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ABSTRACT
One of the main steps towards integration or exchange of data is
to design the mappings that describe the (often complex) relation-
ships between the source schemas or formats and the desired target
schema. In this paper, we introduce a new operator, called Map-
Merge, that can be used to correlate multiple, independently de-
signed schema mappings of smaller scope into larger schema map-
pings. This allows a more modular construction of complex map-
pings from various types of smaller mappings such as schema cor-
respondences produced by a schema matcher or pre-existing map-
pings that were designed by either a human user or via mapping
tools. In particular, the new operator also enables a new “divide-
and-merge” paradigm for mapping creation, where the design is
divided (on purpose) into smaller components that are easier to
create and understand, and where MapMerge is used to automat-
ically generate a meaningful overall mapping. We describe our
MapMerge algorithm and demonstrate the feasibility of our im-
plementation on several real and synthetic mapping scenarios. In
our experiments, we make use of a novel similarity measure be-
tween two database instances with different schemas that quanti-
fies the preservation of data associations. We show experimentally
that MapMerge improves the quality of the schema mappings, by
significantly increasing the similarity between the input source in-
stance and the generated target instance.

1. Introduction
Schema mappings are essential building blocks for information

integration. One of the main steps in the integration or exchange
of data is to design the mappings that describe the desired relation-
ships between the various source schemas or source formats and the
target schema. Once the mappings are established, they can be used
either to support query answering on the (virtual) target schema, a
process that is traditionally called data integration [13], or to phys-
ically transform the source data into the target format, a process
referred to as data exchange [7]. In this paper, we focus on the data
exchange aspect although our mapping generation methods will be
equally applicable to derive mappings for data integration.
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Many commercial data transformation systems such as Altova
Mapforce1 and Stylus Studio2 to name a few, as well as research
prototypes such as Clio [6] or HePToX [3], include mapping de-
sign tools that can be used by a human user to derive the data trans-
formation program between a source schema and a target schema.
Most of these tools work in two steps. First, a visual interface is
used to solicit all known correspondences of elements between the
two schemas from the mapping designer. Such correspondences
are usually depicted as arrows between the attributes of the source
and target schemas. (See, for example, Figure 1(a)). Sometimes,
a schema matching module [19] is used to suggest or derive corre-
spondences. Once the correspondences are established, the system
interprets them into an executable script, such as an XQuery or SQL
query, which can then transform an instance of the source schema
into an instance of the target schema. The generated transformation
script is usually close to the desired specification. In most cases,
however, portions of the script still need to be refined to obtain the
desired specification.

We note that for both Clio and HePToX, the correspondences are
first compiled into internalschema mapping assertionsor schema
mappingsin short, which are high-level, declarative, constraint-like
statements [12]. These schema mappings are then compiled into
the executable script. One advantage of using schema mappings as
an intermediate form is that they are more amenable to the formal
study of data exchange and data integration [12], as well as to opti-
mization and automatic reasoning. In fact, the main technique that
we introduce in this paper represents a form of automatic reasoning
on top of schema mappings.

An important drawback of the previously outlined two-step sche-
ma mapping design paradigm is that it is hard to retro-fit any pre-
existing or user-customized mappings back into the mapping tool,
since the mapping tool is based on correspondences. Thus, if the
mapping tool is restarted, it will regenerate the same fixed trans-
formation script based on the input correspondences, even though
some portions of the transformation task may have already been
refined (customized) by the user or may already exist (as part of a
previous transformation task, for example).

In this paper, we propose a radically different approach to the de-
sign of schema mappings where the mapping tool can take as input
arbitrary mapping assertions and not just correspondences. This al-
lows for the modular construction of complex and larger mappings
from various types of “smaller” mappings that include schema cor-
respondences but also arbitrary pre-existing or customized map-
pings. An essential ingredient of this approach is a new operator
on schema mappings that we callMapMergeand that can be used
to automatically correlate the input mappings in a meaningful way.

1www.altova.com
2www.stylusstudio.com
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Input mappings from S1 to S2:

(t1) for g in Group exists d in Dept 

where d.dname = g.gname

(t2) for w in Works, g in Group

satisfying w.gno = g.gno, w.addr = “NY”

exists e in Emp, d in Dept

where e.did = d.did, 

e.ename = w.ename, e.addr = w.addr,

d.dname = g.gname

(t3) for w in Works exists p in Proj

where p.pname = w.pname

Output of MapMerge(S1, S2, {t1, t2, t3}):

for g in Group exists d in Dept 

where d.dname = g.gname, d.did = F[g]

for w in Works, g in Group

satisfying w.gno = g.gno, w.addr = “NY”

exists e in Emp

where e.ename = w.ename, e.addr = w.addr, 
e.did = F[g]

for w in Works, g in Group

satisfying w.gno = g.gno

exists p in Proj

where p.pname = w.pname, p.budget = H1[w], 
p.did = F[g]

(b) (c)

Figure 1: (a) A transformation flow from S1 to S3. (b) Schema mappings fromS1 to S2. (c) Output of MapMerge.

1.1 Motivating Example and Overview

To illustrate the ideas, consider first a mapping scenario between
the schemasS1 andS2 shown in the left part of Figure 1(a). The
goal is data restructuring from two source relations,Group and
Works, to three target relations,Emp, Dept, andProj. In this ex-
ample,Group(similar toDept) represents groups of scientists shar-
ing a common area (e.g., a database group, a CS group, etc.) The
dotted arrows represent foreign key constraints in the schemas.
Independent Mappings. Assume the existence of the following
(independent) schema mappings fromS1 to S2. The first map-
ping is the constraintt1 in Figure 1(b), and corresponds to the
arrow t1 in Figure 1(a). This constraint requires every tuple in
Group to be mapped to a tuple inDept such that the group name
(gname) becomes department name (dname). The second mapping
is more complex and corresponds to the group of arrowst2 in Fig-
ure 1(a). This constraint involves a custom filter condition; every
pair of joining tuples ofWorksandGroupfor which theaddr value
is “NY” must be mapped into two tuples ofEmpandDept, shar-
ing the samedid value, and with correspondingename, addr and
dnamevalues. (Note thatdid is a target-specific field that must ex-
ist and plays the role of key / foreign key). Intuitively,t2 illustrates
a pre-existing mapping that a user may have spent time in the past
to create. Finally, the third constraint in Figure 1(b) corresponds to
the arrowt3 and mapspnamefrom Worksto Proj. This is an exam-
ple of a correspondence that is introduced by a user after loadingt1
and the pre-existing mappingt2 into the mapping tool.

The goal of the system is now to (re)generate a “good” overall
schema mapping fromS1 to S2 based on its input mappings. We
note first that the input mappings, when considered in isolation, do
not generate an ideal target instance.

Indeed, consider the source instanceI in Figure 2. The target
instance that is obtained by minimally enforcing the constraints
{t1, t2, t3} is the instanceJ1 also shown in the figure. The first
Depttuple is obtained by applyingt1 on theGrouptuple(123, CS).
There,D1 represents somedid value that must be associated with
CS in this tuple. Similarly, theProj tuple, with some unspecified
valueB for budget and adid value ofD3 is obtained viat3. The
Emptuple together with the secondDept tuple are obtained based
on t2. As required byt2, these tuples are linked via the samedid

valueD2. Finally, to obtain a target instance that satisfies all the
foreign key constraints, we must also have a third tuple inDeptthat
includesD3 together with some unspecified department nameN .

Since the three mapping constraints are not correlated, the three
did values (D1, D2, D3) are distinct. (There is no requirement
that they must be equal.) As a result, the target instanceJ1 ex-
hibits the typical problems that arise when uncorrelated mappings
are used to transform data: (1)duplication of data(e.g., multiple
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John NY Web 123

Source instance I
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ename addr did
John NY D2
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Figure 2: An instance ofS1 and two instances ofS2.

Dept tuples forCS with differentdid values), and (2)loss of as-
sociationswhere tuples are not linked correctly to each other (e.g.,
we have lost the association between project nameWeb and de-
partment nameCS that existed in the source).
Correlated Mappings via MapMerge. Consider now the schema
mappings that are shown in Figure 1(c) and that are the result of
MapMerge applied on{t1, t2, t3}. The notable difference from the
input mappings is that all mappings consistently use the same ex-
pression, namely the Skolem termF [g] whereg denotes a distinct
Group tuple, to give values for thedid field. The first mapping is
the same ast1 but makes explicit the fact thatdid is F [g]. This
mapping creates a uniqueDept tuple for each distinctGroup tuple.
The second mapping is (almost) liket2 with the additional use of
the same Skolem termF [g]. Moreover, it also drops the existence
requirement forDept (since this is now implied by the first map-
ping). Finally, the third mapping differs fromt3 by incorporating
a join withGroupbefore it can actually use the Skolem termF [g].
As an additional artifact of MapMerge, which we explain later, it
also includes a Skolem termH1[w] that assigns values forbudget.

The target instance that is obtained by applying the result of
MapMerge is the instanceJ2 shown in Figure 2. The data asso-
ciations that exist in the source are now correctly preserved in the
target. For example,Web is linked to theCS tuple (viaD) and
alsoJohn is linked to theCS tuple (via the sameD). Further-
more, there is no duplication ofDept tuples.
Flows of Mappings.Taking the idea of mapping reuse and modu-
larity one step further, an even more compelling use case for Map-
Merge in conjunction with mapping composition [8, 14, 17], is the
flow-of-mappingsscenario [1]. The key idea here is that to produce
a data transformation from the source to the target, one can decom-
pose the process into several simpler stages, where each stage maps
from or into some intermediate, possibly simpler schema. More-
over, the simpler mappings and schemas play the role of reusable
components that can be applied to build other flows. Such abstrac-
tion is directly motivated by the development of real-life, large-
scale ETL flows such as those typically developed with IBM Infor-
mation Server (Datastage), Oracle Warehouse Builder and others.

To illustrate, suppose the goal is to transform data from the schema
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S1 of Figure 1(a) to a new schemaS3, whereStaffandProjects
information are grouped underCompSci. The mapping or ETL de-
signer may find it easier to first construct the mapping betweenS1

andS2 (it may also be that this mapping may have been derived
in a prior design). Furthermore, the schemaS2 is a normalized
representation of the data, whereDept, EmpandProj correspond
directly to the main concepts (or types of data) that are being ma-
nipulated. Based on this schema, the designer can then produce a
mappingmCS from Dept to a more specialized objectCSDept, by
applying some customized filter condition (e.g., based on the name
of the department). The next step is to create the mappingm from
CSDeptto the target schema. Other independent mappings are sim-
ilarly defined forEmpandProj (seem1 andm2).

Once these individual mappings are established, the same prob-
lem of correlating the mappings arises. In particular, one has to
correlatemCS ◦ m, which is the result of applying mapping com-
position tomCS andm, with the mappingsm1 for Empandm2 for
Proj. This correlation will ensure that all employees and projects
of computer science departments will be correctly mapped under
their correct departments, in the target schema.

In this example, composition itself gives another source of map-
pings to be correlated by MapMerge. While similar with compo-
sition in that it is an operator on schema mappings, MapMerge is
fundamentally different in that it correlates mappings that share the
same source schema and the same target schema. In contrast, com-
position takes two sequential mappings where the target of the first
mapping is the source of the second mapping. Nevertheless, the
two operators are complementary and together they can play a fun-
damental role in building data flows.

1.2 Contributions and Outline of the Paper

Our main technical contributions are as follows. We give an
algorithm for MapMerge, which takes as input arbitrary schema
mappings expressed as second-order tgds [8] and generates cor-
related second-order tgds. As a particular important case, Map-
Merge can also take as input a set of raw schema correspondences;
thus, it constitutes a replacement of existing mapping generation
algorithms that are used in Clio [18, 10]. We introduce a novel
similarity measure that is used to quantify the preservation of data
associations from a source database to a target database. We use
this measure to show experimentally that MapMerge improves the
quality of schema mappings. In particular, we show that the target
data that is produced based on the outcome of MapMerge has bet-
ter quality, in terms of preservation of source associations, than the
target data that is produced based on Clio-generated mappings.
Outline In the next section, we provide some preliminaries on schema
mappings and their semantics. In Section 3 we give the main in-
tuition behind MapMerge, while in Section 4 we describe the al-
gorithm. In Section 5, we introduce the similarity measure that
quantifies the preservation of associations. We make use of this
measure to evaluate the performance of MapMerge on real-life and
synthetic mapping scenarios. We discuss related work in Section 6
and conclude in Section 7.

2. Preliminaries
A schema consists of a set of relation symbols, each with an

associated set of attributes. Moreover, each schema can have a set
of inclusion dependencies modeling foreign key constraints. While
we restrict our presentation to the relational case, all our techniques
are applicable and implemented in the more general case of the
nested relational data model used in [18], where the schemas and
mappings can be either relational or XML.

Schema Mappings.A schema mapping is a triple(S,T,Σ) where
S is a source schema,T is a target schema, andΣ is a set ofsecond-
order tuple generating dependencies (SO tgds)[8]. In this paper,
we use the notation

for ~x in ~Ssatisfying B1(~x) exists ~y in ~Twhere B2(~y)and C(~x, ~y)

for expressing SO tgds. Examples of SO tgds in this notation were
already given in Figure 1(b) and Figure 1(c). Here, it suffices to
say that~S represents a vector of source relation symbols (possibly
repeated), while~x represents the tuple variables that are bound, cor-
respondingly, to these relations. A similar notation applies for the
exists clause. The conditionsB1(~x) andB2(~y) are conjunctions
of equalities over the source and, respectively, target variables. The
conditionC(~x, ~y) is a conjunction of equalities that equate target
expressions (e.g.,y.A) with either source expressions (e.g.,x.B)
or Skolem terms of the formF [x1, . . . , xi], whereF is a function
symbol andx1, . . . , xi are a subset of the source variables. Skolem
terms are used to relate target expressions across different SO tgds.
An SO tgd without a Skolem term may also be called, simply, a
tuple-generating dependency or tgd [7].

Note that our SO tgds do not allow equalities between or with
Skolem terms in thesatisfyingclause. While such equalities may
be needed for more general purposes [8], they do not play a role for
data exchange and can be eliminated, as observed in [24].
Chase-Based Semantics.The semantics that we adopt for a schema
mapping(S,T, Σ) is the standard data-exchange semantics [7] where,
given a source instanceI , the result of “executing” the mapping is
the target instanceJ that is obtained by chasingI with the depen-
dencies inΣ. Since the dependencies inΣ are SO tgds, we actually
use an extension of the chase as defined in [8].

Intuitively, the chase provides a way of populating the target in-
stanceJ in a minimal way, by adding the tuples that arerequired
by Σ. For every instantiation of thefor clause of a dependency inΣ
such that thesatisfyingclause is satisfied but theexistsandwhere
clauses are not, the chase adds corresponding tuples to the target
relations. Fresh new values (also called labeled nulls) are used to
give values for the target attributes for which the dependency does
not provide a source expression. Additionally, Skolem terms are
instantiated by nulls in a consistent way: a termF [x1, . . . , xi] is
replaced by the same null every timex1, . . . , xi are instantiated
with the same source tuples. Finally, to obtain a valid target in-
stance, we must chase (if needed) with the target constraints.

For our earlier example, the target instanceJ1 is the result of
chasing the source instanceI with the tgds in Figure 1(b) and,
additionally, with the foreign key constraints. There, the values
D1, D2, D3 are nulls that are generated to filldid values for which
the tgds do not provide a source expression. The target instanceJ2

is the result of chasingI with the SO tgds in Figure 1(c). There,
D is a null that corresponds to the Skolem termF [g] whereg is
instantiated with the sole tuple ofGroup.

In practice, mapping tools such as Clio do not necessarily im-
plement the chase withΣ, but generate queries to achieve a similar
result [10, 18].

3. Correlating Mappings: Key Ideas
How do we achieve the systematic and, moreover,correct con-

struction of correlated mappings? After all, we do not want arbi-
trary correlations between mappings, but rather only to the extent
that thenaturaldata associations in the source are preserved and no
extra associations are introduced.

There are two key ideas behind MapMerge. The first idea is to
exploit the structure and the constraints in the schemas in order to
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define what natural associations are (for the purpose of the algo-
rithm). Two data elements are considered associated if they are in
the same tuple or in two different tuples that are linked via con-
straints. This idea has been used before in Clio [18], and provides
the first (conceptual) step towards MapMerge. For our example, the
input mappingt3 in Figure 1(b) is equivalent, in the presence of the
source and target constraints, to the following enriched mapping:

t′
3
: for w in Works,g in Groupsatisfyingw.gno =g.gno

existsp in Proj,d in Dept
wherep.pname =w.pnameand p.did = d.did

Intuitively, if we have aw tuple in Works, we also have a joining
tupleg in Group, sincegno is a foreign key fromWorksto Group.
Similarly, a tuplep in Proj implies the existence of a joining tuple
in Dept, sincedid is a foreign key fromProj to Dept.

Formally, the above rewriting fromt3 to t′3 is captured by the
well-known chase procedure [2, 15]. The chase is a convenient
tool to group together, syntactically, elements of the schema that
are associated. The chase by itself, however, does not change the
semantics of the mapping. In particular, the abovet′3 does not in-
clude any additional mapping behavior fromGroupto Dept.

The second key idea behind MapMerge is that ofreusingor bor-
rowing mapping behavior from a more general mapping to a more
specific mapping. This is a heuristic that changes the semantics of
the entire schema mapping and produces an arguably better one,
with consolidated semantics.

To illustrate, consider the first mapping constraint in Figure 1(c).
This constraint (obtained by skolemizing the inputt1) specifies a
general mapping behavior fromGroup to Dept. In particular, it
specifies how to createdname anddid from the input record. On
the other hand, the abovet′3 can be seen as a morespecificmap-
ping from asubsetof Group(i.e., those groups that have associated
Workstuples) to asubsetof Dept (i.e., those departments that have
associatedProj tuples). At the same time,t′3 does not specify any
concrete mapping for thedname anddid fields of Dept. We can
then borrow the mapping behavior that is already specified by the
more general mapping. Thus,t′3 can be enriched to:

t′′
3

: for w in Works,g in Groupsatisfyingw.gno =g.gno
existsp in Proj,d in Dept
wherep.pname =w.pnameand p.did = d.did
andd.dname =g.gnameand d.did = F [g] and p.did = F [g]

where two of the last three equalities represent the “borrowed” be-
havior, while the last equality is obtained automatically by transi-
tivity. Finally, we can drop the existence ofd in Deptwith the two
conditions fordname anddid, since this is repeated behavior that
is already captured by the more general mapping fromGroup to
Dept. The resulting constraint is identical3 to the third constraint in
Figure 1(c), now correlated with the first one viaF [g]. A similar
explanation applies for the second constraint in Figure 1(c).

The actual MapMerge algorithm is more complex than intuitively
suggested above, and is described in detail in the next section.

4. The MapMerge Algorithm
MapMerge takes as input a set{(S,T, Σ1), ..., (S,T, Σn)} of

schema mappings over the same source and target schemas, which
is equivalent to taking a single schema mapping(S, T,Σ1 ∪ ... ∪
Σn) as input. The algorithm is divided into four phases and the
complete pseudocode is given in the appendix. The first phase de-
composes each input mapping assertion into basic components that
are, intuitively, easier to merge. In Phase 2, we apply the chase
algorithm to compute associations (which we calltableaux), from
3Modulo the absence ofH1[w], which will be explained separately.

the source and target schemas, as well as from the source and tar-
get assertions of the input mappings. By pairing source and target
tableaux, we obtain all the possibleskeletonsof mappings. The ac-
tual work of constructing correlated mappings takes place in Phase
3, where for each skeleton, we take the union of all the basic com-
ponents generated in Phase 1 that “match” the skeleton. Phase 4 is a
simplification phase that also flags conflicts that may arise and that
need to be addressed by the user. These conflicts occur when mul-
tiple mappings that map to the same portion of the target schema
contribute with different, irreconcilable behaviors.

4.1 Phase 1: Decompose into Basic SO tgds

The first step of the algorithm decomposes each input SO tgd
into a set of simpler SO tgds, calledbasic SO tgds, that have the
samefor andsatisfyingclause as the input SO tgd but have exactly
one relation in theexistsclause. Intuitively, we break the input
mappings into atomic components that each specify mapping be-
havior for a single target relation. This decomposition step will
subsequently allow us to merge mapping behaviors even when they
come from different input SO tgds.

In addition to being single-relation in the target, each basic SO
tgd gives a complete specification of all the attributes of the target
relation. More precisely, each basic SO tgd has the form

for ~x in ~S satisfyingB1(~x)
existsy in T where

V

A∈Atts(y)
y.A = eA(~x)

where the conjunction in thewhereclause contains one equality
constraint foreachattribute of the recordy asserted in the target
relation T . The expressioneA(~x) is either a Skolem term or a
source expression (e.g.,x.B). Part of the role of the decomposition
phase is to assign a Skolem term to every target expressiony.A for
which the initial mapping does not equate it to a source expression.

For our example, the decomposition algorithm (given in the ap-
pendix) obtains the following basic SO tgds from the input map-
pingst1, t2, andt3 of Figure 1(b):

(b1): for g in Groupexistsd in Dept
whered.did = F [g] and d.dname =g.gname

(b2): for w in Works,g in Group
satisfyingw.gno =g.gnoandw.addr = “NY”
existse in Emp
wheree.ename =w.enameand e.addr =w.addrand e.did = G[w, g]

(b′2): for w in Works,g in Group
satisfyingw.gno =g.gnoandw.addr = “NY”
existsd in Dept
whered.did = G[w, g] and d.dname =g.gname

(b3): for w in Worksexistsp in Proj
wherep.pname =w.pnameand p.budget =H1[w] andp.did = H2[w]

The basic SO tgdb1 is obtained fromt1; the main difference
is thatd.did, whose value was unspecified byt1, is now explicitly
assigned the Skolem termF [g]. The only argument toF is g be-
causeg is the only record variable that occurs in thefor clause of
t1. Similarly, the basic SO tgdb3 is obtained fromt3, with the dif-
ference being thatp.budget andp.did are now explicitly assigned
the Skolem termsH1[w] and, respectively,H2[w].

In the case oft2, we note that we have two existentially quanti-
fied variables, one forEmpand one forDept. Hence, the decom-
position algorithm generates two basic SO tgds: the first one maps
into Empand the second one maps intoDept. Observe thatb2 and
b′2 are correlated and share a common Skolem termG[w, g] that
is assigned to bothe.did andd.did. Thus, the association between

84



e.did andd.did in the original schema mappingt2 is maintained in
the basic SO tgdsb2 andb′2.

In general, the decomposition process ensures that associations
between target facts that are asserted by the original schema map-
ping are not lost. The process is similar to the Skolemization pro-
cedure that transforms first order tgds with existentially quantified
variables into second order tgds with Skolem functions (see [8]).
After such Skolemization, all the target relations can be separated
since they are correlated via Skolem functions. Therefore, the set
of basic SO tgds that results after decomposition is equivalent to
the input set of mappings.

4.2 Phase 2: Compute Skeletons of Schema Mappings

Next we apply the chase algorithm to compute syntactic associa-
tions (which we calltableaux), from each of the schemas and from
the input mappings. Essentially, a schematableauis constructed
by taking each relation symbol in the schema and chasing it with
all the referential constraints that apply. The result of such chase
is a tableau that incorporates a set of relations that is closed under
referential constraints, together with the join conditions that relate
those relations. For each relation symbol in the schema, there is one
schema tableau. As in [10, 18], in order to guarantee termination,
we stop the chase whenever we encounter cycles in the referential
constraints. In our example, there are two source schema tableaux
and three target schema tableaux, as follows:

T1 = { g ∈ Group}
T2 = { w ∈ Works,g ∈ Group;w.gno =g.gno}
T3 = { d ∈ Dept}
T4 = { e ∈ Emp,d ∈ Dept;e.did = d.did }
T5 = { p ∈ Proj,d ∈ Dept;p.did =d.did }

Intuitively, schema tableaux represent the categories of data that
can exist according to the schema. AGroup record can exist in-
dependently of records in other relations (hence, the tableauT1).
However, the existence of aWorksrecord implies that there must
exist a correspondingGroup record with identicalgno (hence, the
tableauT2).

Since the MapMerge algorithm takes as input arbitrary mapping
assertions, we also need to generate user-defined mapping tableaux,
which are obtained by chasing the source and target assertions of
the input mappings with the referential constraints that are applica-
ble from the schemas (see Appendix A). The notion of user-defined
tableaux is similar to the notion of user associations in [23]. In our
example, there is only one new tableau based on the source asser-
tions of the input mappingt2:

T ′

2
= { w ∈ Works,g ∈ Group;w.gno =g.gno,w.addr = “NY” }

Furthermore, we then pair every source tableau with every target
tableau to form askeleton. Each skeleton represents the empty shell
of a candidate mapping. For our running example, the set of all
skeletons at the end of Phase 2 is:{(T1, T3), (T1, T4), (T1, T5),
(T2, T3), (T2, T4), (T2, T5), (T ′

2, T3), (T ′

2, T4), (T ′

2, T5)}.

4.3 Phase 3: Match and Apply Basic SO tgds on Skeletons

In this phase, for each skeleton, we first find the set of basic SO
tgds that “match” the skeleton. Then, for each skeleton, we apply
the basic SO tgds that were found matching, and construct a merged
SO tgd. The resulting SO tgd is, intuitively, the “conjunction” of
all the basic SO tgds that were found matching.

Matching. We say that a basic SO tgdσ matches a skeleton(T, T ′)
if there is a pair(h, g) of homomorphisms that “embed”σ into
(T, T ′). This translates into two conditions. First, thefor and
satisfyingclause ofσ are embedded intoT via the homomorphism
h. This means thath maps the variables in thefor clause ofσ to

variables ofT such that relation symbols are respected and, more-
over, thesatisfyingclause ofσ (after applyingh) is implied by the
conditions ofT . Additionally, theexistsclause ofσ must be em-
bedded intoT ′ via the homomorphismg. Sinceσ is a basic SO tgd
and there is only one relation in itsexistsclause, the latter condition
essentially states that the target relation inσ must occur inT ′.

For our running example, it is easy to see that the basic SO tgdb1

matches the skeleton(T1, T3). In fact, b1 matches every skeleton
from Phase 2. On the other hand, the basic SO tgdb2 matches only
the skeleton(T ′

2, T4) under the homomorphisms(h1, h2), where
h1 = {w 7→ w, g 7→ g} andh2 = {e 7→ e}. Altogether, we
obtain the following matching of basic SO tgds on skeletons:

(T1, T3, b1) (T1, T4, b1) (T1, T5, b1) (T2, T3, b1)
(T2, T4, b1) (T2, T5, b1 ∧ b3) (T ′

2
, T3, b1 ∧ b′

2
)

(T ′

2
, T4, b1 ∧ b2 ∧ b′

2
) (T ′

2
, T5, b1 ∧ b′

2
∧ b3)

Note that the basic SO tgds that match a given skeleton may ac-
tually come from different input mappings. For example, each of
the basic SO tgds that match(T ′

2, T5) comes from a separate input
mapping (fromt1, t2, andt3, respectively). In a sense, we aggre-
gate behaviors from multiple input mappings in a given skeleton.

Computing merged SO tgds. For each skeleton along with the
matching basic SO tgds, we now construct a “merged” SO tgd. For
our example, the following SO tgds8 is constructed from the eighth
triple (T ′

2, T4, b1 ∧ b2 ∧ b′2) shown earlier.

(s8) for w in Works,g in Group
satisfyingw.gno =g.gnoandw.addr = “NY”
existse in Emp,d in Dept
wheree.did = d.did
andd.did = F [g] andd.dname=g.gname
ande.ename =w.enameande.addr =w.addrande.did = G[w, g]
andd.did = G[w, g]

The variable bindings in the source and target tableaux are taken
literally and added to thefor and, respectively,existsclause of the
new SO tgd. The equalities inT ′

2 andT4 are also taken literally and
added to thesatisfyingand, respectively,whereclause of the SO
tgd. More interestingly, for every basic SO tgdσ that matches the
skeleton (T ′

2, T4), we take thewhereclause ofσ (after applying the
respective homomorphisms) and add it to thewhereclause of the
new SO tgd. (Note that, by definition of matching, thesatisfying
clause ofσ is automatically implied by the conditions in the source
tableau.) The last three lines in the above SO tgd incorporate con-
ditions taken from each of the basic SO tgds that match(T ′

2, T4)
(i.e., fromb1, b2, andb′2, respectively).

The constructed SO tgd consolidates the semantics ofb1, b2, and
b′2 under one merged mapping. Intuitively, since all three basic SO
tgds are applicable whenever the source pattern is given byT ′

2 and
the target pattern is given byT4, the resulting SO tgd takes the
conjunction of the “behaviors” of the individual basic SO tgds.
Correlations. A crucial point about the above construction is that
a target expression may now be assigned multiple expressions. For
example, in the above SO tgd, the target expressiond.did is equated
with two expressions:F [g] via b1, andG[w, g] via b′2. In other
words, the semantics of the new constraint requires the values of
the two Skolem terms to coincide. This is actually what it means to
correlateb1 andb′2. We can represent such correlation, explicitly, as
the following conditional equality (implied by the above SO tgd):

for w in Works,g in Groupsatisfyingw.gno =g.gnoandw.addr = “NY”
⇒ F [g] = G[w, g]

We use the termresidual equality constraintfor such equality
constraint where one member in the implied equality is a Skolem
term while the other is either a source expression or another Skolem
term. Such constraints have to be enforced at runtime when we
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perform data exchange with the result of MapMerge. In general,
Skolem functions are implemented as (independent) lookup tables,
where for every different combination of the arguments, the lookup
table gives a fresh new null. However, residual constraints will
require correlation between the lookup tables. For example, the
above constraint requires that the two lookup tables (forF andG)
must give the same value wheneverw andg are tuples ofWorks
andGroupwith the samegno value.

To conclude the presentation of Phase 3, we list the other three
merged SO tgds below that result after this phase for our example.
(s1) from (T1, T3, b1):

for g in Group
existsd in Dept
whered.did = F [g] andd.dname=g.gname

(s6) from (T2, T5, b1 ∧ b3):
for w in Works,g in Groupsatisfyingw.gno =g.gno
existsp in Proj,d in Dept
wherep.did = d.did
and d.did = F [g] andd.dname=g.gname
and p.pname =w.pnameandp.budget =H1[w] andp.did = H2[w]

(s9) from (T ′

2
, T5, b1 ∧ b′

2
∧ b3):

for w in Works,g in Group
satisfyingw.gno =g.gnoandw.addr = “NY”
existsp in Proj,d in Dept
wherep.did = d.did
and d.did = F [g] andd.dname=g.gname
and p.pname =w.pnameandp.budget =H1[w] andp.did = H2[w]
and d.did = G[w, g]

One aspect to note is that not all skeletons generate merged SO
tgds. Although we had six earlier skeletons, only three generate
mappings that are neithersubsumednor implied. (See also the ap-
pendix.) We use here the technique for pruning subsumed or im-
plied mappings described in [10]. For an example of a subsumed
mapping, consider the triple(T1, T4, b1). We do not generate a
mapping for this, because its behavior is subsumed bys1, which
includes the same basic componentb1 but maps into a more “gen-
eral” tableau, namelyT3. Intuitively, we do not want to construct a
mapping intoT4, which is a larger (more specific) tableau, without
actually using the extra part ofT4. Implied mappings are those that
are logically impliedby other mappings. For example, the map-
ping that would correspond to(T2, T3, b1) is logically implied by
s6: they both have the same premise (T2), buts6 asserts facts about
a larger tableau (T5, which includesT3) and already coversb1.

Finally, for our example, we also obtain three more residual
equality constraints, arising froms6, and stating the pairwise equal-
ities of F [g], H2[w] andG[w, g] (since they are all equal top.did
andd.did, which are also equal to each other).

Since residual equalities cause extra overhead at runtime, it is
worthwhile exploring when such constraints can be eliminated with-
out changing the overall semantics. We describe such method next.

4.4 Phase 4: Eliminate Residual Equality Constraints

The fourth and final phase of the MapMerge algorithm attempts
to eliminate as many Skolem terms as possible from the generated
SO tgds. The key idea is that, for each residual equality constraint,
we attempt to substitute, globally, one member of the equality with
the other member. If the substitution succeeds then there is one less
residual equality constraint to enforce during runtime. Moreover,
the resulting SO tgds are syntactically simpler.

Consider our earlier residual constraint stating the equalityF [g] =
G[w, g] (under the conditions of thefor and satisfying clauses).
The two Skolem termsF [g] andG[w, g] occur globally in multi-
ple SO tgds. To avoid the explicit maintenance and correlation of

two lookup tables (for bothF andG), we attempt the substitution
of eitherF [g] with G[w, g] or G[w, g] with F [g]. Care must be
taken since such substitution cannot be arbitrarily applied. First,
the substitution can only be applied in SO tgds that satisfy the pre-
conditions of the residual equality constraint. For our example, we
cannot apply either substitution to the earlier SO tgds1, since the
precondition requires the existence ofWorkstuple that joins with
Group. In general, we need to check for the existence of a homo-
morphism that embeds the preconditions of the residual equality
constraint into thefor andwhereclauses of the SO tgd. The second
issue is that the direction of the substitution matters. For example,
let us substituteF [g] by G[w, g] in every SO tgd that satisfies the
preconditions. There are two such SO tgds:s8 ands9. After the
substitution, in each of these SO tgds, the equalityd.did = F [g]
becomesd.did = G[w, g] and can be dropped, since it is already in
thewhereclause. Note, however, that the replacement ofF [g] by
G[w, g] did not succeed globally. The SO tgdss1 ands6 still refer
to F [g]. Hence, we still need to maintain the explicit correlation of
the lookup tables forF andG. On the other hand, let us substitute
G[w, g] by F [g] in every SO tgd that satisfies the preconditions.
Again, there are two such SO tgds:s8 and s9. The outcome is
different now: G[w, g] disappears from boths8 ands9 (in favor
of F [g]); moreover, it did not appear ins1 or s6 to start with. We
say that the substitution ofG[w, g] by F [g] has globally succeeded.
Following this substitution, the constraints9 is implied bys6: they
both assert the same target tuples, and the source tableauT ′

2 for s9

is a restriction of the source tableauT2 for s6. Hence from now on
we can discard the constraints9.

Similarly, based on the other residual equality constraint we had
earlier, we can apply the substitution ofH2[w] by F [g]. This af-
fects onlys6 and the outcome is thatH2[w] has been successfully
replaced globally. The resulting SO tgds, for our example, are:

(s1) for g in Group
existsd in Dept
whered.did = F [g] andd.dname=g.gname

(s′
6
) for w in Works,g in Groupsatisfyingw.gno =g.gno

existsp in Proj,d in Dept
wherep.did = d.did
and d.did = F [g] andd.dname=g.gname
and p.pname =w.pnameandp.budget =H1[w] andp.did = F [g]

(s′
8
) for w in Works,g in Group

satisfyingw.gno =g.gnoandw.addr = “NY”
existse in Emp,d in Dept
wheree.did = d.did
andd.did = F [g] andd.dname=g.gname
ande.ename =w.enameande.addr =w.addrande.did = F [g]

As explained in Section 3, boths′6 ands′8 can be simplified, by
removing the assertions aboutDept, since they are implied bys1.
The result is then identical to the SO tgds shown in Figure 1(c).

Our example covered only residual equalities between Skolem
terms. The case of equalities between a Skolem term and a source
expression is similar, with the difference that we form only one
substitution (to replace the Skolem term by the source expression).

The exact algorithm for eliminating residual constraints, given in
the appendix, is an exhaustive algorithm that forms each possible
substitution and attempts to apply it on the existing SO tgds. If the
replacement is globally successful, the residual equality constraint
that generated the substitution can be eliminated. Then, the algo-
rithm goes on to eliminate other residual constraints on the rewrit-
ten SO tgds. If the replacement is not globally successful, the algo-
rithm tries the reverse substitution (if applicable). In general, it may
be the case that neither substitution succeeds globally. In such case,
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the corresponding residual constraint is kept as part of the output
of MapMerge. Thus, the outcome of MapMerge is, in general, a set
of SO tgdstogetherwith a set of residual equality constraints. (For
our example, the latter set is empty.)

Finally, the last issue that arises is the case of conflicts in map-
ping behavior. Conflicts can also be described via constraints, sim-
ilar to residual equality constraints but with the main difference
that both members of the equality are source expressions (and not
Skolem terms). To illustrate, it might be possible that a merged
SO tgd asserts that the target expressiond.dname is equal to both
g.gname (from some input mapping) and withg.code (from some
other input mapping, assuming thatcode is some other source
attribute). Then, we obtain conflicting semantics, with two com-
peting source expressions for the same target expression. Our al-
gorithm flags such conflicts, whenever they arise, and returns the
mapping to the user to be resolved.

5. Evaluation
To evaluate the quality of the data generated based on Map-

Merge, we introduce a measure that captures the similarity between
a source and target instance by measuring the amount of data asso-
ciations that are preserved by the transformation from the source to
the target instance. We use this similarity measure in our experi-
ments to show that the mappings derived by MapMerge are better
than the input mappings. The experiements are all given in Ap-
pendix B.
Similarity measure The main idea behind our measure is to cap-
ture the extent to which the “associations” in a source instance are
preserved when transformed into a target instance of a different
schema. For each instance, we will compute a single relation that
incorporates all the natural associations between data elements that
exist in the instance. There are two types of associations we con-
sider. The first type is based on the chase with referential con-
straints and is naturally captured by tableaux. As seen in Sec-
tion 4.2, a tableau is a syntactic object that takes the “closure” of
each relation under referential constraints. We can then material-
ize the join query that is encoded in each tableau and select all the
attributes that appear in the input relations (without duplicating the
foreign key / key attributes). Thus, for each tableau, we obtain a
single relation, calledtableau relation, that conveniently materi-
alizes together data associations that span multiple relations. For
example, the tableau relations for the source instanceI in Figure 1
(for tableauxT1 andT2 in Section 4.2) are shown on top of Figure
3(b). We denote the tableau relations of an instanceI of schemaS
asτS(I), or simplyτ (I). The tableau relationsτ (J1) andτ (J2)
for our running example are also shown in Figure 3.

The second type of association that we consider is based on the
notion offull disjunction[11, 20]. Intuitively, the full disjunction of
relationsR1, ...,Rk, denoted asFD(R1, ..., Rk), captures in a sin-
gle relation all the associations (via natural join) that exist among
tuples of the input relations. The reason for using full disjunction
is that tableau relations by themselves do not capture all the asso-
ciations. For example, consider the association that exists between
John and Web in the earlier source instanceJ2. There,John is
an employee inCS, andWeb is a project inCS. However, since
there is no directed path via foreign keys fromJohn to Web, the
two data elements appear in different tableau relations ofτ (J2)
(namely,DeptEmpandDeptProj). On the other hand, if we take
the natural join betweenDeptEmpand DeptProj, the association
betweenJohnandWebwill appear in the result. Thus, to capture
all such associations, we apply an additional step which computes
the full disjunctionFD(τ (I)) of the tableau relations. This gener-

ates a single relation that conveniently captures all the associations
in an instanceI of schemaS. Intuitively, each tuple in this relation
corresponds to one association that exists in the data.

Operationally, full disjunction must perform the outer “union”
of all the tuples in every input relation, together with all the tuples
that arise via all possible natural joins among the input relations.
To avoid redundancy,minimal unionis used instead of union. This
means that in the final relation, tuples that are subsumed by other
tuples are pruned. A tuplet is subsumedby a tuplet′ if for all
attributesA such thatt.A 6= null, it is the case thatt′.A = t.A. We
omit here the details of implementing full disjunction, but we point
out that such implementation is part of our experimental evaluation.

For our example, we showFD(τ (J1)), FD(τ (I)), andFD(τ (J2))
at the bottom of Figure 3. There, we use the ’-’ symbol to repre-
sent the SQL null value. We note thatFD(τ (J2)) connects now all
three ofJohn, WebandCSin one tuple.

Now that we have all the associations in a single relation, one
on each side (source or target), we can compare them. More pre-
cisely, given a source instanceI and a target instanceJ , we de-
fine the similarity betweenI andJ by defining the similarity be-
tweenFD(τ (I)) andFD(τ (J)). However, when we compare tu-
ples betweenFD(τ (I)) and FD(τ (J)), we should not compare
arbitrary pairs of attributes. Intuitively, to avoid capturing “acci-
dental” preservations, we want to compare tuples based only on
their compatibleattributes that arise from the mapping. In the fol-
lowing, we assume that all the mappings that we need to evaluate
implement the same setV of correspondences between attributes
of the source schemaS and attributes of the target schemaT. This
assumption is true for mapping generation algorithms, which start
from a set of correspondences and generate a faithful implemen-
tation of the correspondences (without introducing new attribute-
to-attribute mappings). It is also true for MapMerge and its input,
since MapMerge does not introduce any new attribute-to-attribute
mappings that are not already specified by the input mappings.
Given a setV of correspondences betweenS andT, we say that
an attributeA of S is compatiblewith an attributeB of T if ei-
ther there is a direct correspondence betweenA andB in V, or (2)
A is related to an attributeA′ via a foreign key constraint ofS,
B is related to an attributeB′ via a foreign key constraint ofT,
andA′ is compatible withB′. For our example, the pairs of com-
patible attributes (from source to target) are:(gname, dname),
(ename, ename), (addr, addr), (pname,pname).

DEFINITION 1 (TUPLE SIMILARITY ). Let t1 and t2 be two
tuples inFD(τ (I)) and, respectively,FD(τ (J)). Thesimilarity of
t1 andt2, denoted asSim(t1, t2), is defined as:

|{A ∈ Atts(t1) | ∃B ∈ Atts(t2), A andB compatible, t1.A = t2.B 6= null}|

|{A ∈ Atts(t1) | ∃B ∈ Atts(t2), A andB compatible}|

Intuitively, Sim(t1, t2) captures the ratio of the number of values
that are actually exported fromt1 to t2 versus the number of values
that could be exported fromt1 according toV. For instance, lett1
be the only tuple inFD(τ (I)) from Figure 3 andt2 the only tuple
in FD(τ (J2)). Then,Sim(t1, t2) is 1.0, sincet1.A = t2.B for
every pair of compatible attributesA andB. Now, lett2 be the first
tuple inFD(τ (J1)). Since onlyt1.gname =t2.dname out of four
pairs of compatible attributes, we have thatSim(t1, t2) is 0.25.

DEFINITION 2 (INSTANCE SIMILARITY). The similarity be-
tweenFD(τ (I)) andFD(τ (J)) is

Sim(FD(τ (I)),FD(τ (J)) =
X

t1∈FD(τ(I))

max
t2∈FD(τ(J))

Sim(t1, t2).
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Group
gno gname

123 CS

GroupWorks
gno gname ename addr pname

123 CS John NY Web

τS1(I) : Tableaux relations of I

FD(ττττS1(I)):Full disjunction of ττττS1(I)

gno gname ename addr pname

123 CS John NY Web

DeptEmp
did dname ename addr
D2 CS John NY

Dept
did dname

D1 CS
D2 CS
D3 N

τS2(J1) : Tableaux relations of J1

DeptProj
did dname pname budget
D3 N Web B

FD(ττττS2(J1)): Full disjunction of ττττS2(J1)
did dname ename addr pname budget

D1 CS ― ― ― ―

D2 CS John NY ― ―

D3 N ― ― Web B

Similarity

0.75

Similarity

1

DeptEmp
did dname ename addr

D CS John NY

Dept
did dname

D CS

τS2(J2) : Tableaux relations of J2

DeptProj
did dname pname budget

D CS Web B’

FD(ττττS2(J2)): Full disjunction of ττττS2(J2)

did dname ename addr pname budget

D CS John NY Web B’

(b) (c)(a)

Figure 3: Tableau relations ofJ1, I , and J2 of Figure 2 and their full disjunctions.

Figure 3 depicts the similaritiesSim(FD(τ (I)), FD(τ (J1))) and
Sim(FD(τ (I)),FD(τ (J2))). The former similarity score is ob-
tained by comparing the only tuple inFD(τ (I)) with the best match-
ing tuple (i.e., the second tuple) inFD(τ (J1))).

6. Related Work
Model management [16] has considered various operators on

schema mappings, among which Confluence is closest in spirit to
MapMerge. Confluence also operates on mappings with the same
source and target schema, and it amounts to taking the conjunction
of the constraints in the input mappings. Thus, Confluence does
not attempt any correlation of the input mappings. Our work can
be seen as a step towards the high-level design and optimization in
ETL flows [21, 22]. This can be envisioned by incorporating map-
pings [4] into such flows, and employing operators such as Map-
Merge and composition to support modularity and reuse.

The instance similarity measure we used to evaluate MapMerge
draws its inspiration from the very general notion of Hausdorff dis-
tance between subsets of metric spaces, and from the sum of min-
imum distances measure. We refer to [5] for a discussion of these
measures. Moreover, our notion of tuple similarity is loosely based
on the well known Jaccard coefficient. However, the previous mea-
sures are symmetric and agnostic to the transformation that pro-
duces one database instance from the other. In contrast, our notion
is tailored to measure the preservation of data associations from a
source database to a target database under a schema mapping.

7. Conclusions
We have presented our MapMerge algorithm and an evaluation

of our implementation of MapMerge. Through a similarity mea-
sure that computes the amount of data associations that are pre-
served from one instance to another, our evaluation shows that a
given source instance has higher similarity to the target instance
obtained through MapMerge when compared to target instances
obtained through other mapping tools. As part of our future work,
we intend to explore the use of the notion of information loss [9]
to compare between mappings generated by MapMerge with those
generated by other mapping tools. In addition, we would like to
further explore applications of MapMerge to flows of mappings.
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APPENDIX

A. Pseudocode of MapMerge
The main algorithm for MapMerge is given below. This algo-

rithm makes calls to several subroutines, which are listed sepa-
rately, in the respective subsections.

Algorithm MapMerge(S, T, Σ)
Input: A schema mapping.
Output: (S, T, Σ′) andF , whereΣ′ is the correlated schema mapping
andF is a set of failed unifications or “residual constraints”.

Phase 1. (Decompose into basic SO tgds)
Initialize the set of basic SO tgdsB = ∅.
For each SO tgdσ ∈ Σ do

Add Decompose(σ) to B

Phase 2. (Compute skeletons of schema mappings)
Initialize the set of skeletonsK = ∅
Initialize the set of source and target tableauxTsrc = ∅, Ttgt = ∅
Generate the schema tableaux:

For each relationR ∈ S

Chase{x ∈ R} with referential constraints inS, add result toTsrc

For each relationQ ∈ T

Chase{y ∈ Q} with referential constraints inT, add result toTtgt

Generate the user-defined tableaux:
For each SO tgdσ ∈ Σ of the form
for ~x in ~R satisfyingB1(~x) exists~y in ~T whereB2(~y) ∧ C(~x, ~y)

Chase{~x ∈ ~R; B1(~x)} with referential constraints inS
If the result is not implied byTsrc, add it toTsrc

Chase{~y ∈ ~T ; B2(~y)} with referential constraints inT
If the result is not implied byTtgt, add it toTtgt

For eachT ∈ Tsrc andT ′ ∈ Ttgt do
Add the skeleton(T, T ′) to K.

Phase 3. (Match and apply basic SO tgds on skeletons)
Initialize the list of output constraintsΣ′ = ∅
For each skeletonKi ∈ K do

Initialize the setBi = ∅
For eachσ ∈ B do

Let Li = Match(σ, Ki)
If Li 6= ∅, then add the pair〈σ, Li〉 to Bi

UpdateΣ′ to beΣ′ ∪ ConstructSOtgd(Ki, Bi)
Remove fromΣ′ everyσ′ such that for someσ′′ ∈ Σ′

such thatσ′′ 6= σ′, eitherσ′′ |= σ′ or σ′′ subsumesσ′

Phase 4. (Eliminate residual equality constraints)
Initialize the list of failed substitutionsF = ∅
Repeat

Let U = FindNextSubstitution(Σ′ , F )
If U is a substitution candidate (i.e., not a failure) then

If U cannot be successfully applied onΣ′

(i.e., Substitute(Σ′ , U) fails) then
Add the failed substitutionU to F

Until no more substitutions can be applied
Return(Σ′, F ) as the output of the algorithm

A.1 Pseudocode used by Phase 1

The algorithm that decomposes an input SO tgd into its set of
basic SO tgds is listed below.

Algorithm Decompose(σ)
Input: σ is an input SO tgd
Output: Σ is a set of basic SO tgds resulting from the decomposition ofσ

Initialize Σ = ∅
Assume the input SO tgdσ is of the form:

for ~x in ~S satisfyingC(~x) exists~y in ~T whereC′(~x, ~y)

The target conditionC′ is a conjunction of equalities between source and
target expressions, or between target expressions. These equalities partition
the source and target expressions in thewhereclause into a set E of equiv-
alence classes. Associate a fresh Skolem termFj [~x] to each equivalence
classEj ∈ E.

For eachyi in Ti from theexistsclause ofσ

Initialize the basic SO tgdσ′ to be
for ~x in ~S satisfyingC(~x) existsyi in Ti

For each attributeA of the recordyi do
If yi.A appears in an equivalence classEj ∈ E then

If Ej contains a source expressionsk.B then
Add yi.A = xk.B to thewhereclause ofσ′

Else addyi.A = Fj [~x] to thewhereclause ofσ′

Else addyi.A = G[~x] to thewhereclause ofσ′,
whereG is a fresh Skolem function name

Add σ′ to Σ
ReturnΣ as the output of the algorithm

A.2 Pseudocode for Phase 3

The subroutine that determines whether a basic SO tgdσ matches
a skeleton(T, T ′) is presented below. Ifσ matches(T, T ′), then
the subroutine Match returns a pair of homomorphisms that “em-
beds”σ to (T, T ′). Otherwise, an empty set is returned.

Algorithm Match(σ, (T, T ′))
Input: σ is a basic SO tgd,T andT ′ are tableaux.
Output: (h, g), whereh andg “embed”σ into (T, T ′).

Recall that the input basic SO tgdσ has the form:
for x1 in S1, x2 in S2, . . . ,xn in Sn

satisfyingB(x1, . . . , xn)
existsy in Q

where
V

A∈Atts(y)
y.A = ei(x1, . . . , xn)

The satisfyingclause is a conjunction of equalities of the formxi.Ai =
xj .Aj or xi.Ai = c, whereAi ∈ Atts(xi), Aj ∈ Atts(xj ), andc is a
constant. The setAtts(y) denotes the set of attributes in the recordy. The
whereclause contains one equality constraint for each attribute of the y
record.

In addition, the tableauT has the form:
{u1 ∈ R1, u2 ∈ R2, . . . , uk ∈ Rk; CT (u1, . . . , uk)}

If there exists a pair of homomorphisms(h, g) such that
(1) for every1 ≤ i ≤ n, if xi ∈ Si according toσ,

thenh(xi) ∈ Ri according toT ,
(2) CT (u1, . . . , uk) impliesB(h(x1), . . . , h(xn)), and
(3) g(y) ∈ Q according toT ′

Return(h, g)
Else

Return∅

The algorithm that constructs a merged SO tgd by applying the
result of the previous Match algorithm on the skeletons is listed
below.

Algorithm ConstructSOtgd((T, T ′), B)
Input: (T, T ′) is a skeleton andB is a set of pairs(σ, (h, g)), whereσ is
a basic SO tgd, and(h, g) “embeds”σ into (T, T ′).
Output: A Skolemized SO tgd according to(T, T ′, B).

Recall thatT andT ′ have the form:
T = {x1 ∈ S1, x2 ∈ S2, . . . , xp ∈ Sp; C(x1, . . . , xp)}

T ′ = {y1 ∈ Q1, y2 ∈ Q2, . . . , yk ∈ Qk; C′(y1, . . . , yk)}

Initialize the SO tgdτ to be:
for x1 in S1, x2 in S2, . . . ,xp in Sp

satisfyingC(x1, . . . , xp)
existsy1 in Q1, y2 in Q2, . . . ,yk in Qk

whereC′(y1, . . . , yk)
For each(σ, (h, g)) ∈ B

Recall thatσ is a basic SO tgd of the form:
for xj1 in Sj1 , xj2 in Sj2 , . . . ,xjn in Sjn

satisfyingBj(xj1 , . . . , xjn )
existsy in Qj

where
V

A∈Atts(y)
y.A = eA(xj1 , . . . , xjn )

Add Bj(h(xj1 ), . . . , h(xjn )) to thesatisfyingclause ofτ
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Add the following conjunction of equalities:
V

A∈Atts(y)
g(y).A = eA(g(xj1 ), . . . , g(xjn ))

to thewhereclause ofτ
Returnτ

We list below the complete set of SO tgds that are constructed
in Phase 3 of MapMerge before the actual step of eliminating the
subsumed or implied SO tgds.

(s1) from (T1, T3, b1):
for g in Group
existsd in Dept
whered.did = F [g] andd.dname=g.gname

(s2) from (T1, T4, b1):
for g in Group
existse in Emp,d in Dept
whered.did = F [g] andd.dname=g.gname

(s3) from (T1, T5, b1):
for g in Group
existsp in Proj,d in Dept
whered.did = F [g] andd.dname=g.gname

(s4) from (T2, T3, b1):
for w in Works,g in Groupsatisfyingw.gno =g.gno
existsd in Dept
whered.did = F [g] andd.dname=g.gname

(s5) from (T2, T4, b1):
for w in Works,g in Groupsatisfyingw.gno =g.gno
existse in Emp,d in Dept
whered.did = F [g] andd.dname=g.gname

(s6) from (T2, T5, b1 ∧ b3):
for w in Works,g in Groupsatisfyingw.gno =g.gno
existsp in Proj,d in Dept
wherep.did = d.did
and d.did = F [g] andd.dname=g.gname
and p.pname =w.pnameandp.budget =H1[w] andp.did = H2[w]

(s7) from (T ′

2
, T3, b1 ∧ b′

2
):

for w in Works,g in Groupsatisfyingw.gno =g.gnoandw.addr = “NY”
existsd in Dept
whered.did = F [g] andd.did = G[w, g] andd.dname=g.gname

(s8) from (T ′

2
, T4, b1 ∧ b2 ∧ b′

2
):

for w in Works,g in Groupsatisfyingw.gno =g.gnoandw.addr = “NY”
existse in Emp,d in Dept
wheree.did = d.did
andd.did = F [g] andd.dname=g.gname
ande.ename =w.enameande.addr =w.addrande.did = G[w, g]
andd.did = G[w, g]

(s9) from (T ′

2
, T5, b1 ∧ b′

2
∧ b3):

for w in Works,g in Groupsatisfyingw.gno =g.gnoandw.addr = “NY”
existsp in Proj,d in Dept
wherep.did = d.did
and d.did = F [g] andd.dname=g.gname
and p.pname =w.pnameandp.budget =H1[w] andp.did = H2[w]
andd.did = G[w, g]

In the above list of constructed SO tgds,s2 is subsumed bys1.
Similarly, s3 is subsumed bys1. Moreover,s5 is subsumed bys4,
which is in turn logically implied bys6. Finally, s7 is logically
implied bys9. The remaining SO tgds ares1, s6, s8, ands9, and
none of them is logically implied or subsumed by another. Hence,
these four SO tgds are returned by Phase 3 of the algorithm.

A.3 Pseudocode for Phase 4

The algorithm that forms substitutions to be applied during the
elimination of residual equality constraints is listed below. Note
that the residual equality constraints are created as needed (in the
form of actual substitutions) from the input SO tgds. At the end
of MapMerge, all the failed substitutions are returned as the final
residual equality constraints.

Algorithm FindNextSubstitution(Σ, F )
Input: Σ is a set of SO tgds,F is a set of substitutions that have failed on
previous attempts.
Output: Either (1)U : a substitution candidate that has not been applied on
Σ before or, (2) failure if no substitution candidates can be found.

For each SO tgdσ ∈ Σ
Recall thatσ has the form:

for x1 in S1, x2 in S2, . . . ,xp in Sp

satisfyingB(x1, . . . , xp)
existsy1 in Q1, y2 in Q2, . . . ,yk in Qk

where
V

1≤j≤k

V

A∈Atts(yj) yj .A = ejA(x1, . . . , xp)

Let Cσ be thesource context(i.e., thefor andsatisfyingclause ofσ).
{x1 ∈ S1, x2 ∈ S2, . . . ,xp ∈ Sp ; B(x1, . . . , xp)}

For each target expressionyj .A in thewhereclause ofσ
Let{E1, . . . , Em} be the list of source expressions equated

with yj .A directly or indirectly in thewhereclause ofσ.
If m > 1 then

There are three cases to consider depending on the number of
source expressions in the list{E1, ...,Em}.
Case 1.There is more than one source expression of the

form xi.A, where1 ≤ i ≤ p.
Return conflicting SO tgdσ to the user and exit.

Case 2.There is exactly one source expression of the
form xi.A, where1 ≤ i ≤ p.
Wlog, letE1 denote the source expressionxi.A in the list.
Let U = (Cσ , Ei, E1) such that2 ≤ i ≤ m andU 6∈ F .
If such aU can be found, returnU .
Otherwise, continue.

Case 3.There are no source expressions of the
form xi.A, where1 ≤ i ≤ p.
Let U = (C, Ei, Ej) such thati 6= j and
1 ≤ i, j ≤ m andU 6∈ F .
If such aU can be found, returnU .
Otherwise, continue.

Return failure (no substitutions can be found)

The algorithm that actually applies a substitution on the SO tgds
is presented below.

Algorithm Substitute(Σ, U )
Input: Σ is a set of SO tgds,U is a substitution
Output: Success ifU can be applied toΣ. Otherwise, return failure.

Recall thatU is of the form(C, E1, E2), whereE1 andE2 are source
expressions, andC has the form:

{x1 ∈ S1, x2 ∈ S2, . . . , xp ∈ Sp ; B(x1, . . . , xp)}

For each constraintσ ∈ Σ
Assumeσ is of the form:

for x′

1
in S′

1
, x′

2
in S′

2
, . . . ,x′

n in S′

n

satisfyingB′(x′

1
, . . . , x′

n)
existsy1 in Q1, y2 in Q2, . . . ,yk in Qk

where
V

1≤j≤k

V

A∈Atts(yj)
yj .A = ejA(x′

1
, . . . , x′

p)

If there is a homomorphismh : {x1, ..., xp} → {x′

1, ..., x′

n} such that
B′(x′

1
, ..., x′

n) impliesB(h(x1), ..., h(xp))
Replaceh(E1) with h(E2) in σ

Else
Revert to the originalΣ from the start of the Substitute routine
Return failure
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B. Experimental Evaluation
We conducted a series of experiments on a set of synthetic and

real-life mapping scenarios to evaluate MapMerge. We first report
on the synthetic mapping scenarios and, using the similarity mea-
sure presented in Section 5, demonstrate a clear improvement in the
preservation of data associations when using MapMerge. We then
present results for two interesting real-life scenarios, whose char-
acteristics match those of our synthetic scenarios. We have also
implemented some of our synthetic scenarios on two commercial
mapping systems. The comparison between the mappings gener-
ated by these systems and by MapMerge produced results similar
to the previous experiments.

We implemented MapMerge in Java as a module of Clio [10].
For all our experiments we started by creating the mappings with
Clio. These mappings were then used as input to the MapMerge op-
erator. To perform the data exchange, we used the query generation
component in Clio to obtain SQL queries that implement the map-
pings in the input and output of MapMerge. These queries were
subsequently run on DB2 Express-C 9.7. All results were obtained
on a Dual Intel Xeon 3.4GHz machine with 4GB of RAM.

B.1 Synthetic Mapping Scenarios

Our synthetic mapping scenarios follow the pattern of transform-
ing data from a denormalized source schema to a target schema
containing a number of relational hierarchies, with each hierarchy
having at its top an “authority” relation, while other relations re-
fer to the authority relation through foreign key constraints. For
example, Figure 4 shows a source schema that consists of a single
relationS. The target schema consists of2 hierarchies of relations,
rooted at relationsT1 andT2. Each relation in a hierarchy refers
to the root via a foreign key constraint from itsF attribute to the
K attribute of the root. This type of target schema is typical in
ontologies, where a hierarchy of concepts often occurs.
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Figure 4: Synthetic Experimental Scenario

The synthetic scenarios are parameterized by the number of hi-
erarchies in the target schema, as well as the number of relations
referring to the root in each hierarchy. For our experimental set-
tings we choose these two parameters to be equal, and their com-
mon valuen defines what we call the complexity of the mapping
scenario. In Figure 4 we show an example wheren = 2. The
table in Figure 5 shows the sizes of the experimental scenarios in
terms of the number of target relations and the execution times for
generating Clio mappings and running the MapMerge operator. We
notice that the time needed to execute MapMerge is small (less than
2 minutes in our largest scenario) but dominates the overall execu-
tion time as the number of target relations grow.

The graphs in Figure 5 show the results of our experiments on the
synthetic mapping scenarios. For each scenario, the source instance
contained 100 tuples populated with randomly generated string val-
ues. The first graph shows that the target instances generated using
MapMerge mappings are consistently (and considerably) smaller
than the instances generated using Clio mappings. Here we used

the total number of atomic data values on the generated target in-
stances as the size of the target instance (i.e., the product of number
of tuples and relation arity, summed across target relations).

The second graph in Figure 5 shows that the source instances
have a higher degree of similarity to these smaller target MapMerge
instances. The degree of similarity of a source instanceI to a target
instanceJ is computed as a ratio ofSim(FD(τ (I)),FD(τ (J)) to
Sim(FD(τ (I)),FD(τ (I))), where the latter represents the ideal
case where every tuple inFD(τ (I)) is preserved by the target in-
stance and this quantity simplifies to the expression|FD(τ (I))|.
We notice that the degree of similarity decreases as the complex-
ity of the mapping scenario (n) increases. This is because asn in-
creases, more uncorrelated hierarchies are used in the target schema.
In turn, this means that the source relation is broken into more un-
correlated target hierarchies, and hence, they are less similar to the
source. The graph shows that Clio mappings, when compared to
MapMerge mappings produce target instances that are significantly
less similar to the source instance in all cases. Furthermore, the
relative improvement when using MapMerge on top of the Clio
mappings (shown as the numbers on top of the bars) increases sub-
stantially, asn becomes larger. Intuitively, this is because most
of the Clio mappings will map the source data into each root and
one of its child relation. On the other hand, MapMerge factors out
the common mappings into the root relation and properly correlates
the generated tuples for the child relation with the tuples in the root
relation. The effect is that all child relations in the hierarchy are
correlated by MapMerge while Clio mappings can only correlate
root-child pairs.

B.2 Real-life Scenarios

We consider two related scenarios from the biological domain in
this section. In the first scenario, we mapped Gene Ontology into
BioWarehouse4. In the second, we mapped UniProt to BioWare-
house. The BioWarehouse documentation specifies the semantics
of the data transformations needed to load data from various bi-
ological databases, including Gene Ontology and UniProt. In the
GeneOntology scenario, we extracted 1000 tuples for each relation
in the source schema of the mapping, while in the UniProt scenario
we extracted the first 100 entries for the human genome and con-
verted them from XML to a relational format to use as a source
instance in our experiments. Table 1 shows the number of source
and target tables mapped, the number of correspondences used for
each mapping scenario, and the number of mapping expressions
generated by Clio for each scenario.

Mapping Source Target Attribute Clio
Scenario relations relations CorrespondencesMappings

GeneOntology 3 4 5 4
UniProt 13 10 23 14

Table 1: Characteristics of real-life mapping scenarios

Mapping Size of Degree
Mapping generation target of
Scenario time (s) instance similarity (%)

Clio MapMerge Clio MapMerge Clio MapMerge

GeneOntology 1.71 0.34 11557 7801 29.7 35.3
UniProt 2.36 2.13 12923 11446 20.8 75.8

Table 2: Results for real-life mapping scenarios

4http://biowarehouse.ai.sri.com/
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(n) Number Mapping generation
Scenario of target time (s)

Complexity relations Clio MapMerge

2 6 0.55 0.42
4 20 2.07 0.82
6 42 2.22 2.27
8 72 5.54 6.14
10 110 7.81 10.67
12 156 10.43 22.98
14 210 19.02 54.94
16 272 31.51 107.99
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Figure 5: Experiments on synthetic scenarios

In Table 2 we show the results of applying MapMerge to the
mappings generated by Clio in each scenario. Thegeneration time
columns show the time needed to generate the Clio mappings and
the time needed by MapMerge to process those mappings (i.e., the
total execution time is the sum of the two times). Thesize of target
instancecolumns show the total number of atomic data values on
the generated target BioWarehouse instance for each scenario. In
both cases, the mappings produced with MapMerge reduced the
target instance sizes.

Thedegree of similaritycolumns present the similarity measure
from Section 5 for each scenario. This similarity is normalized as a
percentage to ease comparison across scenarios and the percentage
is with respect to the ideal similarity that a mapping can produce
for the scenario. As discussed in Section B.1, this ideal similarity
is the number of tuples in the tableau full disjunction of the source,
i.e., |FD(τ (I))|.

On the two real-life settings, MapMerge is able to further cor-
relate the mappings produced by Clio by reusing behavior in map-
pings that span across different target tableaux and, thus, improving
the degree of similarity. This improvement is very significant in the
UniProt scenario, where the target schema has a central relation and
twelve satellite relations that point back to the central relation (via
a key/foreign key). Here, each Clio mapping maps source data to
the central and one satellite relation. MapMerge factors out this
common part from all Clio mappings and properly correlates all
generated tuples to the central relation.

B.3 Commercial Systems

We implemented some of the synthetic scenarios described in
Section B.1 in two commercial mapping systems. Provided with
only the correspondences from source attributes to target attributes,
these systems produced mappings that scored lower than both the
Clio and MapMerge mappings with respect to preservation of data
associations. For instance, in the synthetic scenario of complex-
ity 2, while the MapMerge mappings had a result of 50% and the
Clio mappings 33%, the result for both commercial systems was
only 16%. The main reason behind this result is that these sys-
tems do not automatically take advantage of any constraints present
on the schemas to better correlate generated data and increase the
preservation of data associations. The mappings generated by these
commercial systems need to be manually refined to fix this lack of
correlations.
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