MapMerge: Correlating Independent Schema Mappings

Bogdan Alexe Mauricio Hernandez Lucian Popa Wang-Chiew Tan
UC Santa Cruz IBM Almaden IBM Almaden IBM Almaden & UC Santa Cruz
ABSTRACT Many commercial data transformation systems such as Altova

. . . . Mapforcé and Stylus Studioto name a few, as well as research
One of the main steps towards integration or exchange of data 'Sprototypes such as Clio [6] or HePToX [3], include mapping de-

to design the mappings that describe the (often complex) relation- gjgn tq0ls that can be used by a human user to derive the data trans-
ships between.the source sghemas or formats and the desired target - mation program between a source schema and a target schema.
schema. In this paper, we introduce a new operator, called Map- st of these tools work in two steps. First, a visual interface is

Merge, that can be used to correlate multiple, independently de- s (o solicit all known correspondences of elements between the
signed schema mappings of smaller scope into larger schema mapy, schemas from the mapping designer. Such correspondences
pings. This allows a more modular construction of complex map- e ysually depicted as arrows between the attributes of the source
pings from various types of smaller mappings such as sc.he.ma COand target schemas. (See, for example, Figure 1(a)). Sometimes,
respondences produced by a schema matcher or pre-existing map gchema matching module [19] is used to suggest or derive corre-
pings that were designed by either a human user or via mapping gpongences. Once the correspondences are established, the system
tools. In particular, the new operator also enables a new “divide- jnierprets them into an executable script, such as an XQuery or SQL
and-merge” paradigm for mapping creation, where the design is o 61y \vhich can then transform an instance of the source schema
divided (on purpose) into smaller components that are easier t0jny, an instance of the target schema. The generated transformation
create and understand, and where MapMerge is used to automatycyint s ysually close to the desired specification. In most cases,

ically generate a meaningful overall mapping. We describe our pqyever, portions of the script still need to be refined to obtain the
MapMerge algorithm and demonstrate the feasibility of our im- jagired specification.
plementation on several real and synthetic mapping scenarios. In \va note that for both Clio and HePToX, the correspondences are

our experiments, we make use of a novel similarity measure be- ot compiled into internaschema mapping assertions schema
tween two database instances with different schemas that q“am"mappingsin short, which are high-level, declarative, constraint-like

fies the preservgtion of data assocjations. We show eXperi.memal'ystatements [12]. These schema mappings are then compiled into
that MapMerge improves the quality of the schema mappings, by e executable script. One advantage of using schema mappings as
significantly increasing the similarity between the input source in- 5, jntermediate form is that they are more amenable to the formal
stance and the generated target instance. study of data exchange and data integration [12], as well as to opti-
mization and automatic reasoning. In fact, the main technique that
. we introduce in this paper represents a form of automatic reasoning
1. Introduction on top of schema mappings.

Schema mappings are essential building blocks for information ~ Animportant drawback of the previously outlined two-step sche-
integration. One of the main steps in the integration or exchange ma mapping design paradigm is that it is hard to retro-fit any pre-
of data is to design the mappings that describe the desired relation-existing or user-customized mappings back into the mapping tool,
ships between the various source schemas or source formats and theince the mapping tool is based on correspondences. Thus, if the
target schema. Once the mappings are established, they can be usedapping tool is restarted, it will regenerate the same fixed trans-
either to support query answering on the (virtual) target schema, aformation script based on the input correspondences, even though
process that is traditionally called data integration [13], or to phys- some portions of the transformation task may have already been
ically transform the source data into the target format, a process refined (customized) by the user or may already exist (as part of a
referred to as data exchange [7]. In this paper, we focus on the dataprevious transformation task, for example).
exchange aspect although our mapping generation methods will be In this paper, we propose a radically different approach to the de-
equally applicable to derive mappings for data integration. sign of schema mappings where the mapping tool can take as input

arbitrary mapping assertions and not just correspondences. This al-
Permission to make digital or hard copies of all or part of this work for lows for .the modular construction of (_:omplex ".’md larger mappings
personal or classroom use is granted without fee provided that copies are/f0M various types of “smaller” mappings that include schema cor-
not made or distributed for profit or commercial advantage and that copies respondences but also arbitrary pre-existing or customized map-
bear this notice and the full citation on the first page. To copy otherwise, to pings. An essential ingredient of this approach is a new operator
republish, to post on servers or to redistribute to lists, requires prior specific on schema mappings that we clhpMergeand that can be used

permission and/or a fee. Articles from this volume were presented at The {4 automatically correlate the input mappings in a meaningful way.
36th International Conference on Very Large Data Bases, September 13-17,

2010, Singapore. 1 It
Proceedings of the VLDB Endowmeib]. 3, No. 1 waw.a ova.com
Copyright 2010 VLDB Endowment 2150-8097/10/095.10.00. www.stylusstudio.com

81

Input mappings from S, to S,: Output of MapMerge(S,, S,, {t;, t,, t;}):
Schema S, Schema s, Intermediate ~ SchemasS,
Emp object (t;) for g in Group exists d in Dept for g in Group exists d in Dept
Group Bnames— A where d.dname = g.gname where d.dname = g.gname, d.did = F[g]

r1*gno addr CompSci
i | gname | t did---4-- m, did (t,) for w in Works, g in Group for w in Works, g in Group
E ¥ i dname satisfying w.gno = g.gno, w.addr = “NY” satisfying w.gno = g.gno, w.addr = “NY”
5 Bept | CSDept st exists e in Emp, d in Dept exists e in Emp
! [Works t did :—_:':1 L, did ename where e.did = d.did, where e.ename = w.ename, e.addr = w.addr,
i | ename : dname 1 l, dname’| ™ |~~>address e.ename = w.ename, e.addr = w.addr, e.did = F[g]
E addr 1 me Projects d.dname = g.gname A)
' | pname Bl ; //’ pname forw in Works, g in Group
:—--Eno pname /f-”//' BUdgey (t3) for w in Works exists p in Proj satisfying w.gno = g.gno

s budget [} —mz where p.pname = w.phame exists p in Proj

did c--d--1 where p.pname = w.pname, p.budget = H,[w],

(a)

p.did = F[g]

(b) (c)

Figure 1: (a) A transformation flow from S; to S;. (b) Schema mappings fromS; to S». (c) Output of MapMerge.

1.1 Moativating Example and Overview

To illustrate the ideas, consider first a mapping scenario between
the schema$: andS2 shown in the left part of Figure 1(a). The
goal is data restructuring from two source relatio@spup and
Works to three target relationEmp Dept andProj. In this ex-
ample,Group(similar toDepf) represents groups of scientists shar-
ing a common area (e.g., a database group, a CS group, etc.) The
dotted arrows represent foreign key constraints in the schemas.
Independent Mappings. Assume the existence of the following
(independent) schema mappings fr&@n to S;. The first map-
ping is the constraint; in Figure 1(b), and corresponds to the
arrow t; in Figure 1(a). This constraint requires every tuple in
Group to be mapped to a tuple iDeptsuch that the group name
(gname becomes department nantmame. The second mapping
is more complex and corresponds to the group of arrows Fig-
ure 1(a). This constraint involves a custom filter condition; every
pair of joining tuples ofVorksandGroupfor which theaddr value
is “NY” must be mapped into two tuples &mpandDept shar-
ing the samalid value, and with correspondingname addr and
dnamevalues. (Note thadlid is a target-specific field that must ex-
ist and plays the role of key / foreign key). Intuitively, illustrates

Target instance J,

{t b 15} | __Emp _Q§ Dept J§ _ Proj |
ename addr did did dname _pname budget did
John NY D2 D1 CS Web B D3

CS]

N

D2
D3

Source instance I

gno gname ename addr pname gno
123 CS John NY Web 123|

Target instance J,

| ___Emp]
ename addr did

[_Dept ' 1 ___ Proj __]
did dname pname budget did
[John NY D i

D CS Web B D

MapMerge({t,t, t3})

Figure 2: Aninstance ofS; and two instances ofS-.

Depttuples forC'S with different did values), and (2)oss of as-
sociationswhere tuples are not linked correctly to each other (e.g.,
we have lost the association between project n&¥& and de-
partment namé&'S that existed in the source).

Correlated Mappings via MapMerge. Consider now the schema
mappings that are shown in Figure 1(c) and that are the result of
MapMerge applied okt1, t2, t3}. The notable difference from the
input mappings is that all mappings consistently use the same ex-
pression, namely the Skolem tedftjg] whereg denotes a distinct
Grouptuple, to give values for thédid field. The first mapping is

the same a$; but makes explicit the fact thatid is F[g]. This
mapping creates a uniqiepttuple for each distincGrouptuple.

a pre-existing mapping that a user may have spent time in the pastThe second mapping is (almost) like with the additional use of

to create. Finally, the third constraint in Figure 1(b) corresponds to
the arrowts and mappnamefrom Worksto Proj. This is an exam-

ple of a correspondence that is introduced by a user after loading
and the pre-existing mapping into the mapping tool.

The goal of the system is now to (re)generate a “good” overall
schema mapping fror; to S2 based on its input mappings. We
note first that the input mappings, when considered in isolation, do
not generate an ideal target instance.

Indeed, consider the source instarican Figure 2. The target
instance that is obtained by minimally enforcing the constraints
{t1,t2,t3} is the instance/; also shown in the figure. The first
Depttuple is obtained by applying on theGrouptuple (123, CS).
There, D1 represents somé&d value that must be associated with
CS in this tuple. Similarly, theProj tuple, with some unspecified
value B for budget and adid value of D3 is obtained vias. The
Emptuple together with the secorepttuple are obtained based
onts. As required byto, these tuples are linked via the sarie
value D2. Finally, to obtain a target instance that satisfies all the
foreign key constraints, we must also have a third tupeéptthat
includesD3 together with some unspecified department né¥e

the same Skolem tertfi[g]. Moreover, it also drops the existence
requirement foDept (since this is now implied by the first map-

ping). Finally, the third mapping differs fromy by incorporating

a join with Groupbefore it can actually use the Skolem teffy].

As an additional artifact of MapMerge, which we explain later, it
also includes a Skolem teri [w] that assigns values féudget.

The target instance that is obtained by applying the result of
MapMerge is the instancé, shown in Figure 2. The data asso-
ciations that exist in the source are now correctly preserved in the
target. For examplelVeb is linked to theC'S tuple (viaD) and
also John is linked to theC'S tuple (via the same). Further-
more, there is no duplication @fepttuples.

Flows of Mappings. Taking the idea of mapping reuse and modu-
larity one step further, an even more compelling use case for Map-
Merge in conjunction with mapping composition [8, 14, 17], is the
flow-of-mappingscenario [1]. The key idea here is that to produce

a data transformation from the source to the target, one can decom-
pose the process into several simpler stages, where each stage maps
from or into some intermediate, possibly simpler schema. More-
over, the simpler mappings and schemas play the role of reusable

Since the three mapping constraints are not correlated, the threecomponents that can be applied to build other flows. Such abstrac-

did values O1, D2, D3) are distinct. (There is no requirement
that they must be equal.) As a result, the target instahcex-
hibits the typical problems that arise when uncorrelated mappings
are used to transform data: (dyplication of data(e.g., multiple

82

tion is directly motivated by the development of real-life, large-

scale ETL flows such as those typically developed with IBM Infor-

mation Server (Datastage), Oracle Warehouse Builder and others.
Toillustrate, suppose the goal is to transform data from the schema

S, of Figure 1(a) to a new schenfds, whereStaffand Projects Schema Mappings.A schema mapping is a tripleS, T, X) where
information are grouped und@ompSci The mapping or ETL de- S is a source schemd; is a target schema, aitdlis a set obecond-
signer may find it easier to first construct the mapping betwisen order tuple generating dependencies (SO td8}) In this paper,
and S- (it may also be that this mapping may have been derived we use the notation

in a prior design). Furthermore, the sche®ais a normalized
representation of the data, whddept Empand Proj correspond
directly to the main concepts (or types of data) that are being ma- for expressing SO tgds. Examples of SO tgds in this notation were
nipulated. Based on this schema, the designer can then produce already given in Figure 1(b) and Figure 1(c). Here, it suffices to
mappingmecs from Deptto a more specialized obje@SDept by say thatS represents a vector of source relation symbols (possibly
applying some customized filter condition (e.g., based on the namerepeated), whilé represents the tuple variables that are bound, cor-
of the department). The next step is to create the mappirfipm respondingly, to these relations. A similar notation applies for the
CSDepto the target schema. Other independent mappings are sim-¢zists clause. The conditions; (&) and B2 (i) are conjunctions

ilarly defined forEmpandProj (seem, andms). of equalities over the source and, respectively, target variables. The

Once these individual mappings are established, the same probondition C(Z,) is a conjunction of equalities that equate target
lem of correlating the mappings arises. In particular, one has to expressions (e.gy.A) with either source expressions (e.g.B)
correlatemcs o m, which is the result of applying mapping com- or Skolem terms of the forn[z1, . . . ,], whereF is a function
position tomcs andm, with the mappingsn, for Empandm for symbol andr, . . ., z; are a subset of the source variables. Skolem
Proj. This correlation will ensure that all employees and projects terms are used to relate target expressions across different SO tgds.
of computer science departments will be correctly mapped under on SO tgd without a Skolem term may also be called, simply, a
their correct departments, in the target schema. tuple-generating dependency or tgd [7].

In this example, composition itself gives another source of map- Note that our SO tgds do not allow equalities between or with
pings to be correlated by MapMerge. While similar with compo- skolem terms in theatisfyingclause. While such equalities may
sition in that it is an operator on schema mappings, MapMerge is pe needed for more general purposes [8], they do not play a role for
fundamentally different in that it correlates mappings that share the gata exchange and can be eliminated, as observed in [24].
same source schema and the same target schema. In contrast, COnhase-Based Semantiche semantics that we adopt for a schema
position takes two sequential mappings where the target of the first mapping(S T, %) is the standard data-exchange semantics [7] where,
mapping is the source of the second mapping. Nevertheless, thegiven a source instande the result of “executing” the mapping is
two operators are complementary and together they can play a fun-the target instance that is obtained by chasinfwith the depen-
damental role in building data flows. dencies in:. Since the dependenciesdhare SO tgds, we actually

_— . use an extension of the chase as defined in [8].
1.2 Contributions and Outline of the Paper Intuitively, the chase provides a way of populating the target in-

Our main technical contributions are as follows. We give an stanceJ in a minimal way, by adding the tuples that aeguired
algorithm for MapMerge, which takes as input arbitrary schema by 3. For every instantiation of thier clause of a dependencyin
mappings expressed as second-order tgds [8] and generates cosuch that thesatisfyingclause is satisfied but thexistsandwhere
related second-order tgds. As a particular important case, Map- clauses are not, the chase adds corresponding tuples torglet ta
Merge can also take as input a set of raw schema correspondencegglations. Fresh new values (also called labeled nulls) are used to
thus, it constitutes a replacement of existing mapping generation give values for the target attributes for which the dependency does
algorithms that are used in Clio [18, 10]. We introduce a novel not provide a source expression. Additionally, Skolem terms are
similarity measure that is used to quantify the preservation of data instantiated by nulls in a consistent way: a tefffx1, ..., z;] is
associations from a source database to a target database. We ugdeplaced by the same null every time, ..., z; are instantiated
this measure to show experimentally that MapMerge improves the with the same source tuples. Finally, to obtain a valid target in-
quality of schema mappings. In particular, we show that the target stance, we must chase (if needed) with the target constraints.
data that is produced based on the outcome of MapMerge has bet- For our earlier example, the target instangeis the result of
ter quality, in terms of preservation of source associations, than thechasing the source instandewith the tgds in Figure 1(b) and,
target data that is produced based on Clio-generated mappings. additionally, with the foreign key constraints. There, the values
Outline In the next section, we provide some preliminaries on schem&1, D2, D3 are nulls that are generated to @kl values for which
mappings and their semantics. In Section 3 we give the main in- the tgds do not provide a source expression. The target instance
tuition behind MapMerge, while in Section 4 we describe the al- is the result of chasing with the SO tgds in Figure 1(c). There,
gorithm. In Section 5, we introduce the similarity measure that D is a null that corresponds to the Skolem teftfy] whereg is
quantifies the preservation of associations. We make use of thisinstantiated with the sole tuple Group.
measure to evaluate the performance of MapMerge on real-life and In practice, mapping tools such as Clio do not necessarily im-
synthetic mapping scenarios. We discuss related work in Section 6plement the chase with, but generate queries to achieve a similar
and conclude in Section 7. result [10, 18].

for & in Ssatisfying B () exists i in Twhere Bo(§)and C(Z, i)

2. Preliminaries 3. Correlating Mappings: Key ldeas

A schema consists of a set of relation symbols, each with an How do we achieve the systematic and, moreogerrect con-
associated set of attributes. Moreover, each schema can have a satruction of correlated mappings? After all, we do not want arbi-
of inclusion dependencies modeling foreign key constraints. While trary correlations between mappings, but rather only to the extent
we restrict our presentation to the relational case, all our techniquesthat thenatural data associations in the source are preserved and no
are applicable and implemented in the more general case of theextra associations are introduced.
nested relational data model used in [18], where the schemas and There are two key ideas behind MapMerge. The first idea is to
mappings can be either relational or XML. exploit the structure and the constraints in the schemas in order to

83

define what natural associations are (for the purpose of the al

the source and target schemas, as well as from the source and tar-

rithm). Two data elements are considered associated if they are inget assertions of the input mappings. By pairing source and target

the same tuple or in two different tuples that are linked via con-

tableaux, we obtain all the possildkeleton®f mappings. The ac-

straints. This idea has been used before in Clio [18], and provides tual work of constructing correlated mappings takes place in Phase
the first (conceptual) step towards MapMerge. For our example, the 3, where for each skeleton, we take the union of all the basic com-

input mappings in Figure 1(b) is equivalent, in the presence of the
source and target constraints, to the following enriched mapping:

t5: for w in Works, g in Groupsatisfyingw.gno =g.gno
existsp in Proj, d in Dept
wherep.pname =w.pnameand p.did =d.did
Intuitively, if we have aw tuple in Works we also have a joining
tuple g in Group, sincegno is a foreign key fromWorksto Group.
Similarly, a tuplep in Proj implies the existence of a joining tuple
in Dept, sincedid is a foreign key fronProj to Dept

Formally, the above rewriting fromys to ¢4 is captured by the

ponents generated in Phase 1 that “match” the skeleton. Phase 4isa
simplification phase that also flags conflicts that may arise and that
need to be addressed by the user. These conflicts occur when mul-
tiple mappings that map to the same portion of the target schema
contribute with different, irreconcilable behaviors.

4.1 Phase 1: Decompose into Basic SO tgds

The first step of the algorithm decomposes each input SO tgd
into a set of simpler SO tgds, callégsic SO tgdsthat have the
samefor andsatisfyingclause as the input SO tgd but have exactly

well-known chase procedure [2, 15]. The chase is a convenient one relation in theexistsclause. Intuitively, we break the input
tool to group together, syntactically, elements of the schema that mappings into atomic components that each specify mapping be-
are associated. The chase by itself, however, does not change th@avior for a single target relation. This decomposition step will

semantics of the mapping. In particular, the abtiyeloes not in-
clude any additional mapping behavior fraBnoupto Dept

The second key idea behind MapMerge is thatofingor bor-
rowing mapping behavior from a more general mapping to a more

subsequently allow us to merge mapping behaviors even when they
come from different input SO tgds.

In addition to being single-relation in the target, each basic SO
tgd gives a complete specification of all the attributes of the target

specific mapping. This is a heuristic that changes the semantics ofrelation. More precisely, each basic SO tgd has the form

the entire schema mapping and produces an arguably better one,

with consolidated semantics.

To illustrate, consider the first mapping constraint in Figure 1(c).
This constraint (obtained by skolemizing the inpu} specifies a
general mapping behavior fro@roup to Dept In particular, it
specifies how to creaténame anddid from the input record. On
the other hand, the abov§ can be seen as a mospecificmap-
ping from asubsebf Group(i.e., those groups that have associated
Workstuples) to ssubsebf Dept(i.e., those departments that have
associatedProj tuples). At the same timej; does not specify any
concrete mapping for théname anddid fields of Dept We can

for & in S satisfying B; ()

existsy mTM/\AGAtts(y) y.A=ea(Z)

where the conjunction in therhere clause contains one equality

constraint foreachattribute of the record, asserted in the target

relationT. The expressior (%) is either a Skolem term or a

source expression (e.g:,B). Part of the role of the decomposition

phase is to assign a Skolem term to every target expregsfofor

which the initial mapping does not equate it to a source expression.
For our example, the decomposition algorithm (given in the ap-

pendix) obtains the following basic SO tgds from the input map-

then borrow the mapping behavior that is already specified by the PiNgst1, t2, andts of Figure 1(b):

more general mapping. Thus, can be enriched to:

ty: for w in Works, g in Groupsatisfyingw.gno =g.gno
existsp in Proj, d in Dept
wherep.pname =w.pnameand p.did = d.did
andd.dname =g.gnameand d.did = F'[¢g] and p.did = F'[g]

where two of the last three equalities represent the “borrowed” be-
havior, while the last equality is obtained automatically by transi-
tivity. Finally, we can drop the existence @fin Deptwith the two
conditions fordname anddid, since this is repeated behavior that
is already captured by the more general mapping f@rup to
Dept The resulting constraint is identiéab the third constraint in
Figure 1(c), now correlated with the first one vidg]. A similar
explanation applies for the second constraint in Figure 1(c).

The actual MapMerge algorithm is more complex than intuitively
suggested above, and is described in detail in the next section.

4. The MapMerge Algorithm
MapMerge takes as input a sgfS, T, %1), ..., (S, T, X,)} of

schema mappings over the same source and target schemas, whic

is equivalent to taking a single schema mappiSgT,%; U ... U
3,) as input. The algorithm is divided into four phases and the

complete pseudocode is given in the appendix. The first phase de
composes each input mapping assertion into basic components tha
are, intuitively, easier to merge. In Phase 2, we apply the chase

algorithm to compute associations (which we ¢ableauy, from

3Modulo the absence @f; [w], which will be explained separately.

84

(b1): for g in Groupexistsd in Dept
whered.did = F[g] and d.dname =g.gname
(b2): for w in Works, g in Group
satisfyingw.gno =g.gnoandw.addr = “NY”
existse in Emp
wheree.ename =w.enameand e.addr =w.addrand e.did = G[w, g]

(b4): for w in Works, g in Group

satisfyingw.gno =g.gnoandw.addr = “NY”
existsd in Dept

whered.did = G[w, g] and d.dname =g.gname

(b3):

for w in Worksexistsp in Proj
wherep.pname =w.pnameand p.budget =H; [w] andp.did = Ha[w]

The basic SO tgd; is obtained fromt;; the main difference
is thatd.did, whose value was unspecified fy is now explicitly
assigned the Skolem terfijg]. The only argument td" is g be-
causey is the only record variable that occurs in thee clause of

. Similarly, the basic SO tgtk is obtained fromt;, with the dif-
erence being thagb.budget ancp.did are now explicitly assigned
the Skolem termg7, [w] and, respectivelyH[w].

In the case of,, we note that we have two existentially quanti-
{ied variables, one foEmpand one foDept Hence, the decom-

position algorithm generates two basic SO tgds: the first one maps
into Empand the second one maps idept Observe thab, and
b, are correlated and share a common Skolem t€ffmn, g] that

is assigned to both.did andd.did. Thus, the association between

e.did andd.did in the original schema mappirng is maintained in variables ofT" such that relation symbols are respected and, more-
the basic SO tgds, andb. over, thesatisfyingclause ofo (after applyingh) is implied by the

In general, the decomposition process ensures that associationgonditions of7". Additionally, theexistsclause ofc must be em-
between target facts that are asserted by the original schema mapbedded intd” via the homomorphism. Sinceo is a basic SO tgd
ping are not lost. The process is similar to the Skolemization pro- and there is only one relation in éxistsclause, the latter condition
cedure that transforms first order tgds with existentially quantified essentially states that the target relatiomimust occur inf”.
variables into second order tgds with Skolem functions (see [8]). For our running example, it is easy to see that the basic S® tgd
After such Skolemization, all the target relations can be separatedmatches the skeletaf¥s, 73). In fact, b1 matches every skeleton
since they are correlated via Skolem functions. Therefore, the setfrom Phase 2. On the other hand, the basic SGigdatches only
of basic SO tgds that results after decomposition is equivalent to the skeleton(75,74) under the homomorphisni@y, k2), where

the input set of mappings. hi = {w — w,g — g} andhs = {e — e}. Altogether, we
obtain the following matching of basic SO tgds on skeletons:
4.2 Phase 2: Compute Skeletons of Schema Mappings (T1,T3,b1) (T1,Ta,b1) (T1,T5,b1) (T2, T5,b1)
) . : (T2, Ty, b1) (T2, T5,b1 A bs) (T3, T3,b1 A b))
Next we apply the chase algorithm to compute syntactic associa- (T}, Ta,by Aba AY) (T}, Ts, b1 A by A bs)
tions (which we caltableauy, from each of the schemas and from))
the input mappings. Essentially, a schetableauis constructed Note that the basic SO tgds that match a given skeleton may ac-

by taking each relation symbol in the schema and chasing it with tually come from different input mappings. For example, each of
all the referential constraints that apply. The result of such chase the basic SO tgds that mat¢#i;, 75) comes from a separate input
is a tableau that incorporates a set of relations that is closed under™apping (fromt., ¢2, andts, respectively). In a sense, we aggre-
referential constraints, together with the join conditions that relate 9até behaviors from multiple input mappings in a given skeleton.
those relations. For each relation symbol in the schema, there is oneComputing merged SO tgds. For each skeleton along with the
schema tableau. As in [10, 18], in order to guarantee termination, matching basic SO tgds, we now construct a “merged” SO tgd. For
we stop the chase whenever we encounter cycles in the referentialour example, the following SO tgd is constructed from the eighth
constraints. In our example, there are two source schema tableausxriple (T3, Ty, b1 A ba A b3) shown earlier.

and three target schema tableaux, as follows: (ss) for w in Works, g in Group
Ty = {ge€Group} satisfyingw.gno =g.gnoandw.addr = “NY”
T = {w € Works,g € Group;w.gno =g.gno} existse in Emp,d in Dept
- } © € Emp € Depte.did = d.id } wheree.did = d.did
U ' e.qid = d. dd.did = F[g] andd.d .
Ts = {peProj,dc Dept;p.did=d.did } andd.did = F'[g] andd.dnamez.gname

.. . ande.ename =w.enameand e.addr =w.addrand e.did = G[w, g]
Intuitively, schema tableaux represent the categories of data that andd.did = G[w, g]

can exist according to the schema. Gxoup record can exist in- h iable bindi in th d bl K
dependently of records in other relations (hence, the taliiéau The variable bindings in the source and target tableaux are taken

However, the existence of Worksrecord implies that there must ~ litérally and added to théer and, respectivelyexistsclause of the
exist a correspondin@rouprecord with identicagno (hence, the ~ hew SO tgd. The equalities i, andT}, are also taken literally and
tableaul?). added to thesatisfyingand, respectivelywhere clause of the SO
Since the MapMerge algorithm takes as input arbitrary mapping tgd. More interestingly, for every basic SO tgdhat matches the
assertions, we also need to generate user-defined mapping tableaugkeleton {3, 7i), we take thavhereclause ot (after applying the
which are obtained by chasing the source and target assertions of€Spective homomorphisms) and add it to wieereclause of the
the input mappings with the referential constraints that are applica- "ew SO tgd. (Note that, by definition of matching, tatisfying
ble from the schemas (see Appendix A). The notion of user-defined clause ofr is automatlcally |mp||ed by the cond|t|0n§ in the source
tableaux is similar to the notion of user associations in [23]. In our tableau.) The last three lines in the above SO tgd incorporate con-
example, there is only one new tableau based on the source asseditions taken from each of the basic SO tgds that m&tch 7%)
tions of the input mapping: (i.e., fromby, b, andb’, respectively).
T) = {w e Works,g € Group;w.gno =g.gno,w.addr = “NY” } The constructed SO tgd consolidates the semantits, 6%, and
Furthermore, we then pair every source tableau with every target b2 under one merged mapping. Intuitively, since all three basic SO
tableau to form akeleton Each skeleton represents the empty shell t9ds are applicable whenever the source pattern is givef} land
of a candidate mapping. For our running example, the set of all the target pattern is given b, the resulting SO tgd takes the
skeletons at the end of Phase 2 {7}, 73), (T1,T4), (T1,T5), conjunction of the “bghawprs” of the individual basic SO tgds.
(T2, Ts), (T, Ty), (Ta, Ts), (T5,Ts), (Ts,Ta), (Ts, T5)}. Correlations. A (_:ru0|al point about the above construction is that
a target expression may now be assigned multiple expressions. For
) example, in the above SO tgd, the target expressidid is equated
4.3 Phase 3: Match and Apply Basic SO tgds on Skeletons with two expressionsF[g] via b1, and Glw, g] via b5. In other
In this phase, for each skeleton, we first find the set of basic SO words, the semantics of the new constraint requires the values of
tgds that “match” the skeleton. Then, for each skeleton, we apply the two Skolem terms to coincide. This is actually what it means to
the basic SO tgds that were found matching, and construct a mergedeorrelateb; andb;. We can represent such correlation, explicitly, as
SO tgd. The resulting SO tgd is, intuitively, the “conjunction” of the following conditional equality (implied by the above SO tgd):

all the basic SO tgds that were found matching. for w in Works, ¢ in Groupsatisfyingw.gno =g.gnoandw.addr = “NY”
Matching. We say that a basic SO tgdnatches a skeletqiT’, 7”) = Flg] = Glw, g]

if there is a pair(h, g) of homomorphisms that “embed? into We use the termmesidual equality constrainfor such equality

(T, T'"). This translates into two conditions. First, ther and constraint where one member in the implied equality is a Skolem
satisfyingclause ofr are embedded int@ via the homomorphism term while the other is either a source expression or another Skolem
h. This means thak maps the variables in ther clause ofs to term. Such constraints have to be enforced at runtime when we

85

perform data exchange with the result of MapMerge. In general two lookup tables (for botF” andG), we attempt the substitution
Skolem functions are implemented as (independent) lookup tables,of either F'[g] with G[w, g] or G|w, ¢g] with F'[g]. Care must be
where for every different combination of the arguments, the lookup taken since such substitution cannot be arbitrarily applied. First,
table gives a fresh new null. However, residual constraints will the substitution can only be applied in SO tgds that satisfy the pre-
require correlation between the lookup tables. For example, the conditions of the residual equality constraint. For our example, we

above constraint requires that the two lookup tables Kf@nd G) cannot apply either substitution to the earlier SO #gdsince the
must give the same value wheneverand g are tuples ofWorks precondition requires the existenceWbrkstuple that joins with
andGroupwith the sameyno value. Group. In general, we need to check for the existence of a homo-

To conclude the presentation of Phase 3, we list the other threemorphism that embeds the preconditions of the residual equality
merged SO tgds below that result after this phase for our example. constraint into théor andwhereclauses of the SO tgd. The second

(s1) from (T, T3, b1): issue is that the direction of the substitution matters. For example,
for g in Group let us substitutd®'[g] by G[w, g] in every SO tgd that satisfies the
existsd in Dept preconditions. There are two such SO tgds:andsy. After the
whered.did = F'[g] andd.dname.gname substitution, in each of these SO tgds, the equalitid = F[g]

(s6) from (T, Ts, b1 A bs): becomesl.did = Gw, g] and can be dropped, since it is already in
for w in Works, g in Groupsatisfyingw.gno =g.gno thewhereclause. Note, however, that the replacemenk'ff] by
existsp in Proj,d inDept G[w, g] did not succeed globally. The SO tgeisandss still refer
wherep.did = d.did to F'[g]. Hence, we still need to maintain the explicit correlation of

and d.did = F'[g] andd.dnameg.gname the lookup tables foF andG. On the other hand, let us substitute
and p.pname =w.pnameandp.budget =H [w] andp.did = Hz[w] Glw, g] by F[g] in every SO tgd that satisfies the preconditions.

Again, there are two such SO tgdsi and sg. The outcome is

’ / -
(so) from (T, T5, b1 1\ by 1\ ba): different now: G[w, g] disappears from boths and se (in favor

for w in Works, g in Group

satisfyingw.gno =g.gnoand w.addr = “NY” of F'[g]); moreover, it did not appear iy or s¢ to start with. We

existsp in Proj, d in Dept say that the substitution 6f[w, g] by F'[g] has globally succeeded.

wherep.did = d.did Following this substitution, the constraisy is implied bysg: they
and d.did = F'[g] andd.dnamez.gname both assert the same target tuples, and the source tdbjefau so
and p.pname =w.pnameandp.budget = [w] andp.did = Hz [w] is a restriction of the source table@l for s¢. Hence from now on

and d.did =Glw, g] we can discard the constraisy.
One aspect to note is that not all skeletons generate merged SO gimj|arly, based on the other residual equality constraint we had
tgds. _Although we hgd six earlier sk_eletpns, only three generate ggrlier, we can apply the substitution Hh[w] by F[g]. This af-
mappings that are neithsubsumeahor implied (See also the ap- fects onlys and the outcome is thdf,[w] has been successfully

pendix.) We use here the technique for pruning subsumed or im- rep|aced globally. The resulting SO tgds, for our example, are:
plied mappings described in [10]. For an example of a subsumed

mapping, consider the tripl€l’, 74,b1). We do not generate a (s1) for g in Group
mapping for this, because its behavior is subsumed;byvhich £dstsd in Dept
includes the same basic componénbut maps into a more “gen- whered.did = F'[g] andd.dnames.gname

eral” tableau, namel§. Intuitively, we do not want to construct a (s) for w in Works, g in Groupsatisfyingw.gno =g.gno

mapping in_th4, which is a larger (m(_)re specif_ic) tableau, without existsp in Proj, d in Dept

actually using the extra part @;. Implied mappings are those that wherep.did = d.did

arelogically implied by other mappings. For example, the map- and d.did = F[g] andd.dnameg.gname _

ping that would correspond td@%, T, b1) is logically implied by and p.pname =w.pnameand p.budget =H; [w] andp.did = F'[g]

se: they both have the same premigg), butss asserts facts about
a larger tableaul(s, which includesl’s) and already covers, .
Finally, for our example, we also obtain three more residual

(sg) for w in Works, g in Group
satisfyingw.gno =g.gnoandw.addr = “NY”
existse in Emp,d in Dept

equality constraints, arising fross, and stating the pairwise equal- wheree.did = d.did
ities of F'[g], H2[w] andG[w, g] (since they are all equal tadid andd.did = F[g] andd.dnameg.gname
andd.did, which are also equal to each other). ande.ename =w.enamende.addr =w.addrande.did = F[g]

Since residual equalities cause extra overhead at runtime, it is))) , S
worthwhile exploring when such constraints can be eliminated with- AS explained in Section 3, bott} andss can be simplified, by

out changing the overall semantics. We describe such method next/€moving the assertions abdDept since they are implied by, .
The result is then identical to the SO tgds shown in Figure 1(c).

Our example covered only residual equalities between Skolem
terms. The case of equalities between a Skolem term and a source
The fourth and final phase of the MapMerge algorithm attempts expression is similar, with the difference that we form only one
to eliminate as many Skolem terms as possible from the generatedsubstitution (to replace the Skolem term by the source expression).
SO tgds. The key idea is that, for each residual equality constraint, The exact algorithm for eliminating residual constraints, given in
we attempt to substitute, globally, one member of the equality with the appendix, is an exhaustive algorithm that forms each possible
the other member. If the substitution succeeds then there is one lessubstitution and attempts to apply it on the existing SO tgds. If the
residual equality constraint to enforce during runtime. Moreover, replacement is globally successful, the residual equality constraint

4.4 Phase 4: Eliminate Residual Equality Constraints

the resulting SO tgds are syntactically simpler. that generated the substitution can be eliminated. Then, the algo-
Consider our earlier residual constraint stating the equAligy = rithm goes on to eliminate other residual constraints on the rewrit-

G[w, g] (under the conditions of théor and satisfying clauses). ten SO tgds. If the replacement is not globally successful, the algo-

The two Skolem termg’[g] and G[w, g] occur globally in multi- rithm tries the reverse substitution (if applicable). In general, it may

ple SO tgds. To avoid the explicit maintenance and correlation of be the case that neither substitution succeeds globally. In such case,

86

the corresponding residual constraint is kept as part of thpud ates a single relation that conveniently captures all the associations
of MapMerge. Thus, the outcome of MapMerge is, in general, a set in an instancd of schemaB. Intuitively, each tuple in this relation
of SO tgdstogetherwith a set of residual equality constraints. (For corresponds to one association that exists in the data.
our example, the latter set is empty.) Operationally, full disjunction must perform the outer “union”
Finally, the last issue that arises is the case of conflicts in map- of all the tuples in every input relation, together with all the tuples
ping behavior. Conflicts can also be described via constraints, sim-that arise via all possible natural joins among the input relations.
ilar to residual equality constraints but with the main difference To avoid redundancyninimal unionis used instead of union. This
that both members of the equality are source expressions (and notmeans that in the final relation, tuples that are subsumed by other
Skolem terms). To illustrate, it might be possible that a merged tuples are pruned. A tupleis subsumedy a tuplet’ if for all
SO tgd asserts that the target expressi@mame is equal to both attributesA such that. A # null, itis the case thatf. A = t.A. We
g.gname (from some input mapping) and witltode (from some omit here the details of implementing full disjunction, but we point
other input mapping, assuming theawde is some other source outthat such implementation is part of our experimental evaluation.
attribute). Then, we obtain conflicting semantics, with two com- For our example, we shoRD(7(J1)), FD(7 (1)), andFD(7(J2))
peting source expressions for the same target expression. Our alat the bottom of Figure 3. There, we use the -’ symbol to repre-
gorithm flags such conflicts, whenever they arise, and returns thesent the SQL null value. We note tHaD (7 (J2)) connects now all
mapping to the user to be resolved. three ofJohn WebandCSin one tuple.
Now that we have all the associations in a single relation, one
) on each side (source or target), we can compare them. More pre-
5. Evaluation cisely, given a source instandeand a target instancé, we de-

To evaluate the quality of the data generated based on Map-fme the similarity betweed and.J by defining the similarity be-

Merge, we introduce a measure that captures the similarity betweentweenFD(T(I)) andFD(r(J)). However, when we compare tu-

a source and target instance by measuring the amount of data assoglri?trgftheig]g f(;(t{r ?t)auatlgg ¥ ::r)] t(JIEI‘\]/ ()a)l V\t'g ;Cgilg%:othfizm?:éii-
ciations that are preserved by the transformation from the source to "y p . ’ Ys P 9

X S . .~dental” preservations, we want to compare tuples based only on
the target instance. We use this similarity measure in our experi-

ments to show that the mappings derived by MapMerge are betterltgfvlirncor\?v%agiiaﬁgbtﬁzsatlrfﬁeaﬁae fr%m;f;ﬁarpsv%p;]r;% dlrt]otg(\e/;ﬁ;ue
than the input mappings. The experiements are all given in Ap- . 9. ppIng :
pendix B. implement the same st of correspondences between attributes

Similarity measure The main idea behind our measure is to cap- of the source schenfhand atmbutes of the target _scheﬂiaT_hls
. u o : assumption is true for mapping generation algorithms, which start
ture the extent to which the “associations” in a source instance are

preserved when transformed into a target instance of a different I;?Qnao??;lgfcg?rr;is%?13%?\2225(32?10%?r;?]tr?cfgu?:iinalt?]fgvlvI;?rﬁrteer-]_
schema. For each instance, we will compute a single relation that P 9

incorporates all the natural associations between data elements thart(.)'atmbme mappings). Itis also true for MapMerge and its input,

exist in the instance. There are two types of associations we con->Nce _MapMerge does not introduce any new att”.b ute-to-attrl_b ute

:] . . . mappings that are not already specified by the input mappings.
sider. The first type is based on the chase with referential con- Given a set of correspondences betweSrand T. we say that
straints and is naturally captured by tableaux. As seen in Sec- P ! y

. - . X N . . an attributeA of S is compatiblewith an attributeB of T if ei-
tion 4.2, a tableau is a syntactic object that takes the “closure” of ther there is a direct correspondence betwdemd B in V, or (2)
each relation under referential constraints. We can then material-A ‘s related to an attribute?’ via a foreign ke constra}nt &
ize the join query that is encoded in each tableau and select all theB is related to an attribut®’ via a foreian key constraint dI"
attributes that appear in the input relations (without duplicating the dA i tible withz'. E 9 | yth irs of -
foreign key / key attributes). Thus, for each tableau, we obtain a andA 1s compatible wi - Forour example, the pairs of com
single relation, calledableau relation that conveniently materi- patible attributes (from source to target) afgmanme, dname),
alizes together data associations that span multiple relations. For(emme’ ename), (addr, addr), (pname, pname).

example, the tableau relations for the source instdrind-igure 1
(for tableaux?; andT: in Section 4.2) are shown on top of Figure
3(b). We denote the tableau relations of an instahoéschemas
asts(I), or simplyr(I). The tableau relations(.J;) andr(.Jz)

DEFINITION1 (TUPLE SIMILARITY). Lett¢; andt2 be two
tuples inFD(7 (1)) and, respectivelff'D(7(J)). Thesimilarity of
t; andtz, denoted aSim(¢1, t2), is defined as:

for our running example are also shown in Figure 3. [{A € Atts(t1) | 3B € Atts(t2), AandB compatiblet;. A = t2.B # null}|
The second type of association that we consider is based on the [{A € Atts(t1) | 3B € Atts(t2), A and B compatibleg|

notion offull disjunction[11, 20]. Intuitively, the full disjunction of

relationsRy, ..., Ry, denoted a§'D (R, ..., Ri), captures in a sin- Intuitively, Sim(¢1,¢2) captures the ratio of the number of values

gle relation all the associations (via natural join) that exist among that are actually exported frot to ¢» versus the number of values
tuples of the input relations. The reason for using full disjunction that could be exported from according toV. For instance, let;
is that tableau relations by themselves do not capture all the asso-be the only tuple i’ D(7 (1)) from Figure 3 and- the only tuple
ciations. For example, consider the association that exists betweerin FD(7(Jz2)). Then,Sim(t1,t2) is 1.0, sincet;. A = t».B for
John and Webin the earlier source instanc&. There,Johnis every pair of compatible attributesand B. Now, lett, be the first
an employee irCS andWebis a project inCS However, since tuple inFD(7(J1)). Since onlyt;.gname =;.dname out of four
there is no directed path via foreign keys fralmhnto Weh the pairs of compatible attributes, we have tBat(¢:,¢2) is 0.25.
two data elements appear in different tableau relations(d%) o
(namely, DeptEmpand DeptPro). On the other hand, if we take DEFINITION 2 (INSTANCE SIMILARITY). The similarity be-
the natural join betweeBeptEmpand DeptProj the association ~ tweenkFD(7(I)) andFD(7(J)) is

betweenJohnandWebwill appear in the result. Thus, to capture

all such associations, we apply an additional step which computesSim(FD(7(1)), FD(7(J)) = > max Sim(t1,t2).

oo ; . t2€FD(7(J))
the full disjunctionFD(7(I)) of the tableau relations. This gener- t1€FD(7(I))

87

Ts,(J,) : Tableaux relations of J;

7g,(I) : Tableaux relations of I

Ts,(J,) : Tableaux relations of J,

DeptEmp DeptProj

ename addr pname || did dname did dname ename addr did dname pname budget

DeptEmp DeptProj
did dname did dname ename addr did dname pname budget [gno gname gno gname
DI CS D2 CS John NY D3 N Web B 123 CS 123 CS

D2

John NY Web D CS D GS] John NY D CS Web B’

€

N FD(7s,(J,)): Full disjunction of 7¢,(J)
did dname ename addr pname budget
D1 CS

D3
Similarity
0.75

FD(75,(I)):Full disjunction of 7, (I) EESIAEYSIY
1

gno gname ename addr pname

FD(7s,(J,)): Full disjunction of 7,(J,)

did dname ename addr pname budget

NY

(a)

Web B

D2 CS
D3 N

John

123 CS Jol

(b)

hn NY Web ————> D CS5 John NY Web B’

(c)

Figure 3: Tableau relations of Ji, I, and J> of Figure 2 and their full disjunctions.

Figure 3 depicts the similaritie$im(FD(7 (1)), FD(7(J1))) and
Sim(FD(7(I)),FD(7(J2))). The former similarity score is ob-

8. References
[1] B. Alexe, M. Gubanov, M. A. Hernandez, H. Ho, J.-W. Huang,

tained by comparing the only tuple #D (7 (1)) with the best match-
ing tuple (i.e., the second tuple) KD (7(J1))).

(2]

6. Related Work al

Model management [16] has considered various operators on
schema mappings, among which Confluence is closest in spirit to
MapMerge. Confluence also operates on mappings with the same [4]
source and target schema, and it amounts to taking the conjunction
of the constraints in the input mappings. Thus, Confluence does [5]
not attempt any correlation of the input mappings. Our work can
be seen as a step towards the high-level design and optimization in 6]
ETL flows [21, 22]. This can be envisioned by incorporating map-
pings [4] into such flows, and employing operators such as Map-
Merge and composition to support modularity and reuse.

The instance similarity measure we used to evaluate MapMerge [7]
draws its inspiration from the very general notion of Hausdorff dis-
tance between subsets of metric spaces, and from the sum of min- (8]
imum distances measure. We refer to [5] for a discussion of these
measures. Moreover, our notion of tuple similarity is loosely based 9]
on the well known Jaccard coefficient. However, the previous mea-
sures are symmetric and agnostic to the transformation that pro-[10]
duces one database instance from the other. In contrast, our notion
is tailored to measure the preservation of data associations from a
source database to a target database under a schema mapping. (11]

[12]

7. Conclusions

We have presented our MapMerge algorithm and an evaluation 3]
of our implementation of MapMerge. Through a similarity mea- [14]
sure that computes the amount of data associations that are pre-
served from one instance to another, our evaluation shows that a[15]
given source instance has higher similarity to the target instance
obtained through MapMerge when compared to target instances[16]
obtained through other mapping tools. As part of our future work,
we intend to explore the use of the notion of information loss [9]
to compare between mappings generated by MapMerge with those
generated by other mapping tools. In addition, we would like to (18]
further explore applications of MapMerge to flows of mappings.

[17]

[19]
Acknowledgements. Hernandez and Popa are partially funded

Y. Katsis, L. Popa, B. Saha, and I. Stanoi. Simplifying Information
Integration: Object-Based Flow-of-Mappings Framework for
Integration. INBIRTE pages 108-121. Springer, 2009.

C. Beeri and M. Y. Vardi. A Proof Procedure for Data Dependencies.
JACM, 31(4):718-741, 1984.

A. Bonifati, E. Q. Chang, T. Ho, V. S. Lakshmanan, and R. Pottinger.
HePToX: Marrying XML and Heterogeneity in Your P2P Databases.
In VLDB, pages 1267-1270, 2005.

S. Dessloch, M. A. Hernandez, R. Wisnesky, A. Radwan, and

J. Zhou. Orchid: Integrating schema mapping and ETICRE,
pages 1307-1316, 2008.

T. Eiter and H. Mannila. Distance measures for point sets and their
computationActa Inf, 34(2):109-133, 1997.

R. Fagin, L. M. Haas, M. A. Hernandez, R. J. Miller, L. Popa, and
Y. Velegrakis. Clio: Schema Mapping Creation and Data Exchange.
In Conceptual Modeling: Foundations and Applicatiopages
198-236. Springer, 2009.

R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:
Semantics and Query AnswerinbCS 336(1):89-124, 2005.

R. Fagin, P. G. Kolaitis, L. Popa, and W. Tan. Composing Schema
Mappings: Second-Order Dependencies to the ReJ&BS
30(4):994-1055, 2005.

R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Reverse data
exchange: coping with nulls. IRODS pages 23-32, 2009.

A. Fuxman, M. A. Hernandez, H. Ho, R. J. Miller, P. Papotti, and

L. Popa. Nested Mappings: Schema Mapping ReloadedL DB,
pages 67—78, 2006.

C. A. Galindo-Legaria. Outerjoins as disjunctions SIGMOD
Conferencepages 348-358, 1994.

P. G. Kolaitis. Schema mappings, data exchange, and metadata
management. IRODS pages 61-75, 2005.

M. Lenzerini. Data Integration: A Theoretical PerspectiveP®DS
pages 233-246, 2002.

J. Madhavan and A. Y. Halevy. Composing Mappings Among Data
Sources. IWVLDB, pages 572-583, 2003.

D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing Implications of
Data Dependencie3ODS 4(4):455-469, 1979.

S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm. Supporting
Executable Mappings in Model ManagementSiGMOD, pages
167-178, 2005.

A. Nash, P. A. Bernstein, and S. Melnik. Composition of Mappings
given by Embedded DependenciesP@DS pages 172-183, 2005.
L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin.
Translating Web Data. INLDB, pages 598-609, 2002.

E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching/LDB Journa 10(4):334-350, 2001.

by the U.S. Air Force Office for Scientific Research under con- [20] A.Rajaraman and J. D. Ullman. Integrating information by

tracts FA9550-07-1-0223 and FA9550-06-1-0226. Part of the work
was done while Alexe was visiting IBM Almaden Research Cen-

ter. Alexe and Tan are supported by NSF grant 11S-0430994 and
NSF grant 11S-0905276. Tan is also supported by a NSF CAREER
award 11S-0347065.

[22]
[23]

[24]

88

outerjoins and full disjunctions. IRODS pages 238-248, 1996.

[21] A. Simitsis, P. Vassiliadis, and T. K. Sellis. Optimizing ETL

Processes in Data WarehousesiGBE, pages 564-575, 2005.

P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual
Modeling for ETL Processes. DOLAP, pages 14-21, 2002.

Y. Velegrakis, R. J. Miller, and L. Popa. Mapping adaptation under
evolving schemas. INLDB, pages 584-595, 2003.

C. Yu and L. Popa. Semantic Adaptation of Schema Mappings when
Schemas Evolve. INLDB, pages 1006-1017, 2005.

APPENDIX
A. Pseudocode of MapMerge

The main algorithm for MapMerge is given below. This algo-
rithm makes calls to several subroutines, which are listed sepa-
rately, in the respective subsections.

Algorithm MapMerge§, T, X)

Input: A schema mapping.

Output: (S, T,X’) and F', whereX' is the correlated schema mapping
andF is a set of failed unifications or “residual constraints”.

Phase 1. (Decompose into basic SO tgds)
Initialize the set of basic SO tgd3 = ().
For each SO tgd € X do
Add Decompose() to B
Phase 2. (Compute skeletons of schema mappings)
Initialize the set of skeleton&” = ()
Initialize the set of source and target tabledux. = 0, Tig¢ = 0
Generate the schema tableaux:
For each relatio? € S
Chase{z € R} with referential constraints i, add result tals ;.
For each relatio) € T
Chase{y € Q} with referential constraints ifT", add result tdl; 4¢
Generate the user-defined tableaux:
For each SO tgd € ¥ of the form
for 7 in R satisfying B () existsij in 7' where Ba () A C(Z,)
Chase{ € R; B (Z)} with referential constraints i§
If the result is not implied by's,c, add it toTs,c
Chase{ € T; Bz (i)} with referential constraints i
If the result is not implied by} 4+, add it toT} ¢
For eachl’ € T, andT’ € T4 do
Add the skeleto{T',7") to K.
Phase 3. (Match and apply basic SO tgds on skeletons)
Initialize the list of output constraints’ = ()
For each skeleto’; € K do
Initialize the setB; = 0
For eachr € B do
Let L; = Match(o, K;)
If L; # 0, then add the paifo, L;) to B;
UpdateX’ to beX’ U ConstructSOtgtK;, B;)
Remove from>’ everyo’ such that for some’”’ € 3/
such thats”” # o', eithero” |= o’ or o’ subsumes”’
Phase 4. (Eliminate residual equality constraints)
Initialize the list of failed substitutiong’ = (
Repeat
Let U = FindNextSubstitutio(®’, F')
If U is a substitution candidate (i.e., not a failure) then
If U cannot be successfully applied &1
(i.e., Substitute>’, U) fails) then
Add the failed substitutiod/ to F’
Until no more substitutions can be applied
Return(¥’, F') as the output of the algorithm

A.1 Pseudocode used by Phase 1

The algorithm that decomposes an input SO tgd into its set of
basic SO tgds is listed below.

Algorithm Decomposef)
Input: o is aninput SO tgd
Output: X is a set of basic SO tgds resulting from the decomposition of
Initialize ¥ = ()
Assume the input SO tgdl is of the form:
for & in S satisfyingC(Z) existsi inT° whereC’ (Z,)

The target conditiol’ is a conjunction of equalities between source and

target expressions, or between target expressions. These equalities partition

the source and target expressions inuliereclause into a set E of equiv-
dence classes. Associate a fresh Skolem té#fir] to each equivalence
classE; € E.

For eachy; in T; from theexistsclause ofr

89

Initialize the basic SO tgd’ to be
for #in S satisfyingC(Z) existsy; in T
For each attributed of the recordy; do
If y;.A appears in an equivalence cldss € E then
If E/; contains a source expressiop. B then
Add y;.A = z;,.B to thewhereclause ofs’
Else addy;.A = F;[Z] to thewhereclause ofo’
Else addy;.A = G|[z] to thewhereclause ofo”,
whereG is a fresh Skolem function name

Addo’ to X
ReturnX as the output of the algorithm

A.2 Pseudocode for Phase 3

The subroutine that determines whether a basic S©@ tgdtches
a skeleton(T', T") is presented below. & matcheg(T,T"), then
the subroutine Match returns a pair of homomorphisms that “em-
beds"o to (T, T"). Otherwise, an empty set is returned.

Algorithm Matchg, (T, T"))

Input: o is a basic SO tgdl” and7T” are tableaux.
Output: (h, g), whereh andg “embed” o into (T, T").

Recall that the input basic SO tgdhas the form:
fOF.’El i_nSl,mgi_nSQ,...,wniﬂSn

T satisfying B(z1, . . ., Tn)

existsy in Q@

Wh—ere/\AeAtts(y) yA=ei(r1,...,Tn)
The satisfyingclause is a conjunction of equalities of the forrn A; =
xz;.Aj orz;. A; = c, whereA; € Atts(z;), A; € Atts(z;), andc is a
constant. The settts(y) denotes the set of attributes in the recgrdrhe
whereclause contains one equality constraint for each attrib@itihey
record.

In addition, the tablea” has the form:

{u1 € R1,u2 € Ra,...,u € Ry; Cp(u1, ...

suk)}

If there exists a pair of homomorphisr¥s, g) such that
(1) foreveryl < i < n, if z; € S; according too,
thenh(z;) € R; according tdl’,
(2) Cr(u,...,u) impliesB(h(z1),...,h(zn)), and
(3) g(y) € Q according tol”
Return(h, g)
Else
Return()

The algorithm that constructs a merged SO tgd by applying the
result of the previous Match algorithm on the skeletons is listed
below.

Algorithm ConstructSOtgd(’, 7”), B)

Input: (7, T") is a skeleton and is a set of pairgo, (h, g)), whereo is
a basic SO tgd, an(h, g) “embeds”c into (T, 7).
Output: A Skolemized SO tgd according (@, 7", B).

Recall thatl” andT” have the form:

T = {:ElEsl,:vgESQ,...,IEPEsp;c(.’ﬂl,...,.’ﬂp)}
T = {y1€Quy2€Q2...,us € Qr;C'(y1,. .., u)}
Initialize the SO tgdr to be:
forz1inS1,z2inSa,...,zpin Sp
~ satisfyingC(z1, . .., xp)
existsy; inQ1,y2 N Qz, ..., yx IN Qg
whereC’(y1, . . ., yx)
For each(o, (h,g)) € B
Recall thatr is a basic SO tgd of the form:
forzj, in S, 25, InSj,, ..., zj, In Sj,
T satisfying B (zj,, - - -, 24,
existsy in Q;
where A 4 ¢ agps(y) ¥-A = ealajy, .-, 25,)

Add Bj(h(zj,), ..., h(z;,)) to thesatisfyingclause ofr

Add the following conjunction of equalities:

Nacarsy) 9W)-A=ealglz;,), ..., 9(x;,))
to thewhereclause ofr

Return+

We list below the complete set of SO tgds that are constructed
in Phase 3 of MapMerge before the actual step of eliminating the
subsumed or implied SO tgds.

(81) from (Tl,Tg, bl):

for g in Group

existsd in Dept

whered.did = F'[g] andd.dnameg.gname

(82) from (T1 s T4, b1):

for g in Group

existse in Emp,d in Dept

whered.did = F'[g] andd.dnameg.gname

(s3) from (T1,T5, b1):

for g in Group

existsp in Proj, d in Dept

whered.did = F'[g] andd.dnameg.gname

(s4) from (T, T3, b1):

for w in Works, g in Groupsatisfyingw.gno =g.gno
existsd in Dept

whered.did = F'[g] andd.dnameg.gname

(ss5) from (T, T4, b1):

for w in Works, g in Groupsatisfyingw.gno =g.gno
existse in Emp,d in Dept

whered.did = F'[g] andd.dnameg.gname

(se) from (T2, T5,b1 A b3):
for w in Works, g in Groupsatisfyingw.gno =g.gno
existsp in Proj,d in Dept
wherep.did = d.did
and d.did = F'[g] andd.dnameg.gname
and p.pname =w.pnameandp.budget =H1 [w] andp.did = Ha [w]

(s7) from (T35, T3,b1 A bSy):

for w in Works, g in Groupsatisfyingw.gno =g.gnoandw.addr = “NY”
existsd in Dept

whered.did = F'[g] andd.did = G[w, g] andd.dnameg.gname

(Sg) from (T2/,T4, b1 ANba A b/2):
for w in Works, g in Groupsatisfyingw.gno =g.gnoandw.addr = “NY”
existse in Emp,d in Dept
wheree.did = d.did
andd.did = F[g] andd.dnameg.gname
ande.ename =w.enamend e.addr =w.addrand e.did = G[w, g]
andd.did = Glw, ¢]

(89) from (T2/,T5, b1 A b/2 A bg):
for w in Works, g in Groupsatisfyingw.gno =g.gnoandw.addr = “NY”
existsp in Proj, d in Dept
wherep.did = d.did
and d.did = F'[g] andd.dnameg.gname
and p.pname =w.pnameand p.budget =H; [w] andp.did = Ha [w]
andd.did = Glw, ¢]

In the above list of constructed SO tgds, is subsumed by .
Similarly, s3 is subsumed by;. Moreover,ss is subsumed by,
which is in turn logically implied byss. Finally, s7 is logically
implied by sg. The remaining SO tgds akg, ss, ss, andsg, and
none of them is logically implied or subsumed by another. Hence,
these four SO tgds are returned by Phase 3 of the algorithm.

90

A.3 Pseudocode for Phase 4

The algorithm that forms substitutions to be applied during the
elimination of residual equality constraints is listed below. Note
that the residual equality constraints are created as needed (in the
form of actual substitutions) from the input SO tgds. At the end
of MapMerge, all the failed substitutions are returned as the final
residual equality constraints.

Algorithm FindNextSubstitution(, F')

Input: X is a set of SO tgd<;" is a set of substitutions that have failed on
previous attempts.

Output: Either (1)U: a substitution candidate that has not been applied on
Y. before or, (2) failure if no substitution candidates can be found.

Foreach SO tgd € &
Recall thatr has the form:

fOJ:El i_nSl,gcgi_nSQ,...,:vpiﬂSp
satisfying B(z1, ..., xp)
existsy1 iNQ1,y2 INQ2, ...,y IN Qp

where A\, << Aacarts(y;) ¥i-A = €jaler, ..., xp)
Let C» be thesource contexti.e., thefor andsatisfyingclause ofo).
{z1 € S1,22 € So2,...,2p € Sp; B(x1,...,Tp)}
For each target expressign. A in thewhereclause ofe
Let{E1,..., Exm} bethe list of source expressions equated
with y;. A directly or indirectly in thewhereclause ofo.
If m > 1then
There are three cases to consider depending on the number of
source expressions in the li§E1, ..., Em }.
Case 1.There is more than one source expression of the
formzx;.A, wherel < i < p.
Return conflicting SO tgd to the user and exit.
Case 2.There is exactly one source expression of the
formzx;.A, wherel < i < p.
Wilog, let 1 denote the source expression A in the list.
LetU = (Cs, E;, E1) suchthak < i <mandU ¢ F.
If such aU can be found, returty.
Otherwise, continue.
Case 3.There are no source expressions of the
formzx;.A, wherel < i < p.
LetU = (C, E;, E;) such that # j and
1<i,5<mandU ¢ F.
If such aU can be found, returfy.
Otherwise, continue.
Return failure (no substitutions can be found)

The algorithm that actually applies a substitution on the &3 t
is presented below.

Algorithm Substitute, U)
Input: X is a set of SO tgd4d/ is a substitution
Output: Success itV can be applied t&. Otherwise, return failure.

Recall thatU is of the form(C, E1, E2), whereE; and E> are source
expressions, and' has the form:
{zx1€ 851,220 € Sa2,...,2p € Sp; B(z1,...,2p)}
For each constraint € ¥
Assumeo is of the form:

for o in S, 5 in S5, ..a/, in
satisfying B/ («/, .. ., x,)
existsyr inQ1,y2 iNQ2, ..., yx I Qg

where Ay <<, Aacares(y;) Yi-A = €ja(@y, . ap)
If there is a homomorphisth : {1, ...,xp} — {2/, ...,2},} such that
Bl(xllv) x"n) ImpI|ESB(h(x1)7 Tty h(l‘p))
Replaceh(E1) with h(E2) in o
Else
Revert to the originak from the start of the Substitute routine
Return failure

B. Experimental Evaluation the total number of atomic data values on the generated target in-

We conducted a series of experiments on a set of synthetic andstances as the size of the target instance (i.e., the product of number

real-life mapping scenarios to evaluate MapMerge. We first report of }I_Uthe:eig(:]éd?gOE ?r:Itl):,,i Slljrnemge:h?)\(/:\/rsstfl;?rt%?at ;is:ecenisr)l.stances
on the synthetic mapping scenarios and, using the similarity mea- ave a higher dg re)e of sirr?ilarit to these smaller target MapMerge
sure presented in Section 5, demonstrate a clear improvement in the1 9 9 y g pivierg

: o . instances. The degree of similarity of a source instdroea target
preservation of data associations when using MapMerge. We then. . h
present results for two interesting real-life scenarios, whose char- instanceJ is computed as a ratio §fim(FD(r (1)), FD(7(J)) to

acteristics match those of our synthetic scenarios. We have aIsoSim(FD(T(I))’FD(T(I)))’ where the latier represents the ideal

implemented some of our synthetic scenarios on two commercial case where every tuple iiD((1)) is preserved by the target in-

mapping systems. The comparison between the mappings gener-Stalnce .and this quantity S|mpl[f|es t9 the expression (r(7))].
ated by these systems and by MapMerge produced results simiIarWe notice that_the degree of _snmllanty decr_eeses as the c_omplex-
o the previous experiments ity of the mapping scenariof increases. This is becauserai-

We implemented MapMerge in Java as a module of Clio [10]. creases, more uncorrelated hierarchies are used in the target schema.

For all our experiments we started by creating the mappings with In turn, this means that th_e source relation is broken mte maore un-
Clio. These mappings were then used as input to the MapMerge Op_correlated target hierarchies, and hence, they are less similar to the
erator. To perform the data exchange, we used the query generatio ourcl\:/le. The graph showg, that Clio mappings, ;/]vhen co_mp_?red tlo
component n Clio to obtain SQL queries that implement the map- 201 F02 TAREIOR FEEC B AR 2 80200 ep e SO0 or
pings in the input and output of MapMerge. These queries were ’ !

subsequently run on DB2 Express-C 9.7. All results were obtained relatlv_e improvement when using MapMerge on tOp. of the Clio
on a Dual Intel Xeon 3.4GHz machine with 4GB of RAM mappings (shown as the numbers on top of the bars) increases sub-

stantially, asn becomes larger. Intuitively, this is because most
of the Clio mappings will map the source data into each root and
B.1 Synthetic Mapping Scenarios one of its child relation. On the other hand, MapMerge factors out
Our synthetic mapping scenarios follow the pattern of transform- € common mappings into the root relation and properly correlates
ing data from a denormalized source schema to a target schemdhe generated tuples.for the chlldlrelauon.wnh.the tuples in the root
containing a number of relational hierarchies, with each hierarchy rélation. The effect is that all child relations in the hierarchy are
having at its top an “authority” relation, while other relations re- correlated by MapMerge while Clio mappings can only correlate
fer to the authority relation through foreign key constraints. For oot-child pairs.
example, Figure 4 shows a source schema that consists of a single
relationS. The target schema consistsdfiierarchies of relations,

. L ; B.2 Real-life Scenarios
rooted at relation§; and7». Each relation in a hierarchy refers

to the root via a foreign key constraint from i attribute to the We consider two related scenarios from the biological domain in
K attribute of the root. This type of target schema is typical in this section. In the first scenario, we mapped Gene Ontology into
ontologies, where a hierarchy of concepts often occurs. BioWarehous® In the second, we mapped UniProt to BioWare-

house. The BioWarehouse documentation specifies the semantics
of the data transformations needed to load data from various bi-
ological databases, including Gene Ontology and UniProt. In the
GeneOntology scenario, we extracted 1000 tuples for each relation
in the source schema of the mapping, while in the UniProt scenario
we extracted the first 100 entries for the human genome and con-
verted them from XML to a relational format to use as a source
instance in our experiments. Table 1 shows the number of source
and target tables mapped, the number of correspondences used for
each mapping scenario, and the number of mapping expressions
generated by Clio for each scenario.

Figure 4: Synthetic Experimental Scenario

The synthetic scenarios are parameterized by the number of hi-

erarchies in the target schema, as well as the number of relations Mapping Source | Target Attribute Clio I
referring to the root in each hierarchy. For our experimental set- Scenario | relations | relations |Correspondencpdappings
tings we choose these two parameters to be equal, and their com- | GeneOntology| 3 4 > 4

mon valuen defines what we call the complexity of the mapping UniProt 13 10 23 14

scenario. In Figure 4 we show an example where= 2. The

table in Figure 5 shows the sizes of the experimental scenarios in
terms of the number of target relations and the execution times for
generating Clio mappings and running the MapMerge operator. We

Table 1: Characteristics of real-life mapping scenarios

. . . Mapping Size of Degree
notice that the time needed to execute MapMerge is small (less than| \apping generation target of
2 minutes in our largest scenario) but dominates the overall execu- | Scenario time (s) instance similarity (%)
tion time as the number of target relations grow. Clio MapMergé Clio [MapMergé¢ Clio [MapMerge
The graphs in Figure 5 show the results of our experiments on the [GeneOntology1.71 | 0.34 [11557 7801 [29.7] 35.3
synthetic mapping scenarios. For each scenario, the source instance UniProt | 2.36 | 2.13 | 12923 | 11446 | 20.8]| 75.8

contained 100 tuples populated with randomly generated string val-

ues. The first graph shows that the target instances generated using Table 2: Results for real-life mapping scenarios
MapMerge mappings are consistently (and considerably) smaller
than the instances generated using Clio mappings. Here we used‘http://biowarehouse.ai.sri.com/

91

Improvement in the quality of generated data

(n) Number | Mapping generation _ Target Instance Size Degree of Similarity to Target Instance
Scenario| of target time (s) g 10 < 9
Complexity relations | Clio [MapMerge = L) 15
2 6 0.55 0.42 5 M Clio ®m MapMerge *E 40 M Clio ®m MapMerge
4 20 2.07 0.82 g '—E"
6 42 2.22 2.27 £ 5 30
8 72 5.54 6.14 s S 20
10 110 7.81 10.67 <] 45 55 65 75 85
12 156 | 1043 | 22.98 5 H 10
14 210 19.02 54.94 'E 0
16 272 | 31.51| 107.99 2 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Complexity of mapping scenario (n) Complexity of mapping scenario (n)

Figure 5: Experiments on synthetic scenarios

In Table 2 we show the results of applying MapMerge to the
mappings generated by Clio in each scenario. Jéreeration time
columns show the time needed to generate the Clio mappings and
the time needed by MapMerge to process those mappings (i.e., the
total execution time is the sum of the two times). Biee of target
instancecolumns show the total number of atomic data values on
the generated target BioWarehouse instance for each scenario. In
both cases, the mappings produced with MapMerge reduced the
target instance sizes.

Thedegree of similariticolumns present the similarity measure
from Section 5 for each scenario. This similarity is normalized as a
percentage to ease comparison across scenarios and the percentage
is with respect to the ideal similarity that a mapping can produce
for the scenario. As discussed in Section B.1, this ideal similarity
is the number of tuples in the tableau full disjunction of the source,
i.e., [FD(7(I))].

On the two real-life settings, MapMerge is able to further cor-
relate the mappings produced by Clio by reusing behavior in map-
pings that span across different target tableaux and, thus, improving
the degree of similarity. This improvement is very significant in the
UniProt scenario, where the target schema has a central relation and
twelve satellite relations that point back to the central relation (via
a key/foreign key). Here, each Clio mapping maps source data to
the central and one satellite relation. MapMerge factors out this
common part from all Clio mappings and properly correlates all
generated tuples to the central relation.

B.3 Commercial Systems

We implemented some of the synthetic scenarios described in
Section B.1 in two commercial mapping systems. Provided with
only the correspondences from source attributes to target attributes,
these systems produced mappings that scored lower than both the
Clio and MapMerge mappings with respect to preservation of data
associations. For instance, in the synthetic scenario of complex-
ity 2, while the MapMerge mappings had a result of 50% and the
Clio mappings 33%, the result for both commercial systems was
only 16%. The main reason behind this result is that these sys-
tems do not automatically take advantage of any constraints present
on the schemas to better correlate generated data and increase the
preservation of data associations. The mappings generated by these
commercial systems need to be manually refined to fix this lack of
correlations.

92

