E represents foreign
key references between two relation schemas. Given two relation
schemas, Ri and R j, there exists an edge in the schema graph, from
Ri to R j, denoted Ri → R j, if the primary key defined on Ri is ref-
erenced by the foreign key defined on R j. Parallel edges may exist
in GS if there are several foreign keys defined on R j referencing to
the primary key defined on Ri. To distinguish one foreign key ref-

erence among many, we use Ri
X→ R j, where X is the foreign key

attribute name. In a relation schema Ri, we call an attribute, defined
on strings or full-text, a text attribute, to which keyword search is
allowed. A relation on relation schema Ri is an instance of the re-
lation schema (a set of tuples) conforming to the relation schema,
denoted r(Ri). Below, we use Ri to denote r(Ri) if the context is ob-
vious, and we use V(GS) and E(GS) to denote the set of nodes and
the set of edges of GS , respectively. A relational database (RDB) is
a collection of relations.

A simple DBLP database schema, GS , is shown in Fig. 1. It
consists of four relation schemas: Author, Write, Paper, and Cite.

P P P P

P P P P P
A{k2 }

W W

A{k1 } P{k2 }

W C

A{k1 } P{k2 }

W C

A{k1 } A{k2 }

C W

P{k1}

A{k2 }

C C

P{k1 } P{k2 }

C C

P{k1 } A{k2 }

C W

P{k1 } P{k2 }

C C

P{k1 } P{k2 }

C C

P{k1 }

PID1 PID2 PID1

PID1 PID1 PID1 PID2 PID2 PID2 PID1 PID2 PID2

c1 c2 c3 c4

c5 c6 c7 c8 c9

Figure 2: Nine CNs
Each relation has a primary key TID. Author has a text attribute
Name. Paper has a text attribute Title. Write has two foreign key
references: AID (refer to the primary key defined on Author) and
PID (refer to the primary key defined on Paper). Cite specifies
a citation relationship between two papers using two foreign key
references, namely, PID1 and PID2 (paper PID2 is cited by paper
PID1), and both refer to the primary key defined on Paper.

An m-keyword query is a set of keywords of size m, {k1, k2,
· · · , km}. An answer of an m-keyword query is a minimal total join-
ing network of tuples, denoted MTJNT [14, 22, 25, 27, 32]. First, a
joining network of tuples (JNT) is a connected tree of tuples where
every two adjacent tuples, ti ∈ r(R) and t j ∈ r(R′) can be joined
based on the foreign key reference defined on relational schemas
Ri and R j in GS (either Ri → R j or R j → Ri). Second, by total,
it means that an MTJNT must contain all the m keywords. Third,
by minimal, it means that an MTJNT is not total if any tuple is re-
moved. The minimal condition implies that every leaf tuple in the
tree must contain at least one keyword. The size of an MTJNT is
the number of tuples in the tree, and a user-given parameter Tmax
is used to specify the maximum number of tuples in MTJNTs, in
order to avoid an MTJNT to be too large in size, because it is not
meaningful if two tuples are connected by a long chain of tuples.

The problem of m-keyword query processing we study in this
paper is to find all MTJNTs of size ≤ Tmax, for a given m-keyword
query, K = {k1, k2, · · · , km}, over a schema graph GS on a mul-
ticore system. In the framework of rdbms, the two main steps of
processing an m-keyword query over a schema graph GS are candi-
date network generation and candidate network evaluation. In the
first candidate network generation step, it generates a set of candi-
date networks over GS , denoted C = {c1, c2, · · · }, to be evaluated in
the second step. In brief, a candidate network (CN), ci, corresponds
to a relational algebra that joins a sequence of relations with selec-
tions of tuples for keywords over the relations involved. The set
of CNs shall be sound/complete and duplicate-free. The former
ensures all MTJNTs must be found, and the latter is mainly for ef-
ficiency consideration. In the second candidate network evaluation
step, all ci ∈ C generated will be evaluated. Fig. 2 shows nine CNs
for the keyword query K = {k1, k2} in DBLP with Tmax = 5. For
simplicity, we use A, W, P and C to denote the relations Author,
Write, Paper and Cite respectively, and use R{K′} to denote the
subrelation {t|t ∈ R ∧ ∀k ∈ K′, t contains k ∧ ∀k ∈ (K − K′), t does
not contain k}. In Fig. 2, the first CN c1 denotes the join sequence
A{k1} Z W Z P Z W Z A{k2}.

3. STATE OF ART
Regarding CN generation, in the literature, there are many fast

algorithms proposed to reduce the computational cost by eliminat-
ing the number of intermediate partial CNs generated [14, 22, 27].
Since the set of CNs are only related to the schema graph GS and
the number of keywords m in the query, all CNs can be computed
offline. In this paper, we focus on improving the performance of
the second online CN evaluation step using multicore systems.

59

P

W

P

C

P

C W C
PID1

C
PID2PID1 PID2

500 510 510

5 5 5 5 5 5 5 5

Level 1

Level 2

Level 3

Level 4

A P P A P P

10 10 10 100 102 102

50 50 50

50 50 50

5

σk1 σk1 σk1 σk2 σk2 σk2

c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 3: A Partial Execution Graph for Query {k1, k2}

We first give a brief introduction to the state-of-art sequential al-
gorithm to evaluate all CNs, which is also the baseline algorithm to
be compared. The problem for CN evaluation is a multi-query opti-
mization problem in the framework of rdbms, where a large number
of CNs should be evaluated all together in order to minimize the
overall computational cost. As discussed in Discover [14], it is an
NP-complete problem to generate the optimal plan to evaluate all
CNs. It is different from the single query optimization problem be-
cause a subexpression in a CN can be largely shared by other CNs.
Optimal plans for each individual CN can not always yield global
optimal. Fig. 13 in Appendix A shows an example to explain this.

Generally speaking, before evaluating a subexpression E, two
values should be considered, namely, the estimated number of tu-
ples of E, denoted size, and the number of CNs that share E, de-
noted f req. A score function score(E) = f (size, f req) is defined
on E which increases with f req and decreases with size. When
evaluating all CNs, the subexpression that yields the largest score
should be evaluated iteratively until all CNs has been evaluated. As
discussed in [14], the score function score(E) = f reqa

logb(size) can yield
a near-optimal execution plan where a and b are constants.

Execution Graph: Similar to the single query optimization prob-
lem, the join plan of the multi-query optimization problem can be
represented by a graph called the execution graph, denoted GE(V, E).
In GE , each node v ∈ V(GE) is an operator (e.g. Z or σ), represent-
ing the root of the corresponding join subsequence in the execution
plan. There is an edge from node v1 to node v2 in GE (i.e., (v1,v2)
∈ E(GE)) if and only if the output of v2 is part of the input of v1 in
the execution plan. We call v1 a father node of v2 and v2 a child node
of v1. GE is a directed acyclic graph (DAG) where each node may
have multiple father nodes and multiple child nodes. For each node
v ∈ V(GE), we denote the set of father nodes of v by f nodes(v) and
denote the set of child nodes of v by cnodes(v). Note that the leaf
nodes of the execution plan are relations in the original database
other than operators, thus they are not part of V(GE). There are
several levels in GE , which are defined recursively as follows. (1)
All nodes that represent the selection of keywords are in level 1.
(2) For each level l (l > 1), a node v is in level l iff ∃ v′, such that
(v,v′) ∈ E(GE) and v′ is in level l − 1, and ∀v′′, such that (v,v′′)
∈ E(GE), the level of v′′ is no larger than l− 1. The maximum level
of GE is the depth of GE and is denoted as depth(GE). For each
node v ∈ V(GE), there is a estimated cost, denoted cost(v), and the
total cost of evaluating all CNs is denoted as cost(GE) which can
be calculated as

∑
v∈V(GE) cost(v). In the state of art algorithms [14,

22, 25, 27], each node in V(GE) is evaluated in a bottom-up fashion
sequentially, and there is no parallelism involved.

Example 3.1: Fig. 3 shows the execution graph GE for the nine
queries listed in Fig. 2. It has four levels. Each node in level
3 has 3 father nodes and each node in level 4 has 2 child nodes.
For the leftmost node in level 4, it represents the output of the CN
c1 = (A{k1} Z W Z P) Z (W Z A{k2}). It has two child nodes,

representing the output of the subsequences A{k1} Z W Z P and
W Z A{k2} respectively. We also mark the estimated cost beside
each node in Fig. 3. The total cost for evaluating the nine CNs is
cost(GE) =

∑
v∈V(GE) cost(v) = 2199. �

4. ANALYSIS FOR PARALLELISM
Parallel query processing in relational databases has been exten-

sively studied for many years. [20] introduces many algorithms
for parallel query processing in rdbms. In the literature, the meth-
ods used on query parallelism can be divided into three categories,
namely, intra-operator, inter-operator, and inter-query parallelism.
A survey for the three kinds of parallelism is given in [33]. Intra-
operator parallelism performs a certain relation operation in paral-
lel. It focuses on splitting an operation into subtasks in a manner
that the workload is balanced among a given number of proces-
sors. Inter-operator parallelism performs an sql query in parallel.
It can be achieved in two steps. The first step generates the execute
plan tree, such that operations that can be performed in parallel are
identified. The second step allocates a certain number of processors
to each operation for workload balancing. Inter-query parallelism
focuses on processing multiple queries simultaneously. The main
issue is also processor allocation such that costly queries are allo-
cated with more processors to reduce the workload skew.

In this paper, we focus on parallel keyword search, a certain type
of multiquery optimization problem. Our problem have the follow-
ing properties.

(1) Large number of queries: In the traditional inter-query paral-
lelism methods, it assumes that the number of sql queries executed
is not large such that each query can be allocated a certain num-
ber of processors. In our problem, the number of sql queries to be
evaluated simultaneously is extremely large. For example, in our
experiments, the number of sql queries/CNs generated by a certain
keyword query can achieve 194,034. In such cases, even a schedul-
ing method with time complexity O(m2) is unacceptable where m
is the number of queries generated.

(2) Large sharing between queries: The traditional inter-query
parallelism algorithms do not consider sharing among multiple sql
queries to be evaluated simultaneously, since queries are always
independent with each other. For our problem, instead, we speed
up the state of art sequential algorithm by taking sharing into con-
sideration. Such sharing part is extremely large because all sql
queries are tightly coupled with each other. Take the simple DBLP
database (Fig. 1) for example, for a keyword query with 4 keywords
and the size control parameter Tmax be 11, there will be 539, 052
join operations in total when sharing among CNs is not considered.
Such number can be reduced to 53, 008 when subexpression shar-
ing is taken into consideration. Given any two CNs randomly, with
probability 59.64%, they will share at least one common subex-
pression. The expected sharing between any two randomly selected
CNs is 1.235 join operations. Algorithms without considering shar-
ing among CNs need to process 10 times more operations.

(3) Large intermediate result: An important issue for our prob-
lem is that the intermediate result generated by the internal opera-
tors is extremely large, and the final result size is relatively much
smaller. For example, in the DBLP database with schema shown
in Fig. 1, for a keyword query {keyword, relation, parallelism} and
size control parameter Tmax be 9, using the state of art sequential
algorithm, it will generate 379, 017 intermediate tuples while the
final result only contains 272 tuples. For each such internal oper-
ator, the intermediate result is considered as input of many other
operators. In our experiments, an internal operator can be shared

60

by more than 1, 000 other operators as input. Such large cross-
sharing among operators make it difficult to make good use of the
intra-operator parallelism to divide relations and inter-operator par-
allelism for scheduling and pipelining using the left/right deep trees
or bushy trees.

We now show that the traditional parallel query processing tech-
niques on all three kinds of parallelism can not be easily extended to
solve our problem. (1) The inter-query parallelism is most relevant
to our problem to process multiple sqls. In the traditional inter-
query parallelism problem, it implicitly assumes that the number
of queries is no larger than the number of processors used, while
in our problem we assume that the number of CNs generated is
much larger than the number of cores used for processing. In such
a situation, the main concern is not just allocate cores to CNs, but
allocate CNs to cores such that each core can process multiple CNs
for workload balancing. Further more, the traditional inter-query
parallelism problem does not consider sharing among sqls, while
in our problem, subexpressions in CNs are largely shared by each
other. It makes the problem more difficult when allocating CNs
to differen cores. (2) The inter-operator parallelism processes a
certain query using multiple processors. We can also consider all
CNs as a large sql query, and process the large sql query using the
inter-operator parallelism techniques. It is difficult because in the
inter-operator parallelism the execute plan of an sql is a tree, and
all operations can be processed in parallel because sibling opera-
tions can be processed individually and parent-child operations can
be paralleled through pipelining. In our problem, the large sharing
among CNs makes the overall execute plan a graph instead of a tree,
and the number of operations to be performed is much larger than
the number of cores used. How to allocate operations to different
cores is not considered in inter-operator parallelism. (3) The intra-
operator parallelism allows each operator to be processed using dif-
ferent processors. For our problem, we can change the sequential
algorithm to perform each operator using the intra-operator paral-
lelism techniques. In this way, dividing and merging the interme-
diate relations becomes the bottleneck of the problem because the
number of intermediate tuples is very large in our problem.

In order to solve the above problems, instead of allocating cores
to CNs, we give several new approaches. Our first attempt is to
partition CNs to be processed in different cores based on the cost
estimation function of each operation in the CN. Our aim is to bal-
ance the workload of each core, and under that condition, maxi-
mize the intra-partition sharing of CNs in each core and minimize
the inter-partition sharing of CNs in different cores. We call this
approach the CN level parallelism and will discuss it in Section 5.
This approach is sensitive to the accuracy of the cost estimation
function used because of the error accumulation when estimating
a sequence of join operations all together. Our second attempt im-
proves the previous algorithm in two ways. First, we allow each CN
to be processed in multiple cores, such that each CN can share part
of the result generated by other CNs in order to reduce the over-
all computational cost. Second, we allow changing the scheduling
adaptively by re-estimating the computational cost of each opera-
tion to be processed. We only allow one-level estimation cost to
be used, which can largely reduce the accumulated error caused by
sharing. In the cost estimation function, all cost values involved in
calculation must be the real cost other than the estimated cost. In
our algorithm, we use several stages, and in each stage, all cores
only read the shared memory allocated in previous stages and write
results to their allocated new memory individually. The memory
in previous stages will be freed as soon as it will not be used any-
more, in order to reduce the memory used by the large intermediate
result. We call such an approach the operation level parallelism and

W

500

100

A

C
PID2

510

102

P

W

500

100

A

C
PID2

510

102

P

5 5 5

P

W

50

50

10

A

Core 3Core 2

5 5 5 5 5 5

C

W

50

50

10

P

P

C

50

50

10

P

C
PID1

510

102

P

PID1 PID2

Core 1

W

500

100

A

C
PID1

510

102

P

C
PID2

510

102

P

C
PID1

510

102

P

σk2 σk2σk2 σk2

c1 c2 c3

σk1

c4 c5 c6 c7 c8 c9

σk1 σk1σk2σk2 σk2 σk2 σk2

Figure 4: CN Level Parallelism (Naive)

will discuss it in Section 6. Finally, we found that in some situa-
tions, few operations can be very costly such that even the opera-
tion level parallelism can not find good balancing among cores. We
further propose the data level parallelism that allows an operation
to be processed by multiple cores through partitioning of relations.
We show that using our approach, the relations can be partitioned
adaptively to minimize the workload skew when processing, and
further more, the sensitivity of estimation error can be further re-
duced through data level partitioning. We will discuss data level
parallelism in Section 7.

5. CN LEVEL PARALLELISM
In this section, we assume that each CN must be processed in

one core, and thus divide CNs into different partitions such that
CNs in the same partition are processed by a single core. In such a
case, subexpressions in a certain core can be shared using existing
algorithms, but subexpressions in different cores can not be shared
by each other. As a result, some redundant work will be performed
in different cores. We first give a straightforward solution followed
by the discussion of our new algorithm.

A Straightforward Approach: We consider each CN individually
first, and then distribute them to partitions such that CNs in each
partition are processed by a single core. The only objective is to
balance the total cost for CNs processed in each core. This is a
simple approach, and we do not need to consider intra-partition
sharing and inter-partition sharing when scheduling. We only need
to follow the generally used largest first rule for workload balancing
that large tasks should be distributed first and should be assigned to
the partition with the least workload. The algorithm for the naive
approach is shown in Algorithm 1 in Appendix B.

Theorem 5.1: The time complexity of Algorithm 1 for scheduling
is O(m · (n + Tmax + log m)). �

The proof sketch is given in Appendix B.

Example 5.1: Fig. 4 shows the scheduling using 3 cores for the
same problem in Example 3.1. The cost for all partitions are the
same (well balanced), which is 1949, thus the final cost is 1949.
Comparing to the cost 2199 of the sequential algorithm (Example
3.1), it is 88.6% of the sequential cost. �

Sharing-Aware CN Partitioning: The performance of Algorithm
1 is not good because it does not consider the subexpression sharing
in each core and cross different cores. An ideal algorithm should
satisfy the following three objectives: (1) Minimizing workload
skew: This is to avoid a large partition dominant other partitions
and thus becomes the bottleneck. (2) Maximizing intra-partition
sharing: This is used to reduce the processing time of individual
cores. Because given the same number of CNs in a certain core, the
larger they share computational cost, the better the performance is.
(3) Minimizing inter-partition sharing: This is used to reduce the
number of redundant works processed by different cores.

In our algorithm, we make improvements on the following as-
pects in order to satisfy the three objectives. (1) The priorities of the

61

P

W

50

50

10

A

P

C
PID1

50

50

10

P

P

C
PID2

50

50

10

P

P

W

50

50

10

A

P

C
PID1

50

50

10

P

P

C
PID2

50

50

10

P

P

W

50

50

10

A

P

C
PID1

50

50

10

P

P

C
PID2

50

50

10

P

5 5 5

Core 1 Core 2 Core 3

C
PID1

510

102

P

C
PID2

510

102

P

5 5 5 5 5 5

W

500

100

A

σk1 σk1 σk1 σk1 σk1 σk1σk1 σk1 σk1

c1 c4 c7

σk2 σk2

c2 c5 c8 c3 c6 c9

σk2

Figure 5: CN Level Parallelism (New)

P

W

50

50

10

A

P

C
PID1

50

50

10

P

P

C
PID2

50

50

10

P

P

W

50

50

10

A

P

C
PID1

50

50

10

P

P

C
PID2

50

50

10

P

W

350

70

A

3 3 3

Total Cost = 759

W

500

100

A

5 5 5

Total Cost = 945

σk1 σk1 σk1σk1 σk1 σk1 σk2

c1 c4 c7

σk2

c1 c4 c7

Figure 6: An Error of 30 Induces an Accumulated Error of 186

CNs to be distributed are changed over time, according to the cost
of the not-shared/extra part of each CN. The CN with the largest
not-shared/extra cost is distributed first in order to minimize the
workload skew. (2) The total cost for a partition is recomputed as
the cost after sharing subexpressions for all CNs in that partition.
(3) The CN selected for distributing is allocated to the partition
with maximum sharing if it does not destroy the workload balanc-
ing. Our new algorithm is shown in Algorithm 2 in Appendix B.

Theorem 5.2: The time complexity of Algorithm 2 for scheduling
is O(m · log m · Tmax · n). �

The proof sketch is given in Appendix B.

Example 5.2: For the same problem in Example 3.1, suppose there
are 3 cores and suppose it is in the third iteration. The CN selected
to be distributed is c7, and the partition selected is partition 1. Af-
ter removing the execute plan tree of c7, the costs for some other
CNs should be updated. Fig. 14 in Appendix B illustrates the pro-
cess of updating the costs. Fig. 5.2 shows the scheduling of the
example using Algorithm 2. The cost for the 3 cores are 945, 957
and 957 respectively and the final cost is 957. Comparing to the
cost 2199 of the sequential algorithm (Example 3.1), it is 43.5% of
the sequential cost, which is much better than the result shown in
Example 5.1. �

6. OPERATION LEVEL PARALLELISM
In the CN level parallelism, there are two main drawbacks: (1)

redundant works are done by multiple cores because each CN must
be processed in one core and different CNs in different partitions
cannot share subexpressions. (2) The static scheduling according
to cost estimation of CNs is very sensitive to the error caused by
the inaccuracy of the cost estimation function. This is because the
result of the inaccurate estimation will be used as part of the es-
timation function in many operations in higher levels. The lower
the level of the estimated operation is, the larger accumulated error
it causes. As an example, Fig. 6 (left) shows the execute plan of
Example 5.2 on the first core using Algorithm 2. Suppose now the
cost 100 in the gray circle is reduced to 70 due to estimate inaccu-
racy. The new cost for each operation is shown in the right hand
side. The total cost for all operations is reduced from 945 to 759.
As a result, an error of 30 induces 6 times more accumulated error,

P

W

50

50

10

A

P

C
PID1

50

50

10

P

P

C
PID2

50

50

10

P

W

500

100

A

C
PID2

510

102

P

5 5 5 5 5 5 5 5 5

Phase 1

Phase 2

Phase 3

Phase 4

Core 1 Core 2 Core 3

C
PID1

510

102

P

σk1 σk1σk1σk2 σk2

c1 c4 c7 c2 c5 c8 c3 c6 c9

σk2

Figure 7: Operation Level Parallelism
which makes the total workload unbalanced.

In this section, we study the operation level parallelism, where
each CN is allowed to be processed in different cores, but each
operation (e.g. join) in the execute graph of CNs must be processed
in a certain core. Since a subexpression E evaluated in a core can
be reused when evaluating other CNs that share E in other cores.
The other cores have to wait until the evaluation of subexpression
E in its core has been finished. We divide all nodes in the execute
graph GE into several phases/stages, and a node v ∈ V(GE) will be
processed in phase l (1 ≤ l ≤ depth(GE)) iff v is in level l of GE . In
this way, nodes in the same phase can be processed independently,
and nodes in higher phases need the result generated by the nodes
in lower phases. All nodes in the same phase can be scheduled
adaptively according to the largest first rule. In each phase, all
cores only read the shared memory allocated in previous phases
and then write results to their allocated new memory individually.
The memory in previous phases will be freed as soon as it will
not be used anymore, in order to reduce the memory used by the
large number of intermediate tuples. In order to eliminate the error
accumulation effect, before each phase, we re-estimate the cost of
each operation in the phase using more accurate statistics of results
obtained in the previous phases. There are two kinds of operations.
The first one is the form v = R{K}, which is a selection of keywords
in K from a certain relation R in the RDB. In such a situation, the
cost of v can be calculated as follows.

cost(v) = |R| × Πk∈K sel(k) (1)

where sel(k) is the selectivity of the keyword k in the relation R
which can be calculated as sel(k) = |R{k}||R| , and can be pre-computed
and saved beforehand. Here |R{k}| denotes the number of tuples in
R that contain the keyword k. The second kind of operation is the
join operation, in the form v = R.ai Z R′.a j. Suppose the primary
key ai is referenced by the foreign key a j in the original database.
The cost of v can be calculated as follows.

cost(v) = |R| × |R′| × sel(ai → a j) (2)

where sel(ai → a j) =
|rel(ai)Zrel(a j)|
|rel(ai)|×|rel(a j)| , and can also be pre-computed

and saved beforehand for each edge (rel(ai), rel(a j)) ∈ E(GS). Here
rel(ai) and rel(a j) are the relations in the original database where
ai and a j come from.

The detailed algorithm is shown in Algorithm 3 in Appendix C.

Theorem 6.1: The time complexity of Algorithm 3 for scheduling
is O(Tmax · m · (log Tmax + log m)). �

The proof sketch is given in Appendix C.
Below, we use Example 6.1 to show that operation level paral-

lelism (Algorithm 3) can reduce the computational cost of all cores,
and use Example 6.2 to show that operation level parallelism can
reduce the error caused by accumulation.

Example 6.1: For the same problem in Example 3.1, suppose there

62

P

W

50

50

10

A

5050

W

350

70

A

3 5 5 3 5 5 3 5 5

Phase 1

Phase 2

Phase 3

Phase 4

Core 1 Core 2 Core 3

C
PID1

510

102

P

P

C
PID2

50

10

P

P

C
PID1

50

10

P

C
PID2

510

102

P

σk1 σk2

c1 c2 c3 c4 c5 c6 c7 c8 c9

σk2
σk1 σk1 σk2

Figure 8: Adaptive Scheduling

are 3 cores, the scheduling using Algorithm 3 is shown in Fig. 7.
The costs for the 3 cores are 725, 737 and 737 respectively and final
cost is 737. Comparing to 2199 in Example 3.1, it is 33.5% of the
sequential cost, which is almost optimal, since the lower bound of
the cost using 3 cores is 33.3%. �

Example 6.2: Suppose that the cost 100 of the operation in level
1 is reduced to 70 because of inaccuracy of estimation as denoted
in Fig. 6. Using Algorithm 3, the adaptively changed scheduling is
shown in Fig. 8. Nodes in phase 2-4 change positions according to
the new estimated cost for operations. Using this way, the costs for
the 3 cores are 643, 685 and 685 respectively. The workloads are
well balanced, and the final cost is 685. Comparing to the result in
Fig. 6 and Fig. 7, instead of reducing the cost of only one core, the
costs of all cores are reduced using the adaptive scheduling. �

7. DATA LEVEL PARALLELISM
The operation level parallelism performs well when the costs for

all join operations in the same phase vary not too much. In prac-
tice, it is possible that a certain join operation is much more costly
than others, and becomes the dominant cost when processing. In
such a case, operation level parallelism does not scale well when
the number of cores increases. In this section, we study a smaller
granularity of parallelism, namely, the data level parallelism, where
each operation in GE can be performed on multiple cores.

Adaptive partitioning: We propose a new strategy to handle work-
load skew, that uses the operation level parallelism if there is no
workload skew, and partition data adaptively before each time work-
load skew happens. In such strategy, the following three subprob-
lems have to be solved. (1) Choose the appropriate phase and ap-
propriate nodes for partitioning. (2) Choose the appropriate phase
and appropriate nodes for merging. (3) Choose an appropriate par-
titioning algorithm. For the first subproblem, in each phase, we
choose the most costly node to be partitioned, because such node
is the root cause of workload skew. For the second subproblem,
we choose to merge the result in the final phase. This is because
merging results will induce extra cost especially when the number
of tuples in each result is large. For the property of our problem,
the number of intermediate tuples is much larger than the final out-
put, so merging in the final phase will induce least merging cost.
For the third problem, we use the adaptive partitioning strategy that
iteratively partition the most cost node in each phase until the work-
load skew is small. It is worth noting that once a node in a certain
phase is partitioned, the execute graph should also be changed, by
adding a copy of the partitioned node, as well as copies of all nodes
in higher phases that share it. Our algorithm is shown in Algorithm
4 in Appendix D.

Remark 7.1: Consider the estimation error as a random variable,
we model the sensitivity of estimation error as the standard devia-
tion of the estimation error. Adaptive data partitioning decreases
the sensitivity of estimation error. �

50 50 50

50 50 50

P

W

P

C

P

C C C
PID2

W
PID1 PID2

50 50 255

5 5 2 5 5 2

Level 1

Level 2

Level 3

Level 4

10 10 10 10 10

255

2 2 25 5 2

51 51

A P P P P A

PID1

σk1 σk1 σk1 σk2 σk2

c2 c3 c′1 c5 c6 c′4 c′10 c′11 c′12c8 c9 c′7

σk2 σk2

Figure 9: Data Level Parallelism
Remark 7.1 shows that adaptive data partitioning not only de-

creases the workload skew, but also decreases the sensitivity of es-
timation error no matter whether workload skew happens or not.
We show this using a simple example. We model the estimated
cost of every operation as a random variable satisfying normal dis-
tribution. Now consider 4 variables X1, X2, X3 and X4, all satisfying
N(µ, σ2). Here µ can be considered as the estimated cost of every
operation andσ2 can be considered as the sensitivity of the error for
estimation. X1 and X2 are partitioned from the same operation, and
X1, X2 are independent of X3 and X4, and X3 and X4 are indepen-
dent with each other. Without partitioning, X1 and X2 are combined
as a single operation, and X3 and X4 are put together. The work-
load skew can be modeled as Y1 = (X1 + X2) − (X3 + X4). After
partitioning, X1 and X2 are put into different groups, and X3 and X4

are also put into different groups. The new workload skew can be
modeled as Y2 = (X1 + X3) − (X2 + X4). Since X1 and X2 are par-
titioned from the same operation, they are highly correlated. We
have Y1 ∼ N(0, 6σ2) and Y2 ∼ N(0, 2σ2). Obviously, although the
estimated workload skew are all 0, the sensitivity using partition-
ing is much smaller. For other kinds of distributions, we can also
derive similar results.

Lemma 7.1: In each phase of Algorithm 4, at most n − 1 partition
operations will be performed. �

Theorem 7.1: Suppose the optimal solution is the case where the
estimated workloads are evenly divided among all cores. Algorithm
4 is a 2-approximate algorithm. �

Theorem 7.2: The time complexity of Algorithm 4 for scheduling
is O(Tmax2 · m · n · (log n + log Tmax + log m)). �

The proof sketch of Lemma 7.1, Theorem 7.1 and Theorem 7.2
are all given in Appendix D.

Example 7.1: For the same problem in Example 3.1, suppose there
are 3 cores, and the costs for the last two nodes (with cost 102)
in level 1 are changed to 10. Suppose we are currently in phase
2, where workload skew happens because the node with cost 502
become the bottleneck. We need to divide one of its child nodes.
Fig. 9 illustrates the execute graph after partitioning the node with
cost 102 in level 1 into two nodes with cost 51 each. The 3 copied
nodes, c′10, c′11 and c′12 are added in level 4, regarding CNs c1, c4

and c7 respectively, because c1, c4 and c7 all share the partitioned
node. After the partitioning, the two operations with cost 255 can
be distributed into the first two cores and all other 5 operations with
cost 50 can be distributed into the third core in level 2. The final
cost is max{250, 255, 255} = 255, which is well balanced. �

8. RELATED WORK
Query Processing in Relational Databases: Query processing
and query optimization in relational databases have been exten-
sively studied. Some surveys can be found in [23, 10, 5, 31]. Multi-
queries optimization were also studied in [28, 34, 16] by sharing
common subexpressions among queries or inside a query. Query

63

processing in parallel relational database systems is most related to
our work and has been discussed in the paper. Lu et al. [20] gave
a general introduction to such kinds of problems.

Parallel Programming: Multiprocessor scheduling has been stud-
ied extensively in parallel programming. In multiprocessor schedul-
ing, the precedence constraints of tasks are also modeled as a DAG
[4, 30], and many other such problems are also surveyed in [4]. The
multiprocessor scheduling problem is different from the problem
studied in this paper mainly because of the following three reasons.
(1) In multiprocessor scheduling, the sensitivity of estimation er-
ror and accumulated error is not considered. (2) In multiprocessor
scheduling, each node in a DAG can not be further divided. In our
problem, we allow data level parallelism where each node in the
execute graph can be further divided adaptively to reduce the work-
load skew. (3) In multiprocessor scheduling, the time complexity of
the algorithms in the literature vary from O(N2) to O(N4), where
N is the number of nodes in the DAG. In our problem, the num-
ber of nodes in the DAG is extremely large, and even O(N2) is
not practical for our settings. For multicore programming, algo-
rithms are studied for different applications. [24] and [29] studied
skyline computation and tree-structured data mining in a multicore
system respectively. The problems studied did not have the three
properties of the problem discussed in this paper. Many softwares
like Map/Reduce, Hadoop, and Dryad are also developed for par-
allel computing. They did not consider the schema based adaptive
scheduling as well as the three properties for the problem.

Keyword Search in Relational Databases: The related work on
keyword search on relational databases include [1, 14, 12, 21, 22,
2, 13, 19, 3, 15, 17, 7, 9, 11, 6, 18, 26, 25]. Discussions can be
found in Appendix E.
9. PERFORMANCE STUDIES

We conducted extensive performance studies to test the algo-
rithms proposed in this paper. We implemented four algorithms,
Algorithm 1, Algorithm 2, Algorithm 3, and Algorithm 4, denoted
CLP-Naive, CLP, OLP and DLP respectively. For Algorithm 1,
since the inter-core sharing among cores is very large, the per-
formance is almost the same to the sequential algorithm when the
number of cores increases in all of our testings. We will not include
the CLP-Naive algorithm in our experiments. We also add another
curve, denoted LINEAR, in our testings, which is processing time
using multiple cores with linear speedup. For any test using n cores,
the LINEAR processing time is calculated as tlinear =

tsequential
n where

tsequential is the processing time for the state of art sequential algo-
rithm as introduced in Section 3. All algorithms were implemented
in Visual C++ 2008 and all tests were conducted on a PC with
4 quad core 2.26GHz Inter(R) Xeon(R) processor and 4GB main
memory running Windows Server 2003.

We use two large real datasets, IMDB (up to Feb. 2010)1 and
DBLP (up to Feb. 2010)2 for testing. We report the testing results
using IMDB, and the details for DBLP can be found in appendix F.

For the IMDB dataset, the schema includes the following eight
relations: Actor(Actorid, Actorname), Actorplay(Actorplayid, Ac-
torid, Movieid, Charactor), Director(Directorid, Directorname), Di-
rect (Directid, Directorid, Movieid), Movie(Movieid, Name), Gen-
res (Genreid, Movieid, Genre), Actress(Actressid, Acttressname),
Actressplay(Actressplayid, Actressid, Movieid, Charactor). The
primary key for each relation is underlined. The size of the raw data
for the IMDB dataset is 956MB. The number of tuples in the eight
relations are 1,153,978, 8,192,168, 188,909, 1,065,455, 1,554,266,
986,844, 675,183 and 4,768,278 respectively, and the total number

1http://www.imdb.com/interfaces
2http://www.informatik.uni-trier.de/˜ley/db/

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

Pro
ces

sin
g T

im
e (

ms
) CLP

OLP
DLP

LINEAR

(a) Tmax = 4, #CN = 1, 884
 0

 500

 1000

 1500

 2000

 2500

1 2 4 8 16

Pro
ces

sin
g T

im
e (

ms
) CLP

OLP
DLP

LINEAR

(b) Tmax = 5, #CN = 5, 093

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16

Pro
ces

sin
g T

im
e (

ms
) CLP

OLP
DLP

LINEAR

(c) Tmax = 6, #CN = 11, 809
 0

 5000

 10000

 15000

 20000

 25000

1 2 4 8 16

Pro
ces

sin
g T

im
e (

ms
) CLP

OLP
DLP

LINEAR

(d) Tmax = 7, #CN = 26, 642

Figure 10: Vary Tmax (IMDB)

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 8 16

Pro
ces

sin
g T

im
e (

ms
) CLP

OLP
DLP

LINEAR

(a) Knum = 2, #CN = 94
 0

 500

 1000

 1500

 2000

1 2 4 8 16

Pro
ces

sin
g T

im
e (

ms
) CLP

OLP
DLP

LINEAR

(b) Knum = 3, #CN = 735

 0

 500

 1000

 1500

 2000

 2500

1 2 4 8 16

Pro
ces

sin
g T

im
e (

ms
) CLP

OLP
DLP

LINEAR

(c) Knum = 5, #CN = 32, 432
 0

 500

 1000

 1500

 2000

 2500

1 2 4 8 16

Pro
ces

sin
g T

im
e (

ms
) CLP

OLP
DLP

LINEAR

(d) Knum = 6, #CN = 194, 034

Figure 11: Vary Knum (IMDB)

of tuples in IMDB is 18,585,081.
For all testings, we report the processing time for each test case

using 1, 2, 4, 8 and 16 cores. The processing time includes the time
for scheduling and parallel processing. For each dataset, we select
representative queries with different keyword selectivity as follows.
After removing all the stop words, we set the maximum keyword
selectivity among all keywords as τ, and divide the keyword selec-
tivity range between 0 and τ into 5 partitions, namely, τ/5, 2τ/5,
3τ/5, 4τ/5 and τ. For simplicity, we say a keyword has selectiv-
ity p (p ∈ {1, 2, 3, 4, 5}), if and only if its selectivity is between
(p − 1) · τ/5 and p · τ/5.

We vary 3 parameters, namely, the average keyword selectivity
Ksel, the keyword number Knum, and the size control parameter
Tmax. Every parameter has a default value. For IMDB, the key-
word selectivity Ksel ranges from 1 to 5 with a default value 3. The
keywords selected with different keyword selectivity are shown in
Table 1 in Appendix F. The keyword number Knum ranges from
2 to 6 with a default value 4, and the size control parameter Tmax
ranges from 4 to 7 with a default value 5. When varying keyword
number Knum, we select the first Knum keywords from the key-
words with the default selectivity.

Exp-1 (Vary Tmax): Fig. 10 shows the performance for all algo-
rithms when Tmax changes from 4 to 7 in the IMDB dataset. We
also show the number of CNs, denoted #CN. When Tmax is small,
the number of CNs is small. As shown in Fig. 10(a), when the num-
ber of cores is 2, the speedups of all three algorithms are linear, but
when the number of cores increases, the processing time of CLP
and OLP keeps constant because when the number of operations is
small, a few costly operations will become dominant, making the
workload skewed among cores. DLP can solve the problem through
dividing operations when the number of cores increases to 16. In
Fig. 10(b) and Fig. 10(c), when Tmax increases, the number of
CNs also increases sharply. The curves of all three algorithms be-
come more smoother than Fig. 10(a) because more operations are
involved. The DLP algorithm can get a near linear performance.
The performance of CLP is worst because much redundant work
will be done on each core when Tmax is large. The OLP algorithm
performs in between. In Fig. 10(d), when Tmax is increased to 7,

64

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

Pro
ces

sin
g T

im
e (

ms
) CLP

OLP
DLP

LINEAR

(a) Ksel = 1, #CN = 5, 093
 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8 16

Pro
ces

sin
g T

im
e (

ms
) CLP

OLP
DLP

LINEAR

(b) Ksel = 2, #CN = 5, 093

 0

 500

 1000

 1500

 2000

1 2 4 8 16

Pro
ces

sin
g T

im
e (

ms
) CLP

OLP
DLP

LINEAR

(c) Ksel = 4, #CN = 5, 093
 0

 500

 1000

 1500

 2000

 2500

1 2 4 8 16

Pro
ces

sin
g T

im
e (

ms
) CLP

OLP
DLP

LINEAR

(d) Ksel = 5, #CN = 5, 093
Figure 12: Vary Ksel (IMDB)

the number of CNs is increased to 26, 642. Such large number of
CNs makes the accumulated error very large for the CLP algorithm.
Thus the performance of CLP is very bad. The DLP and OLP al-
gorithms all perform good because the accumulated error is small
and the workloads are well balanced among all cores.

Exp-2 (Vary Knum): The processing time for queries with differ-
ent keyword numbers are shown in Fig. 11. We show the curves
for Knum =2, Knum =3, Knum =5 and Knum =6 in Fig. 16(a),
Fig. 16(b), Fig. 16(c), and Fig. 16(d) respectively. For Knum =4,
the curve is exactly the same as Fig. 10(b) because Knum =4 is
the default parameter for Knum, and Fig. 10(b) shows the curves
when all parameters are set to their default values. Fig. 11(a) and
Fig. 11(b) show that, when the number of keywords is small, the
performances of CLP and OLP are bad because all operations are
related to the few number of keywords, and thus the workloads of
operations is hardly to be divided evenly. DLP improves the per-
formance through data level dividing. In Fig. 11(c) and Fig. 11(d),
when the number of keywords is large, operations are related to dif-
ferent keywords and their large number of combinations. It is easy
for the tasks to be divided into different cores even in the CN level
parallelism. As a result, the performance of all three algorithms are
similar, and all are close to the linear performance.

Exp-3 (Vary Ksel): Keyword selectivity will not influence the
number of CNs generated, but it influences the performances of
all three algorithms because large keyword selectivity will gener-
ate more intermediate tuples. Fig. 12 shows the performance of all
algorithms when varying Ksel from 1 to 5 in the IMDB dataset.
The curves for Ksel =4 are also shown in Fig. 10(b) because 4 is
the default value of Ksel. In all testings, the shapes for CLP and
OLP does not change too much because when Ksel increases, the
costs for all operations increase, and the total number of operations
does not change, thus the processing times for all cores increase.
The shape of the DLP algorithm is sensitive to Ksel, because when
the costs of all operations increase, only part of the operation is al-
lowed to be partitioned in DLP, thus the adaptive scheduling will
change much. As a result, in Fig. 12(a) and Fig. 12(d), the perfor-
mance of DLP is nearly linear, and in Fig. 12(b) and Fig. 12(c), the
performance of DLP is close to the performance of CLP and OLP,
but is still the best of all the three algorithms.

10. CONCLUSION
In this paper, we study the parallel keyword search problem on

RDBs, which is a parallel multiquery optimization problem. We
analyze three properties of the problem, regarding large number of
sqls, large sharing among sqls and large number of intermediate
tuples respectively. We propose three algorithms to solve the prob-
lem in different levels of parallelism. We analyze all algorithms
and provide the time complexities. We conducted extensive ex-
perimental studies using two large real datasets, and confirmed the
efficiency of our approaches.
Acknowledgment: The work was supported by grants of the Re-

search Grants Council of the Hong Kong SAR, China No. 419008
and 419109.
11. REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for
keyword-based search over relational databases. In Proc. of ICDE’02, 2002.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou. ObjectRank: Authority-based
keyword search in databases. In Proc. of VLDB’04, 2004.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using BANKS. In Proc. of ICDE’02, 2002.

[4] D. Bozdag, F. Özgüner, and Ü. V. Çatalyürek. Compaction of schedules and a
two-stage approach for duplication-based dag scheduling. IEEE Trans. Parallel
Distrib. Syst., 20(6):857–871, 2009.

[5] S. Chaudhuri. An overview of query optimization in relational systems. In Proc.
of PODS’98, 1998.

[6] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword search on external
memory data graphs. PVLDB, 1(1), 2008.

[7] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding top-k
min-cost connected trees in databases. In Proc. of ICDE’07, 2007.

[8] S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. In Networks,
1972.

[9] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword proximity search in
complex data graphs. In Proc. of SIGMOD’08, 2008.

[10] G. Graefe. Query evaluation techniques for large databases. ACM Comput.
Surv., 25(2), 1993.

[11] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword searches on
graphs. In Proc. of SIGMOD’07, 2007.

[12] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-Style keyword
search over relational databases. In Proc. of VLDB’03, 2003.

[13] V. Hristidis, H. Hwang, and Y. Papakonstantinou. Authority-based keyword
search in databases. ACM Trans. Database Syst., 33(1), 2008.

[14] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search in
relational databases. In Proc. of VLDB’02, 2002.

[15] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar. Bidirectional expansion for keyword search on graph
databases. In Proc. of VLDB’05, 2005.

[16] A. Kementsietsidis, F. Neven, D. V. de Craen, and S. Vansummeren. Scalable
multi-query optimization for exploratory queries over federated scientific
databases. PVLDB, 1(1), 2008.

[17] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in
keyword proximity search. In Proc. of PODS’06, 2006.

[18] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: an effective 3-in-1
keyword search method for unstructured, semi-structured and structured data.
In Proc. of SIGMOD’08, 2008.

[19] F. Liu, C. T. Yu, W. Meng, and A. Chowdhury. Effective keyword search in
relational databases. In Proc. of SIGMOD’06, 2006.

[20] H. Lu. Query Processing in Parallel Relational Database Systems. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1994.

[21] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query in
relational databases. In Proc. of SIGMOD’07, 2007.

[22] A. Markowetz, Y. Yang, and D. Papadias. Keyword search on relational data
streams. In Proc. of SIGMOD’07, 2007.

[23] P. Mishra and M. H. Eich. Join processing in relational databases. ACM
Comput. Surv., 24(1), 1992.

[24] S. Park, T. Kim, J. Park, J. Kim, and H. Im. Parallel skyline computation on
multicore architectures. In Proc. of ICDE’09, pages 760–771, 2009.

[25] L. Qin, J. X. Yu, and L. Chang. Keyword search in databases: The power of
rdbms. In Proc. of SIGMOD’09, 2009.

[26] L. Qin, J. X. Yu, L. Chang, and Y. Tao. Querying communities in relational
databases. In Proc. of ICDE’09, 2009.

[27] L. Qin, J. X. Yu, L. Chang, and Y. Tao. Scalable keyword search on large data
streams. In Proc. of ICDE’09, 2009.

[28] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible
algorithms for multi query optimization. In Proc. of SIGMOD’00, 2000.

[29] S. Tatikonda and S. Parthasarathy. Mining tree-structured data on multicore
systems. PVLDB, 2(1):694–705, 2009.

[30] C.-H. Yang, P. Lee, and Y.-C. Chung. Improving static task scheduling in
heterogeneous and homogeneous computing systems. In Proc. of ICPP’07,
2007.

[31] C. Yu and W. Meng. Principles of Database Query Processing for Advanced
Applications. Morgan Kaufmann, 1998.

[32] J. X. Yu, L. Qin, and L. Chang. Keyword Search in Databases. Morgan and
Claypool Publishers, 2010.

[33] P. S. Yu, M. syan Chen, J. L. Wolf, and J. Turek. Parallel query processing.
ACM Computing Surveys, 16:399–433, 1993.

[34] J. Zhou, P.-A. Larson, J. C. Freytag, and W. Lehner. Efficient exploitation of
similar subexpressions for query processing. In Proc. of SIGMOD’07, 2007.

65

APPENDIX
A. STATE OF ART

The left part of Fig. 13 shows the optimal plans for two CNs c1

and c2 in Fig. 2. The global optimal plan for evaluating the two
CNs c1 ∪ c2 together is also shown on the right part of Fig. 13. The
subexpression A{k1} Z W Z P is part of the global optimal plan
but not part of the optimal plan for c2. Suppose the estimated costs
for the optimal plans of c1, c2 and c1 ∪ c2 are cost(c1), cost(c2)
and cost(c1 ∪ c2) respectively. We have cost(c1 ∪ c2) ≤ cost(c1) +
cost(c2).

B. CN LEVEL PARALLELISM
In Algorithm 1, we first sort all CNs in descending order of their

costs so that CNs with large cost could be distributed first. In line 2-
3, two structures list and totalcost are initialized. list keeps the set
of CNs in each partition and totalcost maintains the total cost of
each partition. In line 4-7, each CN is distributed to a certain par-
tition, and each time, the selected CN is distributed to the partition
with the least total cost/workload(line 5). Line 6-7 update list and
totalcost after distributing the CN ci. Finally, after the schedul-
ing, CNs in each partition are processed on a certain core using the
existing sequential algorithm(line 8-10).

In Algorithm 2, we use a max heap H to maintain the priorities
of CNs not been distributed (line 2), and use mincost to keep the
not-shared/extra cost for each CN which is initialized as the cost
of the CN (line 3-6). We use Gi

E to denote the execute graph to
be processed on core i, and use Gi

E′ to denote the execute graph
not been processed on core i which is used for calculating mincost
and is initialized on line 7-9. In line 11, we select a CN cq with
maximum extra cost from the heap H (line 11) and distribute it to
a partition p with minimum cost after adding cq. Line 13-14 update
Gp

E and Gp
E′ by removing the execute plan graph of cq from Gp

E′ to
Gp

E . Line 15-17 update mincost and H according to the new cost
left on Gp

E′ (the extra cost).

Proof sketch of Theorem 5.1: In Algorithm 1, sorting all CNs
needs O(m · log m) time. The loop in line 5-7 needs m iterations,
and for each iteration, line 5 needs O(n) time to find the minimum
totalcost and line 6 needs O(Tmax) time to add a CN. The total
time complexity is O(m · log m) + O(m · (n + Tmax)) = O(m · (n +
Tmax + log m)). �

Proof sketch of Theorem 5.2: In Algorithm 2, we only need to an-
alyze the dominant part of the algorithm, which is line 12, line 15-
17 inside the for loop of line 10. We have totally m loops, and in
each loop, line 12 needs O(n · Tmax) time to find the best parti-
tion because we need to check all n partitions, and each time we
need O(Tmax) time to calculate the cost. In line 15-17, we should
find all CNs that the extra cost in partition p is non-zero and at the
same time overlaps the execute plan tree of cq. The number of such
CNs can be at most |E(GE)| × n in all loops of i. This is because a
CN overlaps cq if and only if its execute plan tree contains an edge
in GE such that one end of the edge is a node in the execute plan
tree of cq. The number of such edges is at most |E(GE)| × n since
there are initially n execute graphs Gi

E′ (1 ≤ i ≤ n) and once the
CN cq is distributed, all such edges are removed from Gp

E′ . Line 17
needs O(log m) to update the heap. The overall time complexity is
O(m · n · Tmax+ |E(GE)| · n · log m). Since |E(GE)| ≤ m · Tmax, the
overall time complexity becomes O(m · log m · Tmax · n). �

The change of Gp
E′ : Fig. 14 illustrates the process of updating G1

E′

and mincost after distributing c7. The dashed lines are the edges
to be removed and the CNs marked in circles are the CNs whose
mincost should be updated. For example, for c1, mincost1 is re-

P

C
PID1

A

W

P

A

W

P

A

W

P

A

W

A

W

P

C
PID1

σk2σk2 σk1

c2c1

σk1

c2

σk2σk1

c1

σk2

Figure 13: Optimal plans for c1, c2 and c1 ∪ c2

P

W

P

C

P

C W C
PID1

C
PID2PID1 PID2

A P P A P P

σk1 σk1 σk1 σk2 σk2 σk2

c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 14: The change of Gp
E′

duced from 715 to 115 because a subexpression of cost 600 is re-
moved.

C. OPERATION LEVEL PARALLELISM
In Algorithm 3, the loop in line 4 processes from phase 1 to

phase depth(GE). In each phase l, line 5-6 re-estimate the costs
of all nodes in level l because all results of their child nodes has
been calculated in previous phases, and thus we can use the new
results in child nodes to get more accurate cost estimation as dis-
cussed in the paper. In Line 7, the procedure adaptive-distribute
is for workload balancing, the nodes are distributed adaptively to
cores that finish their current task, and each time, the node with the
largest cost is distributed and evaluated, because all nodes in level l
can be independently evaluated. The procedure one-level-estimate
and adaptive-distribute are shown in line 8-14 and line 15-22 re-
spectively and are self explained.

Proof sketch of Theorem 6.1: In Algorithm 3, there are at most
Tmax phases and at most Tmax × m nodes to be processed. In
line 18, and line 21, the enheap and deheap operations in all phases
need at most O(Tmax·m·log (Tmax · m)) = O(Tmax·m·(log Tmax+
log m)) time. As a result, the time complexity of Algorithm 3 for
scheduling is O(Tmax · m · (log Tmax + log m)). �

D. DATA LEVEL PARALLELISM
In Algorithm 4, we only show the extended part of Algorithm 3,

which is used for adaptive data partitioning. As shown in line 3-
10 of Algorithm 4, before processing each level l, we first check
whether the most cost operation in the level has the potential to
become the dominant cost, this is done by checking whether the
most cost operation is larger than twice the n-th largest cost among
all operations (line 4-5). If so, we should partition the operation
into two operations. Since the most cost operation has not been
processed, we should choose one of its child nodes to partition.
The one with the minimum cost is chosen for partitioning (line 6).
Line 7 invokes another procedure partition to add copies of the

66

Algorithm 1 CLP-Naive (C, n)
Input: t̄he set of CNs C = {c1, c2, ..., cm}, the number of cores n.
1: sort all CNs s.t. cost(ci) ≥ cost(c j) if i ≤ j;
2: for i = 1 to n do
3: listi ← ∅; totalcosti ← 0;
4: for i = 1 to m do
5: p← argmin1≤ j≤n(totalcost j);
6: listp ← listp ∪ {ci};
7: totalcostp ← totalcostp + cost(ci);
8: for i = 1 to n in parallel do
9: create execute graph Gi

E for all CNs in listi;
10: process Gi

E on core i;

Algorithm 2 CLP (C, n)
Input: the set of CNs C = {c1, c2, ..., cm}, the number of cores n.
1: create the execute graph GE for all CNs in C;
2: max heapH ← ∅;
3: for i = 1 to m do
4: Ti ← the execute plan tree in GE for ci;
5: mincosti ← cost(Ti);
6: H .enheap(i,mincosti);
7: for i = 1 to n do
8: Gi

E ← ∅;
9: Gi

E′ ← a copy of GE ;
10: for i = 1 to m do
11: (q,mincostq)← H .deheap();
12: p← argmin1≤ j≤n(cost(G j

E ∪ Tq));
13: Gp

E ← Gp
E ∪ Tq;

14: Gp
E′ ← Gp

E′ − Tq;
15: for all T j s.t. T j ∩ Tq , ∅ ∧ mincost j > 0 do
16: mincost j = min{mincost j, cost(T j ∩Gp

E′)};
17: H .update(j,mincost j);
18: for i = 1 to n in parallel do
19: process Gi

E on core i;

nodes to be partitioned in the execute graph as well as the copies
of nodes who share them. Line 8 divides the relation of the child
node to be partitioned uniformly into two halves and line 9 re-
estimate the costs for all nodes in the current level, because after
partitioning, the data of the child nodes for nodes in current level
have changed, thus the costs for nodes in the current level should be
changed accordingly. The partition procedure is shown in line 13-
21. It is a recursive function. We first add a copy of the current
node to be partitioned (line 13-14), then we recursively add copies
of all its father nodes (line 15-16). After adding each father node,
two types of edges should be added. The first type is an edge from
the father node to the current node to be partitioned (line 17), and
the second type is the edge from the new added father node to the
child nodes of the original father node, unless the child node is the
current node (line 18-20). This is because although the copied fa-
ther node is new, its input nodes (except the current node) remain
the same.

Proof sketch of Lemma 7.1: In each phase of Algorithm 4, we
call the node that is not divided in the phase the original node and
the node that is generated by dividing another node the copied node.
Suppose now in the current phase, n−1 iterations of partitioning has
finished. It is obvious that there are at least n copied nodes in the
current phase. For each of the copied node u, we have cost(Q[1]) ≤
2 × cost(u). It is because (1) u is generated by partitioning a node
w with maximum cost in one of previous iterations, thus cost(w) ≤
2×cost(u), and (2) the value of cost(Q[1]) is non increasing because
Q[1] is partitioned in each iteration, thus cost(Q[1]) ≤ cost(w).
Now we consider two situations, (1) Q[n] is a copied node. In

Algorithm 3 OLP (C, n)
Input: the set of CNs C = {c1, c2, ..., cm}, the number of cores n.
1: create the execute graph GE for all CNs in C;
2: for i = 1 to n do
3: Gi

E ← emptyset;
4: for l = 1 to depth(GE) do
5: for all node v in level l do
6: one-level-estimate (v);
7: adaptive-distribute (l);

8: Procedure one-level-estimate (v)
9: if v is a selection then

10: suppose v = R{K};
11: cost(v)← |R| × Πk∈K sel(k);
12: else
13: suppose v = R.ai Z R′.a j and ai → a j;
14: cost(v)← |R| × |R′ | × sel(ai → a j);

15: Procedure adaptive-distribute (l)
16: max heapHl ← ∅;
17: for all nodes v in level l of GE do
18: Hl.enheap(v, costv);
19: for i = 1 to n in parallel do
20: whileHl , ∅ do
21: (v, costv)← Hl.deheap();
22: process v on core i;

such condition, from the above analysis, we have cost(Q[1]) ≤ 2 ×
cost(u). (2) Q[n] is a original node. Since there are n nodes in Q
and at least n copied nodes in total, there is a node u, such that
u < Q and u is a copied node. We have cost(Q[1]) ≤ 2 × cost(u)
and cost(u) ≤ cost(Q[1]), thus cost(Q[1]) ≤ 2 × cost(u). In both
situations, we can all conclude that after n−1 partitioning, we have
cost(Q[1]) ≤ 2 × cost(u), so at most n − 1 partition operations will
be performed. �

Proof sketch of Theorem 7.2: We first prove that in each level,
each partition operation for a node will generate at most Tmax × n
copies in the final execute graph. Since partitioning a node in a
certain level will add at most one copy for each node who share
it in higher levels, and from Lemma 7.1, we know that at most
depth(GE) × n ≤ Tmax × n partition operations will be performed.
Each node will have at most Tmax × n copies. Since Algorithm 3
has time complexity O(Tmax ·m ·(log Tmax+ log m)), and m can be
changed to m × Tmax × n in the worst case, the time complexity is
changed to O(Tmax2 ·m·n·(log n+log Tmax+log (m · Tmax · n))) =
O(Tmax2 · m · n · (log n + log Tmax + log m)). �

Proof sketch of Theorem 7.1: We first prove that after partition-
ing, the total cost remains the same. When A is partitioned into
A = A1 ∪ A2 where A1 ∩ A2 = ∅. A Z B = (A1 ∪ A2) Z B = (A1 Z
B) ∪ (A2 Z B) where (A1 Z B) ∩ (A2 Z B) = (A1 ∩ A2) Z B = ∅.
We have cost(A Z B) = cost((A1 Z B) ∪ (A2 Z B)) = cost(A1 Z
B) + cost(A2 Z B) − cost((A1 Z B) ∩ (A2 Z B)) = cost(A1 Z
B) + cost(A2 Z B). It means that the total cost remain unchanged
after partitioning A into A1 and A2. We now give a lower bound of
the cost for the optimal solution. Since the total cost of all opera-
tions is

∑
v∈V(GE) cost(v), it is obvious that the cost of any solution

can not be smaller than
∑

v∈V(GE) cost(v)
n . We use cost =

∑
v∈V(GE) cost(v)

n
to denote a cost lower bound of the optimal solution, use cost to
denote the cost of our solution, and use cost∗ to denote the cost of
the optimal solution. We have cost ≤ cost∗.

Let Vi(GE) be all nodes in level i of GE . We then prove that
in any phase l, the maximum cost for cores is no larger than 2 ×∑

v∈Vi (GE) cost(v)
n , i.e., max1≤ j≤n(totalcostl, j) ≤ 2 ×

∑
v∈Vi (GE) cost(v)

n . Sup-
pose the totalcost values are ranked in non-increasing order, i.e.,

67

Algorithm 4 DLP (C, n)
Input: the set of CNs C = {c1, c2, ..., cm}, the number of cores n.
1: create the execute graph GE and initialize Gi

E for 1 ≤ i ≤ n;
2: for l = 1 to depth(GE) do
3: repeat
4: Q ← top-n nodes in level l with maximum cost in descending

order of cost;
5: if cost(Q[1]) > 2 × cost(Q[n]) then
6: v← argminu∈cnodes(Q[1])(cost(u));
7: v′ ← partition (v);
8: divide tuples in v into two halves uniformly and put one half

into v′;
9: one-level-estimate (u) for all node u in level l;

10: until cost(Q[1]) ≤ 2 × cost(Q[n])
11: adaptive-distribute (l)

12: Procedure partition (v)
13: v′ ← a copy of v;
14: V(GE)← V(GE) ∪ {v′};
15: for all v f ∈ f nodes(v) do
16: v′f ← partition (v f);
17: E(GE)← E(GE) ∪ {(v′f , v

′)};
18: for all vc ∈ cnodes(v f) do
19: if vc , v then
20: E(GE)← E(GE) ∪ {(v′f , vc)};
21: return v′;

for any 1 ≤ i ≤ j ≤ n, totalcostl,i ≥ totalcostl, j. We only need to

prove totalcostl,1 ≤ 2×totalcostl,n, because totalcostl,n ≤
∑

v∈Vi (GE) cost(v)
n .

Since the totalcost is created by adding the most cost node in level
l iteratively, we prove it by induction on the number of iterations.
We choose the initial point to be the n-th iteration, in such situa-
tion, totalcostl,i = cost(Q[i]) for all 1 ≤ i ≤ n. Since cost(Q[1]) ≤
2 × cost(Q[n]), we have totalcostl,1 ≤ 2 × totalcostl,n holds. Now
suppose in iteration i(i ≥ n), totalcostl,1 ≤ 2× totalcostl,n holds, we
prove in iteration i + 1, after adding a value cost(v) on totalcostl,n

and resorting the totalcost values in non-increasing order, totalcostl,1

≤ 2×totalcostl,n also holds. When n ≤ 2, it is straightforward. Now
suppose n ≥ 3. For ease of reference, we use totalcosti to denote
the totalcost values after the i-th iteration. There are two situa-
tions, (1) after adding cost(v), totalcosti+1

l,n = totalcosti
l,n + cost(v)

is still the smallest value. We have totalcosti+1
l,1 = totalcosti

l,1 ≤
2×totalcosti

l,n ≤ 2×(totalcosti
l,n+cost(v)) = 2×totalcosti+1

l,n , and (2)
after adding cost(v), totalcosti

l,n + cost(v) is not the smallest value.
We have totalcosti+1

l,n = totalcosti
l,n−1. As a result, totalcosti+1

l,1 =

max{totalcosti
l,1, totalcosti

l,n + cost(v)} ≤ 2 × totalcosti
l,n ≤ 2 ×

totalcosti
l,n−1 = 2 × totalcosti+1

l,n . In both cases, totalcosti+1
l,1 ≤ 2 ×

totalcosti+1
l,n holds.

From the above analysis, we have the following result: cost ≤∑depth(GE)
l=1 (max1≤ j≤n(totalcostl, j)) ≤

∑depth(GE)
l=1 (2 ×

∑
v∈Vi(GE) cost(v)

n) =

2 ×
∑

v∈V(GE) cost(v)
n = 2 × cost ≤ 2 × cost∗, and thus, Theorem 7.1

holds. �

Some Remarks of Theorem 7.2 and Theorem 7.1: The time
complexity of Algorithm 4 is O(Tmax2 ·m · n · (log n+ log Tmax+
log m)), as shown in Theorem 7.2. Since for our problem, we as-
sume m >> n and m >> Tmax in general, the time complexity is
still much smaller than O(m2). Theorem 7.1 shows that Algorithm
4 is a 2-approximate algorithm comparing to the optimal solution
on the divided execute graph. Such approximate ratio is made un-
der the assumption that all cost functions used is accurate. Note that
such approximate ratio dose not hold for Algorithm 3 performed on
the original execute graph GE .

Ksel Keywords
1 child rose live secretary
2 singer adventure police mark
3 Jack Peter romance family nurse reporter
4 guest officer presenter Michael
5 John show various comedy

Table 1: Keywords used for the IMDB dataset

Ksel Keywords
1 theory impact server similarity
2 method level minimum block
3 network rate resource rule task sharing
4 analysis management retrieval single
5 system performance multiple technique

Table 2: Keywords used for the DBLP dataset

E. ADDITIONAL RELATED WORK
In the literature, for a keyword query on a relational database,

it returns a set of inter-connected structures in the RDB that con-
tain the user given keywords. The techniques to answer keyword
queries in RDBs are mainly in two categories: CN-based (schema-
based) and graph based (schema-free) approaches.

In the CN-based approaches [1, 14, 12, 21, 22, 25, 27], it pro-
cesses a keyword query in two steps, namely, candidate network
(CN) generation and CN evaluation. DBXplorer [1], Discover [14]
and KRDBMS [25] focused on retrieving connected trees using sql
on rdbmss. In [22], Markowetz et al. discussed how to efficiently
generate all CNs and how to process keyword queries in an RDB
stream environment based on a sliding window model. Among
these approaches, in DISCOVER-II [12], Hristidis et al. incor-
porated IR-style ranking techniques to rank the connected trees.
In SPARK [21], Luo et al. proposed a new ranking function by
treating each connected tree as a virtual document, and unified the
AND/OR semantics in the score function using a parameter. The
ranking issues were also discussed in [2, 13, 19].

Finding top-k interconnected structures has been extensively stud-
ied in graph based approaches in which an RDB is materialized as a
weighted database graph. The representative works on finding top-
k connected trees are [3, 15, 17, 7, 9]. In brief, finding the exact
top-k connected-trees is an instance of the group Steiner tree prob-
lem [8], which is NP-hard. To find top-k connected trees, Bhalotia
et al. proposed backward search in BANKS-I [3], and Kacholia et
al. proposed bidirectional search in BANKS-II [15]. Kimelfeld et
al. [17] proposed a general framework to retrieval top-k connected
trees with polynomial delay under data complexity, which is inde-
pendent of the underline minimum Steiner tree algorithm. Ding
et al. in [7] also introduced a dynamic programming approach to
find the minimum connected tree and approximate top-k connected
trees. Golenberg et al. in [9] attempted to find an approximate
result in polynomial time under the query and data complexity.

Top-k connected trees are hard to compute, in BLINKS [11], He
et al. proposed the distinct root semantics. In BLINKS, search
strategies were proposed with a bi-level index built to fast compute
the shortest distances. Dalvi et al. [6] conducted keyword search
on external memory graphs under the distinct root semantics. Li
et al. in EASE [18] defined an r-radius Steiner graph, where each
r-radius Steiner graph is a subpart of a maximal r-radius subgraph.
Qin et al. studied multi-center communities under the distinct core
semantics in [26], and proposed new polynomial delay algorithms
to compute all or top-k communities.

68

 0

 50

 100

 150

 200

 250

 300

 350

1 2 4 8 16

Pr
oc

es
sin

g
Ti

m
e

(m
s) CLP

OLP
DLP

LINEAR

(a) Tmax = 5, #CN = 308

 0

 100

 200

 300

 400

 500

 600

1 2 4 8 16

Pr
oc

es
sin

g
Ti

m
e

(m
s) CLP

OLP
DLP

LINEAR

(b) Tmax = 7, #CN = 1, 908

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 8 16

Pr
oc

es
sin

g
Ti

m
e

(m
s) CLP

OLP
DLP

LINEAR

(c) Tmax = 9, #CN = 10, 388

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 4 8 16

Pr
oc

es
sin

g
Ti

m
e

(m
s) CLP

OLP
DLP

LINEAR

(d) Tmax = 11, #CN = 49, 900

Figure 15: Vary Tmax (DBLP)

 0

 100

 200

 300

 400

 500

 600

 700

1 2 4 8 16

Pr
oc

es
sin

g
Ti

m
e

(m
s) CLP

OLP
DLP

LINEAR

(a) Knum = 2, #CN = 44

 0

 100

 200

 300

 400

 500

 600

 700

1 2 4 8 16

Pr
oc

es
sin

g
Ti

m
e

(m
s) CLP

OLP
DLP

LINEAR

(b) Knum = 3, #CN = 330

 0

 100

 200

 300

 400

 500

 600

 700

1 2 4 8 16

Pr
oc

es
sin

g
Ti

m
e

(m
s) CLP

OLP
DLP

LINEAR

(c) Knum = 5, #CN = 9, 682

 0

 100

 200

 300

 400

 500

 600

 700

1 2 4 8 16

Pr
oc

es
sin

g
Ti

m
e

(m
s) CLP

OLP
DLP

LINEAR

(d) Knum = 6, #CN = 45, 484

Figure 16: Vary Knum (DBLP)

F. PERFORMANCE STUDIES
The DBLP schema includes the following four relations: Paper(

Paperid, Title), Author(Authorid, Authorname), Write(Writeid, Au-
thorid, Paperid) and Cite(Citeid, Paperid1, Paperid2). The primary
key for each relation is underlined. The size of the raw data for the
DBLP dataset is 686MB. The number of tuples for the four rela-
tions are 1,341,055, 789,586, 3,419,237, and 112,387 respectively,
and the total number of tuples in DBLP is 5,662,265.

For all testings, we vary 3 parameters, namely, the average key-
word selectivity Ksel, the keyword number Knum, and the size con-
trol parameter Tmax. Every parameter has a default value. For
DBLP, the settings are similar to IMDB. The general keywords se-
lected with different keyword selectivity are shown in Table 2 and
by default, the keyword selectivity Ksel is 3. The keyword number
Knum ranges from 2 to 6 with a default value 4 and the size control
parameter Tmax ranges from 5 to 11 with a default value 7.

Exp-1 (Vary Tmax): The curves for testings in the DBLP dataset
when vary Tmax are shown in Fig. 15. Fig. 15(a) and 15(b) show
that, when Tmax is small, the CLP and OLP algorithms performs
bad because the workload skew is the main bottleneck when Tmax
is small. DLP performs near linear because it can divide a large op-
eration near evenly into different cores. Fig. 15(c) shows that when

 0

 50

 100

 150

 200

 250

1 2 4 8 16

Pr
oc

es
sin

g
Ti

m
e

(m
s) CLP

OLP
DLP

LINEAR

(a) Ksel = 1, #CN = 1, 908

 0

 100

 200

 300

 400

 500

1 2 4 8 16

Pr
oc

es
sin

g
Ti

m
e

(m
s) CLP

OLP
DLP

LINEAR

(b) Ksel = 2, #CN = 1, 908

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8 16

Pr
oc

es
sin

g
Ti

m
e

(m
s) CLP

OLP
DLP

LINEAR

(c) Ksel = 4, #CN = 1, 908

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8 16

Pr
oc

es
sin

g
Ti

m
e

(m
s) CLP

OLP
DLP

LINEAR

(d) Ksel = 5, #CN = 1, 908

Figure 17: Vary Ksel (DBLP)

Tmax is increased to 9, the performance of OLP is much better than
CLP. This is because the bottleneck is changed from the workload
skew problem to the large inter-core sharing problem for the CLP
algorithm, while OLP can solve such problem by processing the
same CN using different cores. In Fig. 15(d), OLP and DLP have
similar performances and both are two times more faster than CLP
when the number of cores is larger than 2. OLP is faster than DLP
in some cases because DLP needs more time dividing relations.

Exp-2 (Vary Knum): Fig. 16 shows the experimental results when
varying the number of keywords in the DBLP dataset. In Fig. 16(a)
and Fig. 16(b), when Knum is small, both CLP and OLP have
bad performance because the number of CNs is small, and thus
the probability of workload skew is high. DLP performs near ide-
ally in such cases because it is easier for a few costly operations
to be divided evenly. Fig. 16(c) and Fig. 16(d) illustrate the cases
when Knum is large. The curves in Fig. 16(c) and Fig. 16(d) are
much different from the corresponding cases in the IMDB dataset
in Fig. 11(c) and Fig. 11(d) respectively. This is because the IMDB
schema is more complex than the DBLP schema. In DBLP, there
are only 4 relations and 2 of them can contain keywords while
in IMDB, there are 8 relations and 7 of them can contain key-
words. Generally speaking, for CLP and OLP, the more com-
plex the schema is, the higher probability the tasks can be divided
evenly. In DBLP, even when the number of keywords is large, the
workload skew problem is still the bottleneck because of the simple
schema used. In Fig. 16(d), when the number of cores increases,
the processing time for OLP increases in some cases. It is because
when workload skew exists, OLP needs more time rescheduling
when the number of cores is larger. DLP performs best in all cases.

Exp-3 (Vary Ksel): The experimental results for queries with dif-
ferent keyword selectivity in the DBLP dataset are shown in Fig. 17.
In Fig. 17(a), when the keyword selectivity is small, the gap be-
tween DLP and OLP is small, and in Fig. 17(b), when the keyword
selectivity increases, the gap between DLP and OLP increases. This
is because when the number of CNs keeps unchanged, the smaller
the keyword selectivity is, the more sensitive the error of the cost
estimation is. DLP can decrease the sensitivity of estimation error
through dividing relations. In Fig. 17(c) and Fig. 17(d), the curves
for all three algorithms do not differ too much. This is because
when the keyword selectivity becomes large, the sensitivity of esti-
mation error does not change too much.

69

