
Interactive Route Search in the Presence
of Order Constraints

Yaron Kanza∗

Faculty of Computer Science
Technion

Haifa 32000, ISRAEL

kanza@cs.technion.ac.il

Roy Levin∗

Faculty of Computer Science
Technion

Haifa 32000, ISRAEL

royl@cs.technion.ac.il

Eliyahu Safra
safraeli@gmail.com

Yehoshua Sagiv†

Dept. of Computer Science
The Hebrew University

Jerusalem 91904, ISRAEL

sagiv@cs.huji.ac.il

ABSTRACT
A route search is an enhancement of an ordinary geographic
search. Instead of merely returning a set of entities, the re-
sult is a route that goes via entities that are relevant to the
search. The input to the problem consists of several search
queries, and each query defines a type of geographical enti-
ties. When visited, some of the entities succeed in satisfying
the user while others fail to do so; however, only the prob-
ability of success is known prior to arrival. The main task
is to find a route that visits at least one satisfying entity of
each type. In an interactive search, the route is computed in
steps. In each step, only the next entity of the route is given
to the user, and after visiting that entity, the user provides
a feedback specifying whether the entity satisfies her.

This paper investigates interactive route search in the
presence of order constraints that specify that some types of
entities should be visited before others. We present heuristic
algorithms for interactive route search for two cases, depend-
ing on whether the constraints define a complete order or a
partial one. The main challenge is to utilize the feedback in
order to compute a route that is shorter and has a higher
degree of success, compared to routes that are computed
non-interactively. We also discuss how to compare the re-
sults of the algorithms and introduce suitable measures for
doing so. Experiments on real-world data illustrate the effi-
ciency and effectiveness of our algorithms.

∗The work of these authors was supported by the German-
Israeli Foundation for Scientific Research & Development
(Grant 2165-1738.6/2007).
†The work of this author was supported by the German-
Israeli Foundation for Scientific Research & Development
(Grant 973-150.6/2007).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

Keywords
Geographic information system, route, path, search, proba-
bilistic data, heuristic algorithms, interactive algorithms

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Frequently, a user actually wants to visit the entities found

in a geographic search that she performs. This requires pro-
viding the user not only with entities that satisfy the search
conditions, but also with a route that leads to these entities.
The need for a route is intensified when several geographical
searches are joined to render a combined search task. Form-
ing a route in this case is a rather difficult task due to the
need to decide which object should be taken from the re-
sult of each search, how to order these objects, and whether
to take more than one object from each result. The next
example illustrates this.

Example 1.1. Suppose that on her way from the office to

a business meeting, Alice needs to fill up her gas tank, draw

cash from an ATM, buy a new battery for her laptop, and

go by a place where there is an Internet connection, in order

to check her email. Suppose that Alice can conduct a simple

geographic search using her cellular phone or car navigation

system. She will be able to locate some nearby ATMs, some

close gas stations, coffee shops that provide Internet connec-

tion, and electronics stores. However, combining the results

of these searches into an efficient route that eventually leads

to the location of the meeting can be a hard task.

A route search, as the one in the example above, is a
task of computing a route that starts at a given location,
which is usually the location of the user, ends at a specified
location and goes via geographic entities of certain types.

117

The geographic entities are considered as the user needs and
are specified by search queries.

One of the difficulties when computing a route is dealing
with uncertainty, namely, entities that are returned by the
search queries, but actually do not satisfy the user needs. In
the example above, Alice may find an electronics store that
is located near the place of the meeting. Yet, upon arrival
at the store, she may discover that the store does not have
the specific battery she needs. She may also find out that on
her way, she passed close to some other electronics stores;
however, now there is no such store near her and she needs to
lengthen her travel or go back to a place she already visited.

For dealing with uncertainty caused by entities that do not
satisfy the user needs, we use a probabilistic model. In this
type of model, each object has a probability of success which
is the probability that the entity will satisfy the user needs.
The probabilities can be generated from collected statistics.
Such statistics, for instance, may show that most of the
people who search for an ATM are satisfied with the result of
the search. In this case, ATMs will receive high probabilities.
The statistics may show that in only 80 percent of the cases,
people who search for a restaurant eventually order food in
some restaurant that has been discovered in the search. In
such a case, a restaurant entity will receive a probability of
0.8. User profiling can be used for adjusting the probabilities
to specific users. For instance, the economic status of a
user may increase the probability of some restaurants and
decrease the probability of others.

When computing a route over probabilistic data, there
are two conflicting goals. One goal is that the route will be
as short as possible. The other goal is that the route will
go via objects that have the highest possible probabilities
of satisfying the user needs. Semantics and algorithms for
route search over probabilistic data were studied in a previ-
ous work [5]. This paper deals with interactive route search.

In an interactive route search, initially the user poses a
route-search query; however, instead of providing to the user
just one complete and unchanging route, the system creates
the route gradually while interacting with the user. In each
step, the system provides the next geographical entity on
the route. The user goes to the entity and provides to the
system feedback on whether the entity has satisfied her. The
feedback is used when computing the rest of the route. Note
that in this approach, the system can also present to the user
a complete planned route, and modify the presented route
whenever a feedback that changes the plan is received.

Example 1.2. Consider the search task of Example 1.1.

Suppose that the first entity Alice receives is a nearby In-

ternet Cafe. Alice will go to the place and will provide a

feedback to the system on whether she has been able to read

her email. If the answer is positive, the rest of the route

does not need to visit an Internet Cafe. If the answer is

negative, the computation of the route continues and is re-

quired to satisfy the need for going by a place that provides

Internet connection.

For probabilistic datasets, computing routes iteratively
can produce shorter routes than non-interactive evaluation.
For instance, if a route goes via an entity of type T and the
entity satisfies the user, there is no need to go by other en-
tities of T . In the non-interactive approach, for comparison,
it may be required to plan a route that goes via several en-
tities of type T so that if one fails, another one will succeed.

Thus, the iterative approach can shorten the length of the
produced route.

Computing a route as short as possible, over a probabilis-
tic dataset, is a difficult task. In the non-interactive case,
the problem is NP-hard [5]. The interactive case is difficult
as well for the following reason. For each entity it is required
to consider the consequences of a success in satisfying the
user and a failure to do so. Thus, although a single ob-
ject is chosen in each step, the choice can be affected by an
exponential number of scenarios.

Order constraints are used for specifying the order by
which some types of entities should be visited. For instance,
in the scenario of Example 1.1, Alice may need to visit an
ATM and an electronics store before going to an Internet
Cafe. The order constraints may define a complete order

that specifies for each pair of types which one should be vis-
ited first. It may also define a partial order that specifies
the visit order for some pairs of types, but does not specify
it for the others.

In the presence of order constraints, the route-search al-
gorithms need to guarantee that the objects are visited in
an order that satisfies the constraints. Thus, the constraints
are an additional factor that makes it harder to devise al-
gorithms for route search. The case of a partial order is
more difficult to handle, because one has to consider all the
complete orders that are consistent with the given partial
order. In the case of a complete order, there is just one
order to consider and that makes the problem conceptually
and computationally easier.

The main contributions of this paper are in formally defin-
ing the problem of interactive route search in the presence
of order constraints, presenting interactive algorithms for
route-search queries in the presence of order constraints, and
comparing the efficiency and effectiveness of the algorithms
experimentally and analytically.

2. RELATED WORK
Earlier works on route-search queries dealt either with

non-probabilistic datasets (e.g., [1, 3, 7, 8, 9]), or with the
non-interactive version of the problem (e.g., [5, 6]). Those
results cannot be used to solve the interactive route-search
problem that we address in this paper, since they are not
designed to take user feedback into account.

Recently, interactive route search over probabilistic data
has been introduced and investigated in [4]. There is a fun-
damental difference between [4] and this paper. The algo-
rithms presented in [4] do not deal with order constraints
and cannot be easily modified to do so efficiently and effec-
tively. The reason for this is that when examining potential
routes, it is required to consider only routes that satisfy the
order constraints. However, doing that is intricate, because
considering an exponential number of routes and discarding
routes that do not satisfy the order constraints is inefficient.
Computing a route regardless of the constraints and skip-
ping entities, if visiting them violates some order constraint,
is not effective. Hence, new algorithms should be devised for
route search in the presence of order constraints.

Moreover, we take advantage of the fact that the query
size is small. That is, the user has to visit a small number
of destinations; however, the number of objects that could
potentially satisfy the user is large. Thus, we assume that
the query size is bounded, and we develop algorithms that
perform a comprehensive global search, as opposed to the

118

greedy local-search algorithms of [4]. Since the algorithms
of this paper are more exhaustive than those of [4], they are
more effective, even for queries without order constraints.

3. PROBABILISTIC ROUTE SEARCH
In this section, we present our framework, we formally

define the concept of interactive route search, and we explain
how order constraints affect route-search queries.

3.1 Geo-spatial Datasets
A geo-spatial dataset consists of a collection O of geo-

spatial objects and a graph G of a road network that con-
nects the objects. Each object represents a real-world geo-
graphical entity and its location is the same as that of the
entity. In the sequel, “object” and “entity” are synonyms,
although technically an object is a representation of a real-
world entity.

Each edge in the graph G represents a segment of a real-
world road and it has a length. The length of an edge is the
length of the road segment it represents. That is, an edge
with length ℓ between two objects o1 and o2 represents a
real-world road with length ℓ connecting o1 and o2. We use
length(o1, o2) to denote the length of this edge.

A path in G from node o1 to node o2 is a sequence of
nodes o1, o2, . . . , om, such that every two adjacent nodes
oi and oi+1 are connected by an edge of G. The length
of the path is the sum of the lengths of its edges, namely,
Σm−1

i=1 length(oi, oi+1). The distance between two objects o

and o′ is the length of the shortest path that connects them.
We denote this distance by dist(o, o′).

3.2 Search Queries
Users employ search queries to specify the entities that

they would like to visit. In this paper, we assume that a
search query is just a set of keywords, but other alternatives
are also possible. The result of a search query is represented
as a probabilistic dataset, namely, each object is assigned a
value 0 ≤ p ≤ 1, called probability of success (or probability,
for short). The probability of an object o specifies what
is the likelihood that o represents an entity that actually
satisfies the user’s needs. The task of assigning probabilities
to objects is beyond the scope of this paper.

3.3 Route-Search Queries
Route-search queries are generated by combining several

search queries that specify different types of entities through
which the route should go. We use Q (typically with a sub-
script) to denote a search query. We denote by Q a collec-
tion of several search queries that together constitute one
component of a route-search query, as we explain later.

An order constraint on a route-search query Q is a pair
(Q1, Q2), where Q1 and Q2 are distinct queries of Q. Intu-
itively, this pair specifies that the user must visit a satisfying
entity of the answer to Q1 prior to arriving at an entity of
the answer to Q2. Users can add order constraints to a
route-search query by specifying a set of such pairs.

Let C be a set of order constraints over Q. The precedence

graph, denoted by GC , is a directed graph whose nodes are
the search queries of Q and whose directed edges are the
pairs of C. When there is a path in GC from some query Q1

to a query Q2, we say that Q1 precedes Q2 and we denote
this by Q1 ≺ Q2. We say that C is a valid set of constraints
if GC is acyclic. It is easy to see that when there is a cycle

in GC , it is impossible to satisfy all the order constraints,
because there are two queries such that each one should
precede the other.

We say that GC defines a complete order over Q if it
contains a Hamiltonian path, that is, a directed path that
goes via all the elements of Q. Otherwise, we say that GC

defines a partial order.
In a route-search query, the user specifies a start location

s, a target location t, a setQ of search queries, and a valid set
C of order constraints. Hence, we represent a route-search
query as a 4-tuple R = (s, t,Q, C).

Example 3.1. Consider again Example 1.1. A suitable

route-search query for Alice should include (1) the location

s of her office, (2) the location t where the meeting should

be held, and (3) the following four search queries: Q1 =
{gas station}, Q2 = {ATM}, Q3 = {laptop battery}, and

Q4 = {Internet Cafe}. The order constraints (Q2, Q4) and

(Q3, Q4) specify that Alice should visit an ATM and an elec-

tronics store before going to the Internet Cafe. Note that

there is no order constraint that involves Q1, which means

that a gas station can be located anywhere on the route.

Consider a route-search query R = (s, t,Q, C), where Q
is the set {Q1, . . . , Qm} of search queries. The answer set

(or result) of Qi, denoted by Ai, comprises the objects of
the database that are relevant to Qi. For simplicity, we as-
sume that the answer sets A1, . . . , Am are pairwise disjoint.1

Namely, distinct search queries of Q refer to different types
of objects. For example, one search query is about hotels,
another is concerning restaurants, etc. A pre-answer to R

is a sequence s, o1, . . . , ok, t that starts at s, ends at t and
goes via objects of the results A1, . . . , Am, such that every
Ai has at least one object in the sequence. The objects are
visited in an order that conforms to the constraints of C.
That is, for all oi1 and oi2 , where i1 < i2, it holds that if oi1

belongs to Aj1 and oi2 belongs to Aj2 , then Qj2 does not
precede Qj1 (i.e., in GC there is no path from Qj2 to Qj1 ,
so Qj2 6≺ Qj1).

The length of the route is the sum of the distances between
consecutive objects, that is,

dist(s, o1) + Σk−1
i=1 dist(oi, oi+1) + dist(ok, t) .

3.4 Interactive Search
Answering route-search queries is traditionally done by

computing a complete route, from s to t, that has a high
probability-of-success and a short length [5]. An interactive
search is different from the traditional approach in the fol-
lowing aspect. After visiting an entity, the user provides a
feedback on whether the entity actually satisfies the corre-
sponding search query, and only then does the system de-
termine the next entity to be visited. In other words, in-
stead of computing a complete route in advance, the route
is computed incrementally. At each step, the system pro-
vides to the user a single object, which is the next object
on the route. After visiting the geographical entity that
corresponds to the object, the user sends to the system in-
formation on whether the entity satisfies her needs, and this
feedback affects the computation of the following objects on
the route. Alternatively, the system may give to the user
a complete route (that visits relevant objects of the search

1When an object appears in k different answer sets, we can
consider it as k distinct objects having a shared location.

119

queries that still have to be satisfied). The system may
change this route when the feedback warrants doing so.

The computation of the route is influenced by the order
constraints. When the user visits an entity that meets her
needs, the corresponding search query is deemed satisfied.
In each step, the user can visit an entity only if the corre-
sponding object o is an answer to a search query Qi, such
that all the queries that precede Qi have already been satis-
fied. When all the queries have been satisfied, the user goes
to the target location t and the search ends. Recall that
when there are m search queries in Q, there is a need to
visit exactly m entities that satisfy the user.

Note that if all the objects of some answer set Aj have
already been visited, and none has satisfied the user, then
R cannot be satisfied. In this case, a failure message should
be sent to the user and a new search should be initiated.

Our goal is to develop algorithms for interactive route
search that compute routes that are as short as possible.

4. ALGORITHMS
In this section, we describe interactive algorithms for route

search. Each algorithm has two versions: one is for queries
whose constraints define a complete order, and the second
version is for queries whose constraints define a partial or-
der. All the algorithms operate over the objects in the an-
swer sets A1, . . . , Am of the search queries of Q, and they
compute a route by iteratively increasing a partial sequence
σ. Initially, the partial sequence comprises only the start
location, namely, σ = s. On each iteration, the algorithms
provide to the user the next object ok to be visited; thus,
ok is added at the end of σ. When arriving at ok, the user
provides a feedback regarding whether ok actually satisfies
the corresponding search query (i.e., the query Qi, such that
ok ∈ Ai). The feedback determines whether the objects of
Ai are still relevant to the search and whether Qi is satisfied.

For each object o in the sequence σ, we denote by o-sat(o)
the feedback received for o. When this feedback is true,
it means that the object satisfies the corresponding search
query. Otherwise (i.e., in the case of a false feedback), the
object does not satisfy the query.

On each iteration, an object is chosen from the answers
to the queries that have not yet been satisfied. Next, we
formally define the set from which the object is chosen.
Consider a route-search query R = (s, t,Q, C), where Q =
Q1, . . . , Qm. Let σ = s, o1, . . . , ok be the partial sequence
computed so far. The unsatisfied queries of R are all the
queries Qi, such that σ has no object that satisfies Qi. In
other words, we use q-unsatR(σ) to denote the set of these
queries and define q-unsatR(σ) = {Qi | Qi ∈ Q and ¬∃o(o ∈
σ ∧ o ∈ Ai ∧ o-sat(o))}, where Ai is the answer set for Qi.

In each iteration, the sequence σ is extended by providing
to the user the next object of the route. The added object
is chosen from a set of candidate objects. This set, denoted
candidatesR(σ), consists of all objects o, such that o has
not yet been visited and its addition to σ complies with the
order constraints. When computing the set of candidate
objects, we use the precedence graph GC that is generated
from the order constraints C. Let Gunsat be the induced
subgraph of GC w.r.t. the unsatisfied queries of q-unsatR(σ).
That is, Gunsat is obtained from GC by removing all the
satisfied queries and their incident edges. Let Q0 be the set
of nodes of Gunsat with no incoming edges (i.e., queries that
have no preceding query in Gunsat). Then, o is a candidate

object if o does not appear in σ and is an answer to some
query of Q0. In Appendix G, we show how to use an index
to reduce the number of candidate objects, for efficiency
reasons. WhenQ0 is the empty set, all the queries have been
satisfied (i.e., q-unsatR(σ) = ∅) and the route must continue
to the end location t. If there is no candidate object and
Q0 is not empty, then the route-search query R cannot be
satisfied. Note that when C defines a complete order on
Q, then in each iteration (except for the last one where Q0

is empty), Q0 contains exactly one query, and thus all the
candidate objects are answers to the same query.

4.1 Greedy Algorithms
The naive greedy heuristic is a simple method that serves

as our baseline; namely, more elaborate algorithms will be
compared to it. In each iteration, this heuristic chooses the
candidate object that is closest to the current location l.

The naive greedy heuristic is simple and efficient. How-
ever, it suffers from the drawback of ignoring the location
of the target t. Consequently, it may compute a route that
drifts far away from t and is unnecessarily long. The oriented

greedy heuristic is aimed at solving this problem by choosing
the next object o′ so that it will be near the current location
as well as close to the straight line from s to t. Since the
greedy algorithms are simple, and the greedy approach is
not novel, we specify their details in the appendix.

4.2 Optimistic Approach
The main weakness of the greedy approach is that in each

step it employs a local search, i.e., it chooses the next object
o′ without taking into account the length of the route from
o′ to t. A more thorough algorithm should consider in each
step the overall length of a route that starts at the current
location, passes through objects that satisfy the remaining
search queries and ends at t. The optimistic approach does
that by computing at each iteration a complete route with
respect to the search queries that still have to be satisfied.
We now describe how it works.

The algorithm computes the shortest pre-answer, that is,
as short a route as possible from the start location to the
end location via one object from each answer set A1, . . . , Am.
The user follows this route till an object fails to satisfy its
corresponding search query. When that happens, the algo-
rithm finds the set of yet unsatisfied queries Qu ⊆ Q and
computes a new route, from the current location to t, that
goes via one object of each Ai ∈ Au, where Au are the
answers to the unsatisfied queries Qu.

This approach is “optimistic” in the sense that at each
step, the route is computed under the assumption that all
the relevant objects satisfy their corresponding queries. If
this assumption holds, the shortest pre-answer is indeed the
optimal solution. Next, we explain in more detail the two
versions of this approach—one for the case where the con-
straints define a complete order, and another for the case
where the constraints define a partial order.

4.2.1 Optimistic Approach for Complete Orders
For route-search queries R = (s, t,Q, C) whose constraints

define a complete order, we can efficiently compute the short-
est pre-answer. Without loss of generality, suppose that the
constraints define the order Q1, . . . , Qm over the queries of
Q (i.e., objects of Q1 should be visited first, then objects
of Q2, after that objects of Q3, and so on). Consider the

120

Ordered Optimistic ((s, t,Q, C), D)

Input: Start location s, target location t, search queries
Q1, . . . , Qm ordered according to C, a dataset D

Output: A route that satisfies the search queries Qi in
the order of increasing i, based on feedback from the user

1: u-location← s

2: for i = 1 to m do
3: found← false

4: while Ai 6= ∅ and not found do
5: o← argmin

o∈Ai

(dist(u-location, o) + dist-t(o))

6: provide o to the user and receive a feedback
7: u-location← the location of o

8: if o satisfies Qi then
9: found← true

10: else
11: Ai ← Ai − {o}
12: if not found then
13: return “the route cannot be completed”
14: provide the target destination t to the user

Figure 1: Optimistic algorithm when C defines a
complete order

answer sets A1, . . . , Am of R. For each o ∈ Ai (1 ≤ i ≤ m),
we compute the minimal distance of a route that starts at o

and for j = i + 1, . . . , m, passes through one object of each
Aj in the order of increasing j, and finally arrives at t. We
denote this minimal distance by dist-t(o) and refer to it as
the distance-to-target of o. An algorithm for computing the
dist-t(o) values is presented in Appendix C.

The optimistic algorithm for route-search queries R =
(s, t,Q, C), where C defines a complete order, is shown in
Figure 1. This algorithm computes a route that satisfies the
search queries Qi in the order of increasing i. In each itera-
tion, it suffices to compute only the next object to be visited,
rather than a whole route. Line 1 sets the current location
to s. The loop of Line 2 iterates through the answer sets Ai

in the order of increasing i. For each Ai, the loop of Line 4
iterates over objects of Ai until it finds one that satisfies
Qi. In Line 5, the algorithm picks the object o of Ai that
appears on the shortest pre-answer (w.r.t. Qi, . . . , Qm) from
the current location to t. In Line 6, the user is informed to
travel to o and provides her feedback. Line 7 sets the current
location to that of o. The test of Line 8 checks whether o

satisfies Qi. If the test is positive, then Line 9 sets found to
true, which means that the while loop of Line 4 terminates
and the algorithm proceeds to the next iteration of Line 2.
Otherwise (i.e., o does not satisfy Qi), the object o is re-
moved from Ai and another iteration of the loop of Line 4
is done. If Ai becomes empty before finding an object that
satisfies Qi, the algorithm terminates in Line 13 after noti-
fying the user that the route cannot be completed. When
the loop of Line 2 terminates (without reaching Line 13),
the user is informed to travel to the target location.

4.2.2 Optimistic Approach for Partial Orders
In case of a complete order, computing the distance-to-

target values is rather straightforward, because the shortest
route from the current location to t is unique. In case of a
partial order, the shortest route may vary depending on the

types of objects that have already been visited. As an exam-
ple, suppose that there is no order constraint that involves
Qi, i.e., an object of Ai may appear anywhere on the route.
If the current location is an object o ∈ Aj , where j 6= i, then
we should consider (at least) two distinct shortest routes
from o to t; one of those routes visits an object of Ai while
the other does not. In other words, the distance-to-target
value of o depends on whether an object of Ai has already
been visited or not. Thus, we should compute the distance-
to-target value of o for each possible history, namely, each
sequence of queries that have already been satisfied.

Formally, we first construct the set OC of all the com-
plete orders over Q that conform to the constraints of C.
Next, consider an object o ∈ Ai. We have to compute for o

a distance-to-target value for each sequence Qi1 , . . . , Qif
of

distinct search queries, such that Qi1 , . . . , Qif
, Qi is a prefix

of some element of OC . We do it by considering every suffix
Qig , . . . , Qim , such that Qi1 , . . . , Qif

, Qi, Qig , . . . , Qim is in
OC . We compute the distance-to-target value of o w.r.t. the
complete order Qi1 , . . . , Qif

, Qi, Qig , . . . , Qim using the al-
gorithm of Figure 2. The actual distance-to-target value of
o w.r.t. the sequence Qi1 , . . . , Qif

is the minimum over all
the possible suffixes. This computation is based on the as-
sumption that all the objects that correspond to the queries
of a possible suffix Qig , . . . , Qim are available, namely, none
of them has already been visited and failed. However, this is
not necessarily true, because the partial order implied by the
constraints of C may allow objects corresponding to some
Qj (j 6= i) to be visited either before or after o. Therefore,
the computed distance-to-target value is only an estimation.
We elaborate on this in the Appendix E. In summary, we
create for each object o an estimated-distance table (EDT)
that maps sequences of search queries to distance-to-target
values. Finally, observe that if two distinct sequences con-
sist of exactly the same queries, then the same value is com-
puted for both. Hence, the entries of an EDT are subsets of
Q rather than sequences. The following example illustrates
what are the entries of an EDT.

Example 4.1. Consider a route-search query where Q =
{Q1, Q2, Q3, Q4, Q5} and C = {Q1 ≺ Q2, Q2 ≺ Q3, Q2 ≺
Q4, Q3 ≺ Q5, Q4 ≺ Q5}. There are two complete orders to

consider: Q1, Q2, Q3, Q4, Q5 and Q1, Q2, Q4, Q3, Q5. Now,

for an object o2 in the result of Q2, the EDT has a single en-

try, which maps the set {Q1} to the shortest distance among

the following two routes: (1) the shortest pre-answer from o2

to t with respect to the complete order Q2, Q3, Q4, Q5, and

(2) the shortest pre-answer from o2 to t with respect to the

complete order Q2, Q4, Q3, Q5.

For an object o3 in the result of Q3 there are two entries

in the EDT, one is for the set {Q1, Q2} and the other is for

the set {Q1, Q2, Q4}.

The optimistic approach starts the processing of a route-
search query by constructing an EDT for every object. The
route is computed in stages as follows. Let σ = s, o1, . . . , ok

be the sequence of objects visited thus far (initially σ = s).
We use q-satR(σ) to denote the set of queries that have been
satisfied by σ (i.e., q-satR(σ) = Q \ q-unsatR(σ)). For an
object o that has an entry for q-satR(σ) in its EDT, let dσ(o)
be the value of that entry. The next object to be visited is
the one that minimizes the sum dist(ok, o) + dσ(o), among
all objects o that have an entry for q-satR(σ) in their EDT
and are not already in σ.

121

4.3 The Effect of Probabilities on the Route
Thus far, we presented greedy algorithms and optimistic

algorithms that consider only the distances between objects,
but ignore the probabilities. One way to add to these algo-
rithms the effect of the probabilities is by changing the dis-
tance function. For every two objects o1 and o2, we define
the distance function distp(o1, o2) to be dist(o1, o2)/prob(o2).
We can now use distp instead of dist . This increases the
distance to objects with a low probability of success in a
manner that is inversely proportional to the probability.

4.4 Minimizing the Expected Distance (MED)
The optimistic approach employs a best-case scenario.

That is, the next object to be visited is the first on the short-
est route that passes through one object of each answer set
Ai, such that Qi has not yet been satisfied. A more realistic
approach is to use an average-case analysis. The main idea
is to choose the next object based on the expected, rather
than the shortest, distance that still remains to be traveled.
To formalize this notion, let s be the current location and
consider an object o. The following is a recursive defini-
tion of the expected distance to be covered, given that o

is the next object to be visited. There are some expected
distances ℓs and ℓf from o to the target location,2 depend-
ing on whether o succeeds (i.e., satisfies its corresponding
query) or fails, respectively. Thus, given that o is the next
object, the expected distance from the current to the target
location is the following sum.

dist(s, o) + prob(o) · ℓs + (1− prob(o)) · ℓf (1)

In the MED approach, the next object o to be visited is one
that minimizes the above sum.

Computing the expected distance for an object o is not
easy. First, there could be an exponential number of pre-
answers that need to be considered. Second, we should
avoid pre-answers that visit the same object more than once,
which means that when constructing the pre-answers, we
should keep the entire history (i.e., the visited objects) of
each pre-answer. Doing so for an exponential number of
pre-answers is impractical. Hence, we use heuristics that
estimate the expected distance, rather than compute it pre-
cisely. Examples that illustrate the difference between MED
and the other algorithms are provided in Appendix I.

4.4.1 MED for Complete Orders
In this section, we describe the version of MED for route-

search queries with a complete order. The crux of the algo-
rithm is an estimation of the expected distance, given that
objects must be visited in the order dictated by the con-
straints. Actually, an expected distance is computed for
each object o, assuming that the route starts at o and has
to satisfy the search query Q that corresponds to o as well
as all the search queries that succeed Q in the complete or-
der. As explained later in this section, this estimation em-
ploys a heuristic that enforces a total order on the objects
of the dataset D, thereby limiting the number of examined
routes. The expected distances are stored in an array E.
For each object o, the entry E[o] estimates the expected

2More precisely, the user travels until she either arrives at t
or discovers that one of her search queries cannot be satis-
fied. The expected distance is computed by considering the
probabilities and lengths of all the routes she may travel.

distance of the shortest route that satisfies all the remain-
ing search queries, starting with the one corresponding to
o. After computing the array E, the rest of the MED algo-
rithm is straightforward. In each step, the next object o is
the one that minimizes the expected travel distance given by
Equation 1 and E[o] (the latter estimates the sum of the last
two terms of Equation 1). The MED algorithm for complete
orders is described in detail in Appendix D.

In the remainder of this section, we describe how to com-
pute the estimation E[o] for all objects o ∈ D. First, we
define the order ≺ over the objects of D. When doing
so, we assume that the queries Q1, . . . , Qm and their cor-
responding answers A1, . . . , Am are ordered according to ≺,
i.e., if i < j then Qi ≺ Qj . Now, if o1 ∈ Ai, o2 ∈ Aj

and i < j, then naturally o1 ≺ o2, because objects of Ai

must be visited before objects of Aj . In order to define
≺ for objects of the same answer set Ai, we partition the
straight line from s to t into m + 1 equal intervals. Let the
sequence of points p0, p1, . . . , pm, pm+1 describe this parti-
tion, where p0 = s and pm+1 = t. In other words, the
intervals [pi, pi+1] (0 ≤ i ≤ m) cover the straight line from
s to t, they are disjoint and have the same length. Ob-
jects of the same answer set Ai are ordered according to
their distance from pi. That is, o1 ≺ o2 if o1 and o2 are
both in Ai and dist(o1, pi) < dist(o2, pi). In case of a tie
(i.e., dist(o1, pi) = dist(o2, pi)), the order between o1 and o2

is defined arbitrarily.
The rationale for the above definition is to prefer objects

that are closer to the line from s to t and, in particular,
objects whose distance from s is linearly proportional to
their position on a possible route. In other words, the goal
is to choose the next object so that it will be in the direction
toward to t, but not too close to t, in order to avoid routes
that unnecessarily go back and forth.

When estimating the expected length of a route, we should
take into account the possibility that some search queries are
not satisfied by any object. To do it properly, we define for
each answer set Ai a penalty that amounts to the length of a
route that goes through all the objects of Ai (which must be
done when Qi cannot be satisfied). That is, penalty(Ai) =
Σk−1

j=1dist(oi
j , o

i
j+1), where the route oi

1, . . . , o
i
k passes exactly

through all the objects of Ai from the smallest to the largest,
according to the order ≺. (In Appendix D, we explain why
the penalty has been defined this way.)

Recall that E[o] denotes our estimation of the expected
length of the shortest route from an object o of Ai to t,
such that the search queries Qi, . . . , Qm are satisfied. E[o]
is given by

E[o] = prob(o) · (dist(o, os) + E[os]) + (2)

+ (1− prob(o)) · (dist(o, of) + E[of])

where os and of are defined as follows. If o succeeds, then an
object of Ai+1 should be visited next. Therefore, we choose
os from the objects of Ai+1 so that the sum dist(o, os)+E[os]
is minimized, except that os is t if i = m (note that by defi-
nition, E[t] = 0). If o fails, then another object of Ai should
be visited next. To avoid an exponential computation, we
choose of from the objects of Ai that are larger than o ac-
cording to ≺. In particular, of is picked out so that the
sum dist(o, of) + E[of] is minimized; however, if o is the
last object of Ai (according to ≺), then we replace the sum
dist(o, of) + E[of] with penalty(Ai), because none of the
visited objects of Ai satisfies Qi.

122

The algorithm ComputeExpLen computes all the entries
of E by means of Equation (2). To make the process well
defined, the algorithm iterates over the objects of D from
the largest to the smallest, according to ≺. The pseudo-code
is given in Figure 4 of Appendix D.

4.4.2 MED for Partial Orders
The adaptation of MED to partial orders is obtained in a

way similar to how it was done in the case of the optimistic
approach. An estimation of the expected distance has to be
computed for every pair (o, S), such that o is an object in
the answer set of some query and S is a subset of Q that
represents a possible history, namely, the search queries of
S have already been satisfied before arriving at o.

Formally, let S be a subset of Q and Σ be a sequence
Qig , . . . , Qim of distinct queries. Recall that OC is the set
of all the complete orders implied by the constraints of C.
We can view each element of OC just as a sequence. We say
that Σ is consistent with S if the following holds. (1) Σ is a
suffix of some element of OC ; (2) No search query appears
in both S and Σ; and (3) Every search query of Q appears
in either S or Σ. We say that Σ is an i-sequence if Qi is the
first query in Σ.

Consider an object o ∈ Ai. The array E (of estimations)
of expected distances has an entry for every pair (o, S), such
that S ⊆ Q and there is some i-sequence Σ that is consistent
with S. The value E[o, S] is computed as follows.

Let Σ be an i-sequence that is consistent with S. We
apply the algorithm ComputeExpLen of Figure 4 w.r.t. the
complete order Σ (while ignoring objects corresponding to
search queries that do not appear in Σ). We do it for every
i-sequence that is consistent with S. The minimum value
computed for o, over all the i-sequences that are consistent
with S, is assigned to E[o, S].

The above description of how to compute E[o, S] is not
the most efficient way of doing it. In fact, it suffices to
apply the algorithm ComputeExpLen of Figure 4 once for
each complete order of OC . (Recall that OC is the set of
complete orders implied by the constraints of C.) If we do
it in this way, then we actually compute values of the form
E[o, Γ], where Γ ∈ OC . Let Γ<o> denote the suffix of Γ that
starts at the Qi corresponding to o. E[o, S] is the minimum
over all E[o, Γ], such that Γ<o> is consistent with S.

More specifically, for each object o, we need to divide all
the E[o, Γ] into subsets, such that in each one all the Γ
have the same search queries appearing before Qi. Thus,
each subset corresponds to one E[o, S], where S is the set
of search queries that appear before Qi in all the Γ of the
subset. E[o, S] is assigned the minimum value in its corre-
sponding subset.

As earlier, σ denotes the route traveled thus far, and
q-satR(σ) is the set of queries that have already been sat-
isfied. The algorithm MED for partial orders is similar to
MED for complete orders (given in Figure 3 of Appendix D).
The main difference is changing Line 10 of Figure 3 so that
the next object to be visited is the one that minimizes the
sum dist(curr, o) + E[o, q-satR(σ)] over all objects o, such
that E[o, q-satR(σ)] is defined, o has not yet been visited
and its corresponding search query still has to be satisfied.
If there is no such o, then the algorithm has failed to find
a route. As usual, if the route σ has satisfied all the search
queries, then the user should travel to the target location t.

5. EXPERIMENTS
In order to examine the effectiveness and efficiency of our

methods, we tested them over real-world data in a variety
of cases. We conducted many experiments and we present
here only the results of typical cases. In our experiments
we used real-world data. We simulated the satisfaction of
objects according to their probabilities and we tested route-
search queries R where the number of search queries in Q is
between three to seven. See details in Appendix H.

5.1 Effectiveness
We conducted a series of experiments to examine the effec-

tiveness of our algorithms. We tested the effect of different
parameters on each algorithm. In the experiments we com-
pared MED, Optimistic, Oriented Greedy and Naive Greedy.
For Optimistic and Oriented Greedy, we experimented with
the version that is affected by the probabilities, i.e., the ver-
sion that uses distp instead of dist . In this section, we denote
the Optimistic by wOpt, the weighted oriented Greedy by
wGre, and the Naive Greedy by bGre.

We conducted experiments using many different queries,
as well as many different start and end points. However,
we did not find any significant impact of setting different
start/end locations, nor of using different search queries,
on the comparison between the different algorithms. Thus,
these parameters are not specified in the experiments below.

Comparing the algorithms one to the other only provides a
relative indication of their effectiveness. For a non-relative
comparison, we included in our experiments an algorithm
we call Perfect. Perfect computes the shortest route while
having the satisfaction conditions of all the objects before
the first step. Since Perfect has information that no inter-
active algorithm has, the route computed by Perfect is the
best that any interactive algorithm could hopefully compute.
Obviously, in actual scenarios, such an algorithm does not
exist; however, in our experiments, we had all the informa-
tion on the objects, and hence, we were able to use it. We
compare the results of our algorithms to the results of Per-
fect, in order to show that our algorithms are effective in
general and not just relatively.

Figures 5, 6 and 7 show the results of tests that examine
the effect of order constraints on the effectiveness of the
algorithms.3 In these graphs, the x-axis shows lengths. For
each length ℓ, the y-axis presents the percentage of routes
that were created interactively and had a length of at most ℓ.
The percentage was achieved by running each route-search
query 100 times, while simulating interaction with the user.
When comparing two interactive algorithms on such a graph,
the better algorithm is the one whose curve is higher because
the routes it produces are expected to be shorter.

In the experiments whose results are presented in Fig-
ure 5, Figure 6 and Figure 7, probabilities where normally
distributed4 with mean 0.7 and standard deviation 0.1. The
route-search queries in this experiment comprise five search
queries, i.e., need to go via objects of five types.

Figure 5 shows the results of the algorithms for the case
where there are no order constraints. There are 120 com-
plete orders in this case. Figure 6 shows the results for the
case where there is a partial order. There are 20 complete

3The figures of this section appear in the appendix.
4The actual distribution is close to normal since we do not
allow objects to receive a probability lower than zero or
greater than one.

123

orders in this case. The case where the constraints define a
complete order is presented in Figure 7.

The results show that MED outperforms the other algo-
rithms in almost all of the cases. Optimistic (wOpt) is al-
most as good as MED, and both of them are almost as good
as Perfect, which shows that they are indeed effective. The
Greedy algorithms bGre and wGre are less effective than
MED and wOpt.

Figure 8 presents the results of comparing the algorithms
to Perfect. For each algorithm, it shows the average dif-
ference between the length of the route computed by the
algorithm and the length of the route computed by Perfect.
The results are shown for the cases where the means of the
probabilities are 0.3, 0.6 and 0.9, respectively. Not surpris-
ingly, the results of the algorithms are closer to Perfect when
probabilities are high than when probabilities are low. This
experiment also shows that MED is the most effective in all
cases. Optimistic is effective when the probabilities are high,
but it is not effective when the probabilities are low. This
is because it applies an “optimistic” assumption and when
the probabilities are low, this assumption is incorrect. The
greedy approach is relatively good when the probabilities
are low, because in this case, most of the visited objects fail
to satisfy the user, so not planning and going to the nearest
object is a good strategy for this case.

Figures 9, 10 and 11 show the results of the different al-
gorithms for a search over three datasets, where the prob-
abilities are normally distributed with means 0.3, 0.6 and
0.9, respectively. In this experiment, the route-search query
comprised three search queries, thus, the objects are parti-
tioned into three categories. This experiment provides an
additional affirmation to the effectiveness of MED.

In Appendix E, we presented the problem of phantom
objects and claimed that a possible solution is to recalculate
the estimation of the minimal distance after every negative
feedback. We denote by rMED the algorithm Recalculate
MED and by rwOpt the algorithm Recalculate Optimistic.
Our experiments showed that recalculation has almost no
effect on the effectiveness of the algorithms. The results
of these experiments are presented in Figure 12. The test
shows this by comparing the results of MED, rMED, wOpt
and rwOpt to the results of Perfect. It is done over datasets
in which the probability is normally distributed with means
0.3, 0.6 and 0.9, respectively. Each column is the average
over three different start and target locations, and for 100
different interactive runs. It can be seen that there is almost
no difference between MED and rMED. Similarly, there is
almost no difference between wOpt and rwOpt.

5.2 Efficiency
We analyzed the complexity of our algorithms (see details

in Appendix F) and tested them experimentally. We con-
ducted our tests on a standard computer with Intel Core 2
Duo 2.26 GHz CPU and 2 GB of RAM. All the algorithms
compute the next object on the route within less than a
millisecond. (Except for the Recalculating versions of MED
and Optimistic.) The difference in the efficiency of the al-
gorithms is in the preprocessing time they require. When
users initiate a route search, they may want the first ob-
ject to be provided instantly, and thus, the efficiency of the
preprocessing is important in many cases.

Table 1 presents the pre-processing times of the differ-
ent algorithms. It shows that the greedy algorithms are the

most efficient. MED is the least efficient because it requires
a relatively long preprocessing step. It can be seen that
the preprocessing requires significantly less time for a com-
plete order than for no order. In general, the efficiency of
the preprocessing is inversely proportional to the number of
possible orders that comply with the order constraints.

6. CONCLUSION
We studied the problem of interactive route search in the

presence of order constraints, for two cases. In one case, the
constraints define a complete order over the types of entities
that should be visited, and in the other they define a partial
order. For each case, we presented three algorithms, having
in mind two goals: computing an effective route (i.e., a route
that is as short as possible) and doing it efficiently (i.e., find-
ing the next object on the route as quickly as possible). The
Greedy algorithm is the most efficient, yet the route it com-
putes is the least effective. The MED algorithm, in contrast,
provides the most effective route; however, its efficiency is
the lowest. The Optimistic algorithm is a compromise that
provides a route with effectiveness and efficiency that are
between those of MED and Greedy. The differences be-
tween the running times of the three algorithms are just in
the preprocessing phase. The time needed to find the next
object is about the same in all of them (less than 1 mil-
lisecond). If efficiency is important, then the best may be a
hybrid approach that determines the first object using the
Greedy algorithm, and then switches to the MED (or Opti-
mistic) algorithm in order to find subsequent objects. The
time it takes the user to get to the first object is more than
enough for completing the preprocessing. Thus, the hybrid
approach is both efficient and effective.

Future work includes studying the effect of different types
of indexes on the efficiency and scalability of our algorithms.

7. REFERENCES
[1] H. Chen, W.-S. Ku, M.-T. Sun, and R. Zimmermann,

The multi-rule partial sequenced route query, GIS, 2008,
pp. 1–10.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein, Introduction to algorithms,

third edition, The MIT Press, 2009.

[3] X. Huang and C.S. Jensen, In-route skyline querying

for location-based services, W2GIS, 2004, pp. 120–135.

[4] Y. Kanza, R. Levin, E. Safra, and Y. Sagiv, An

interactive approach to route search, GIS, 2009.

[5] Y. Kanza, E. Safra, and Y. Sagiv, Route search over

probabilistic geospatial data, SSTD, 2009, pp. 153–170.

[6] Y. Kanza, E. Safra, Y. Sagiv, and Y. Doytsher,
Heuristic algorithms for route-search queries over

geographical data, GIS, 2008, pp. 1–10.

[7] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and
S.H. Teng, On trip planning queries in spatial

databases, SSTD, 2005, pp. 273–290.

[8] M. Sharifzadeh, M. R. Kolahdouzan, and C. Shahabi,
Optimal sequenced route query, VLDBJ 17 (2008),
no. 8, 765–787.

[9] M. Terrovitis, S. Bakiras, D. Papadias, and
K. Mouratidis, Constrained shortest path computation,
SSTD, 2005, pp. 181–199.

124

APPENDIX

A. NAIVE GREEDY HEURISTIC
The naive greedy heuristic works as follows. In each it-

eration, this heuristic chooses the candidate object that is
closest to the current location l. Note that l is s in the first
iteration, and l is some ok in subsequent iterations. For-
mally, when q-unsatR(σ) = ∅, all the queries of Q have been
satisfied, and hence, t is the next location and the com-
putation ends. When q-unsatR(σ) 6= ∅, the naive greedy
heuristic chooses a candidate object o′ that is nearest to l,
namely, o′ ∈ candidatesR(σ) and

dist(l, o′) = min {dist(l, o) | o ∈ candidatesR(σ)} .

B. ORIENTED GREEDY HEURISTIC
The naive greedy heuristic is simple and efficient. How-

ever, it suffers from the drawback of ignoring the location
of the target t. Consequently, it may compute a route that
drifts far away from t and is unnecessarily long, due to the
distance from the last object to t. A possible solution is to
choose the next object o′ based on the combined distance
of o′ from both the current location and t. This approach
is likely to compute a route in the general direction toward
t. But the route might progress too fast toward t, that is,
within a few steps, the route will reach objects near t, even
when there are many relevant objects in the vicinity of s

and only a few near t.
The oriented greedy heuristic is aimed at solving the above

problems by choosing the next object o′ so that it will be
near the current location as well as close to the straight line
from s to t. In order to do so, the algorithm computes for
each candidate object o′, the sum dist(l, o′) + dist(s, o′) +
dist(o′, t), where l is the current location. Then the algo-
rithm chooses a candidate object that minimizes this sum.

C. DISTANCE TO TARGET
The algorithm DistanceToTarget of Figure 2 computes

dist-t(o) for all the objects o ∈ Ai, for 1 ≤ i ≤ m. It is based
on Dijkstra’s shortest-path algorithm [2]. The algorithm
iterates through the answer sets in reverse order, that is,
from Am to A1. For each object o of Am, the loop of Lines 1–
2 computes dist-t(o), which is simply the distance from o to
t. Line 3 iterates through the remaining answer sets. The
loop of Lines 4–5 computes dist-t(o) for all objects o of Ai

using the values computed for Ai+1. In particular, dist-t(o)
is the minimum of the sum dist(o, o′) + dist-t(o′) over all
o′ ∈ Ai+1.

D. MED FOR COMPLETE ORDER

D.1 The Algorithm
The MED algorithm for a complete order is presented in

Figure 3. Line 3 uses a subroutine that returns an array
E, such that for all objects o, the entry E[o] is an estima-
tion of the expected distance covered by the shortest route
that satisfies all the remaining search queries, starting with
the one that corresponds to o. (The computation of E is
described in Section 4.4.1 and the pseudo-code is given in
Figure 4.) The loop of Line 5 (of Figure 3) iterates over
the answer sets Ai in the order of increasing i. The loop of
Line 7 iterates until it finds an object of Ai that satisfies Qi;

DistanceToTarget (A1, . . . , Am, t)

Input: Target location t, answer sets A1, . . . , Am or-
dered according to the order defined by C

Computes: For each object o ∈ Ai, the minimal dis-
tance of a route when starting at o, continuing to an
object of Ai+1, then to an object of Ai+2 and so on until
getting to an object of Am and ending at t.

1: for each o ∈ Am do
2: dist-t(o)← dist(o, t)
3: for i = m− 1 downto 1 do
4: for each o ∈ Ai do
5: dist-t(o)← min

o′
∈Ai+1

(dist(o, o′) + dist-t(o′))

Figure 2: Computing the distance-to-target values

if eventually none is found, then the algorithm terminates in
Line 9. Line 10 chooses the next object o to be the one that
minimizes the sum of the distance from the current location
to o plus the expected length of a route from o to t. If o sat-
isfies its corresponding query, then the algorithm proceeds
to the next iteration of Line 5; otherwise, o is deleted from
Ai and another iteration of Line 7 is done.

D.2 The Penalty
In Section 4.4.1 we defined the penalty for a failure in the

last object of Ai as penalty(Ai) = Σk−1
j=1dist(oi

j , o
i
j+1). We

explain now why the penalty is defined this way. Essentially,
a penalty that is either too small or too large will cause MED
to be ineffective.

When the penalty is too small, the algorithm will generate
a route that skips many objects, and hence, is likely to fail
in satisfying all the queries. To see that, suppose that o is
the last object of Ai according to ≺, and the penalty is equal
to zero. In this case, o would be chosen early in the MED
algorithm (in Line 10 of Figure 3) and the generated route
will skip many objects of Ai.

When the penalty is too large, the algorithm may generate
a route that does not skip objects, and thus, goes even via
objects that are very far from s and t. This may cause the
generated route to be too long. Intuitively, the reason for
this is that in the computation of the expected distance,
the penalty is multiplied by the probability of a failure in
all the visited entities. As the penalty gets larger, even a
small drop in the probability of a failure causes a relatively
large decrease in the expected distance. Therefore, it is more
likely that the algorithm will compute a route that does not
skip objects (since the more objects are visited, the lower is
the probability of a failure.)

We tested various definition of the penalty, and the one
we have chosen proved to be the best.

E. PHANTOM OBJECTS
The optimistic approach computes the exact minimal dis-

tance (using the algorithm DistanceToTarget of Figure 2) in
the case of a complete order. As noted earlier, in the case
of partial orders, the optimistic approach computes only an
estimation of the minimal distance. The reason for that is
that it takes into account the search queries that have al-
ready been satisfied, but not the possibility that some of

125

MED ((s, t,Q, C), D,≺)

Input: Start location s, target location t, search queries
Q1, . . . , Qm ordered according to C, a dataset D, an or-
der ≺ over D

Output: The next object to be visited

1: if Q is empty then
2: return t

3: call ComputeExpLen (o, E, (s, t,Q, C), D,≺)
4: curr ← s

5: for i = 1 to m do
6: found ← false

7: while not found do
8: if Ai = ∅ then
9: return “the route cannot be completed”

10: o← argmin
o∈Ai

(dist(curr, o) + E[o])

11: provide o to the user and get a feedback
12: curr ← o

13: if o does not satisfy Qi then
14: remove o from Ai

15: else
16: found ← true

Figure 3: MED for route-search queries in which C

defines a complete order

the visited objects have failed. The values of the minimal
distances are computed in a preprocessing step. So, when
they are actually used during the construction of a path, it
could be that a specific value is based on using an object
that has already been visited and failed; hence, this value is
only an estimation. We say that a phantom object is used if
the choice of the next object is based on a value of the min-
imal distance that incorporates an object that has already
been visited. The phenomenon of phantom objects can also
occur in the MED algorithm for partial orders.

A simple solution to the effect of phantom objects is to do
the following in each step of computing the next object to be
visited. If the most-recently visited object has failed, then
discard it and recalculate the estimations before determining
the next object. We refer to the versions of Optimistic and
MED that perform recalculation of the estimations as Re-

calculating Optimistic and Recalculating MED, respectively.
This solution is detrimental to the efficiency of the algo-

rithms. Fortunately, our tests show that phantom objects
are rare and that recalculating the estimations decreases the
length of the produced route only by a very small amount.

F. COMPLEXITY ANALYSIS
We now analyze the complexity of the different algorithms.

For interactive algorithms, the time complexity of comput-
ing an entire route is not useful because the algorithms are
delayed by the need to wait for feedbacks from the user. So
instead, we use the following two complexity measures. The
preprocessing complexity is the time complexity of the com-
putation that is required for providing the first object of the
route. The step complexity is the time complexity of com-
puting the next object on the route after at least one object
has been computed. We analyze our algorithms according to
these two measures. In our analysis, we assume that there

ComputeExpLen (E, (s, t,Q, C), D,≺)

Input: Route-search query (s, t,Q, C), a dataset D, an
order ≺ over the objects of D

Output: Array E such that for all o ∈ D, the entry E[o]
is an estimation of the expected distance from o to t

1: let om
km
≻ · · · ≻ om

1 be the objects of Am

2: E[om
km

]← prob(om
km

) · dist(om
km

, t) +
+ (1− prob(om

km
)) · penalty(Am)

3: for j = km − 1 downto 1 do
4: o← argmin

{o|o∈Am∧om
j

≺o}
(dist(om

j , o) + E[o])

5: E[om
j]← prob(om

j) · (dist(om
j , t)) +

+ (1− prob(om
j)) · (dist(om

j , o) + E[o])
6: for i = m− 1 downto 1 do
7: let oi

ki
≻ · · · ≻ oi

1 be the objects of Ai

8: o← argmin
o∈Ai+1

(dist(oi
ki

, o) + E[o])

9: E[oi
ki

]← prob(oi
ki

) · (dist(oi
ki

, o) + E[o]) +
+ (1− prob(oi

ki
)) · penalty(Ai)

10: for j = ki − 1 downto 1 do
11: oAi ← argmin

{oAi
|oAi

∈Ai∧oi
j
≺oAi}

(dist(oi
j , oAi) +

+ E[oAi])

12: oAi+1 ← argmin
oAi+1

∈Ai+1

(dist(oi
j , oAi+1) + E[oAi+1])

13: E[oi
j]← prob(oi

j) · (dist(o
i
j , oAi+1) + E[oAi+1]) +

+ (1− prob(oi
j)) · (dist(o

i
j , oAi) + E[oAi])

Figure 4: Computing the expected distances

are n objects in D and these objects are partitioned into m

answer sets.
The Naive Greedy and the Oriented Greedy algorithms re-

quire no preprocessing. The computation of the first object
on the route has the same time complexity as the compu-
tation of any other object on the route. In each step, all
the objects of the dataset D are examined. Thus, these
algorithms can be easily implemented to have O(n) prepro-
cessing complexity and O(n) step complexity.

The Optimistic algorithm for the case of a complete or-
der starts by executing a preprocessing step of computing
the distance-to-target values. For each object of D, a value
is computed by examining the distance from it to all the

objects of the next set. Thus, the preprocessing has O(n2

m
)

time complexity. The computation of an object is done by
choosing an object from a set of at most n objects. Hence,
the step complexity is O(n).

In the case of a partial order, there can be m! possible
orders, and hence the preprocessing has time complexity

O(n2

m
m!). The step complexity requires checking n objects

and considering at most 2m entries in the EDT of each ob-
ject. Thus, the step complexity is O(n2m).

The algorithm MED for the case of a complete order has a
preprocessing step of computing the expected-distance val-
ues for the objects. First, the objects of D are sorted. The
sort has O(n log n) time complexity. An expected distance
is computed for each object and this is done by considering
about n

m
objects of some answer set. Thus, the prepro-

cessing complexity is O(n log n + n2

m
). The step complexity

126

Figure 5: No order Figure 6: Partial order Figure 7: Complete
Figure 8: Comparison
to the perfect result

Figure 9: Mean 0.3 Figure 10: Mean 0.6 Figure 11: Mean 0.9
Figure 12: The effect
of recalculating

Figure 13: Map of Tel-Aviv (fragment)

requires choosing an object from an answer set, therefore,
the step complexity is O(n).

For constraints that define a partial order, MED needs to
create EDTs and use them in each step. The preprocessing
complexity requires considering m! orders, and hence, it is

O(m!(n log n + n2

m
)). The step complexity is O(n2m), as for

Optimistic with a partial order.
Note that in practical scenarios, the number of queries,

m, is relatively small. It is reasonable to assume that in

most practical cases, users will pose route-search queries of
no more than ten search queries. Thus, even though the
preprocessing complexity and the step complexity are expo-
nential in m, in the case of partial orders, in practice our
algorithms provide answers in an acceptable time. The ex-
periments in the Section 5 confirm this.

G. DEFINING THE SEARCH REGION
We define the search region of a query as all the objects

contained in a bounding ellipse whose two foci are the user
location l, and the target location t. An object with location

x is inside the ellipse if |l−x|+|t−x| ≤ |l−t|

e
, where e ∈ [0, 1]

denotes the eccentricity of the ellipse, which is the ratio of
the distance between the foci to the length of the major axis.
The relevant objects are retrieved using an R-tree index.
This method was proposed and analyzed by Li et al. [7] for
filtering out objects that due to their location are not likely
be visited by the shortest route from l to t. Thus, it reduces
the number of objects being examined.

H. SETTING
The real-world data that we used in our experiments is

part of a digital map, of the city Tel-Aviv, that has been
generated by the Mapa company. A fragment of that map
is presented in Figure 13. In our tests, we used the “Point Of
Interest” (POI) layer of the map. The objects in this layer
represent many different types of geographical entities. We
extracted from the map 628 objects of seven different types
(20 cinemas, 29 hotels, 31 pedestrian bridges, 54 post offices,
136 pharmacies, 169 parking lots and 189 synagogues). In
the experiments, we tested route-search queries R where the
number of search queries in Q is between three to seven.

In order to simulate interactive scenarios, the satisfaction
of each visited object was chosen randomly, when the object
was visited, according to the probability of the object. Since
we wanted to prevent extreme cases, we ran every query

127

100 times, where in each run, different random choices were
made for the objects, and the results were averaged.

Table 1: Pre-processing times, in milliseconds, for 5
search queries, over a dataset of 419 objects.

Algorithm Full Order Partial Order No Order

bGre 0.6 22 115
wGre 1.6 34 167
wOpt 145 3015 16,217
Med 244 5146 26,207

I. EXAMPLES OF SPECIFIC ROUTES
We present two cases that illustrate some of the differ-

ences between our algorithms. In these two cases, we used
real-world datasets, and we run our algorithms so that the
results will reflect the actual behavior of the algorithms. For
simplicity of presentation, there are no order constraints in
the two examples of this section.

The first case compares the greedy algorithm to MED,
and it shows why in many cases MED outperforms greedy.
It is presented in Figure 14 .

Figure 14: A scenario where the route computed by
Greedy (solid line) is significantly longer than the
route computed by MED (dashed line).

Example I.1. In this example, a route search with five

queries is considered. The objects to be visited are depicted

by plus, star, triangle, circle and square icons. The route

provided by the greedy algorithm is depicted with a solid line

and some locations where the user provided a feedback are

depicted as a number inside a circle. The route that MED

computed is depicted with a dashed line, and the locations

where the user provided a feedback are shown as a number

inside a square.

The result of one of the search queries consists of a single

object, and it is depicted using a black square at the bottom

left corner of the figure. Since there is only one such square,

the route must go via this location.

MED “plans” the entire travel, and thus, it goes from the

start location to the location of the black square. (This is

also marked by the number 2 inside a square). Then, MED

continues directly to the target location going via the other

objects it needs to visit.

The greedy algorithm goes to objects that are near the line

that connects s and t. It leads the user to the locations de-

picted by 1,2 and 3 in a circle. The greedy approach leads

toward t till there is only one query left to satisfy—the query

whose answer is the black square. This forces the route to

lead back in a direction opposite to t, visit the black square

and continue to t. Going back and forth due to lack of plan-

ning causes the greedy to be inefficient in such case.

The second example compares Optimistic to MED.

Figure 15: A scenario where the route computed
by Optimistic (solid line) is significantly longer than
the route computed by MED (dashed line).

Example I.2. The scenario depicted in Figure 15 illus-

trates the superiority of MED over Optimistic. In this sce-

nario, the route-search query consists of three search queries

whose results are depicted by plus, star and pentagon icons,

respectively.

The pentagons represent cinemas. In this scenario, cin-

emas have a probability of 0.7. There is a cinema near t.

Optimistic computes the shortest route and reaches that cin-

ema (see the number 1 in square near that cinema). How-

ever, in many cases this cinema fails to satisfy the user. In

these cases, the route continues to a cinema that is far from

t (there is an icon of the number 2 inside a square near that

cinema). So, in this scenario, Optimistic generates a route

that frequently goes back and forth.

MED, on the other hand, considers the case that the cin-

ema near t will fail and hence, it visits cinemas on the way

from s to t (these cinemas are marked by 1 and 2 in a cir-

cle). If cinema 1 fails, the route continues to 2 with only a

small increase in the total length, whereas for the route of

Optimistic, when the first cinema fails the increase in the

length of the route is large.

128

