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ABSTRACT
A Cloud may be seen as a type of flexible computing infrastructure
consisting of many compute nodes, where resizable computing ca-
pacities can be provided to different customers. To fully harness
the power of the Cloud, efficient data management is needed to
handle huge volumes of data and support a large number of con-
current end users. To achieve that, a scalable and high-throughput
indexing scheme is generally required. Such an indexing scheme
must not only incur a low maintenance cost but also support paral-
lel search to improve scalability. In this paper, we present a novel,
scalable B+-tree based indexing scheme for efficient data process-
ing in the Cloud. Our approach can be summarized as follows.
First, we build a local B+-tree index for each compute node which
only indexes data residing on the node. Second, we organize the
compute nodes as a structured overlay and publish a portion of the
local B+-tree nodes to the overlay for efficient query processing.
Finally, we propose an adaptive algorithm to select the published
B+-tree nodes according to query patterns. We conduct extensive
experiments on Amazon’s EC2, and the results demonstrate that
our indexing scheme is dynamic, efficient and scalable.

1. INTRODUCTION
There has been an increasing interest in deploying a storage sys-

tem on Cloud to support applications that require massive salabil-
ity and high throughput in storage layer. Examples of such sys-
tems include Amazon’s Dynamo [15] and Google’s BigTable [13].
Cloud storage systems are designed to meet several essential re-
quirements of data-intensive applications: manageability, scalabil-
ity, availability, and low latency. Computer nodes that are allo-
cated from Cloud are maintained as a resource pool and can be
dynamically added/removed from the pool as resource demands
change over time. Datasets are automatically partitioned and repli-
cated among available nodes for scalability and availability. Query
efficiency is achieved by either employing a pure key-value data
model, where both key and value are arbitrary byte strings (e.g. Dy-
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namo), or its variant, where key is an arbitrary byte string and value
is a structured record consisting of a number of named columns
(e.g. BigTable, which supports efficient retrieval of values via a
given key or key range).

However, existing solutions lack of built-in support for secondary
index, a useful feature for many applications. In real world, users
tend to query data with more than one keys. For example, in an
online video system, such as Youtube, each video could be stored
in a key-value store with a unique video id as the key and video in-
formation, including title, upload time and number of views as the
value. Although the video can be efficiently retrieved via video id,
a common scenario is that the end user wants to find videos with
given titles or within a date range. Current practice to solve this
problem is to run a MapReduce job that scans the whole dataset
and produces the necessary second indices in an offline batch man-
ner. Problems of this approach is that the secondary index is not
up-to-date and newly inserted tuples cannot be queried until they
are indexed. For instance, when a new item is inserted into Google
Base, that item could be delayed for one day to be seen by users.

This paper presents CG-index (Cloud Global index), a secondary
indexing scheme for Cloud storage systems. CG-index is designed
for Cloud platform and built from scratch. It is tailored for online
queries and maintained in an incremental way. It shares many im-
plementation strategies with shared-nothing databases [16], peer-
to-peer computing [14, 20], and existing Cloud storage systems
[18, 15]. CG-index supports usual dictionary operations (insert,
delete andlookup), as well as range search with a given key range.

CG-index software consists of two components: a client library
which is linked with user application and a set of index servers
which store the index. The CG-index servers operate in a shared
pool of compute nodes allocated from Cloud and the index server
process can reside in the same physical machine with the storage
server process. Besides high scalability and availability, CG-index
can be easily integrated into various storage systems to support high
throughput and high concurrency. These features are achieved by
adopting three techniques: 1) a generic key-pointer representation,
2) partition aware indexing, and 3) eventual consistency.

CG-index stores each index entry as ansk-handle pair, wheresk

is the secondary key that will be indexed and handle is an arbitrary
byte string which could be used to fetch the corresponding value in
the Cloud storage system. Throughout this paper, the termprimary
keyis referred to the key stored in key-value store and the termsec-
ondary keyis referred to the key stored in CG-index. This design fa-
cilitates the integration of CG-index with various storage systems.
CG-index treats a handle as an uninterpreted string. Users can se-
rialize arbitrary information into a handle. For example, users can
directly store the primary keys in handles or serialize the primary
keys along with timestamps into handles. The latter case is a typi-
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cal usage of indexing data in BigTable since each value in BigTable
is timestamped.

All existing storage systems employ some horizontal partitioning
scheme to store large datasets in a cluster. The idea is to partition
the dataset into a number of small pieces called data shards. Each
data shard is a distribution unit and is stored on a unique com-
puter node. CG-index is designed to be aware of and optimized
for such form of partitioning. Instead of building an index for the
whole dataset, CG-index builds a local B+-tree index for each data
shard called an index shard. The index shard is a distribution unit
in CG-index, which is stored and maintained on a unique index
server. CG-index relies on this index distribution technique for de-
sired scalability. Queries are served by searching all qualified index
shards. The returned results is a stream ofsk-handle pairs. We can
group the handles by their data shard IDs. An optimization is to
retrieve a group of handles from the same data shard in a batch
mode.

The index server is responsible for serving requests that involve
data shards indexed by the server. To route queries among the
servers, all index servers are organized as a structured peer-to-peer
network, BATON [20]. Each index server maintains connections
to its neighbors in the network. It collects some B+-tree nodes
of its neighbors and thus knows data indexed by other servers. A
query routing algorithm traverses the network with neighbor links
and returns allsk-handle pairs. Since each index server only sends
a portion of its local B+-tree nodes to neighbors, only the updates
involving the published B+-tree nodes trigger the synchronization
process. Therefore, in most cases, index servers update index en-
tries locally, achieving high throughput and concurrency. Finally, to
obtain required availability and resilience to network partition, we
replicate the data of an index server to multiple servers. Eventual
consistency is adopted to maintain consistency between replicas.

The above techniques complete the design of CG-index. Al-
though some implementation techniques applied by CG-index have
been studied in the literature, adapting them in a Cloud system
makes CG-index design unique and challenging. The rest of the pa-
per is organized as follows: Section 2 reviews related work. Section
3 outlines our system architecture. Section 4 and Section 5 present
the proposed indexing and tuning algorithms. Section 6 empirically
validates the effectiveness and efficiency of our proposed indexing
scheme. We conclude in Section 7. The algorithms and theorems
are listed in the appendix (Section A). We also discuss some other
optimizations in the appendix.

2. RELATED WORK
Building scalable data storage systems is the first step towards

Cloud computing. These storage systems are always tailored for
specific workload. The most important and fundamental storage
system is the distributed file system. Google’s GFS [18] and its
open source implementation, HDFS [3], are designed to support
large-scale data analytic jobs, where datasets are split into equal-
size chunks. The chunks are randomly distributed over the com-
puter nodes. Amazon’s Simple Storage Service (S3) [2] is a data
storage service that allows users to store and retrieve objects on
Amazon’s Cloud infrastructure. S3 can be used to support high-
frequent access over the internet. OceanStore [21], Farsite [9] and
Ceph [26] provide peta-bytes of highly reliable storage. They can
support thousands of online users and simultaneous accesses.

Based on above systems, some more sophisticated systems are
proposed to support various applications. Most of them are key-
value based storage systems. Users can efficiently retrieve the data
via the primary key. BigTable [13] is a distributed storage system
for managing large-scale structured datasets. BigTable maintains

its SSTable File in GFS and combines the techniques of row-based
and column-based databases. To reduce the overheads, it applies
the eventually consistent model, which is also adopted in this paper.
HyperTable [4] is an open source implementation of BigTable on
HDFS. Amazon’s Dynamo [15] is a key-value store for many Ama-
zon’s services. It applies the consistent hash function to distribute
data among the computer nodes. Similar to Dynamo, Voldemort
[6] is a distributed key-value store, which can be scaled to a large
cluster and provide high throughput. Cassandra [5], Facebook’s
distributed key-value store, combines the model of BigTable and
Dynamo to support efficient InBox search. Although the under-
lying implementation may be different, the common goal of these
proposals is to provide techniques that store huge datasets over a
shared-nothing computer cluster or data center. These work are
orthogonal to ours. We focus on providing an efficient secondary
indexing technique over those data storage systems.

In [10], a distributed B+-tree algorithm was proposed for index-
ing the large-scale dataset in the cluster. The B+-tree is distributed
among the available nodes by randomly disseminating each B+-
tree node to a compute node (also called server node in [10]). This
strategy has two weaknesses. First, although it uses a B+-tree based
index, the index is mainly designed for simple lookup queries and
is therefore not capable of handling range queries efficiently. To
process a range query[l, u], it must first locate the leaf node re-
sponsible forl. Then, ifu is not contained by the leaf node, it needs
to retrieve the next leaf node from some compute server based on
the sibling pointer. Such form of retrieval continues until the whole
range has been searched. Second, it incurs high maintenance cost
for the server nodes and huge memory overhead in the client ma-
chines, as the client node (user’s own PC) lazily replicates all the
corresponding internal nodes.

The work that is most related to ours is RT-CAN [25]. RT-CAN
integrates CAN [23]-based routing protocol and the R-tree based
indexing scheme to support multi-dimensional queries. Different
from RT-CAN, CG-index organizes computer nodes into a BATON
[20] network and builds B-tree indexes to support high throughput
one-dimensional queries. CG-index is a preliminary work of our
project, epiC [7]. In epiC, we re-implement RT-CAN and CG-index
in a unified indexing framework to support various types of queries.

3. SYSTEM OVERVIEW
Figure 1 shows the system architecture of our cluster system. A

set of low-cost workstations join the cluster as compute (or pro-
cessing) nodes. This is a shared nothing and stable system where
each node has its own memory and hard disk. To facilitate search,
nodes are connected based on the BATON protocol [20]. Namely, if
two nodes are routing neighbors in BATON, we will keep a TCP/IP
connection between them. Note that BATON was proposed for a
dynamic Peer-to-Peer network. It is designed for handling dynamic
and frequent node departure and joining. Cloud computing is dif-
ferent in that nodes are organized by the service provider to enhance
performance. In this paper, the overlay protocols are only used for
routing purposes. Amazon’s Dynamo [15] adopts the same idea
by applying consistent hashing for routing in clusters. BATON is
used as the basis to demonstrate our ideas due to its tree topology.
Details of BATON can be found in the appendix. Other overlays
supporting range queries, such as P-Ring [14] and P-Grid [8], can
be easily adapted as well.

In our system, data are partitioned into data shards (based on the
primary key), which are randomly distributed to compute nodes.
To facilitate search for a secondary key, each compute node builds
a B+-tree for the key to index its local data (data shards assigned to
the node). In this way, given a key value, we can efficiently receive
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Figure 1: System Overview

its handle. The handle is an arbitrary byte string which could be
used to fetch the corresponding value in the Cloud storage system.
To process queries in the cluster, a traditional scheme will broad-
cast the queries to all the nodes, where local search is performed
in parallel. This strategy, though simple, is not cost efficient and
scalable. Another approach is to maintain data partitioning infor-
mation in a centralized server. The query processor needs to look
up the partitioning information for every query. The central server
risks being the bottle-neck.

Therefore, given a key value or range, to locate the correspond-
ing B+-trees, we build a global index (CG-index) over the local
B+-trees. Specifically, some of the local B+-tree nodes (red nodes
in Figure 1) are published and indexed in the remote compute nodes
based on the overlay routing protocols. Note that to save the storage
cost, we only store the following meta-data of a published B+-tree
node: (blk, range, keys, ip), whereblk is the disk block number of
the node,rangeis the value range of the B+-tree node (we will dis-
cuss it in the next section),keysare search keys in the B+-tree node
and ip is the IP address of the corresponding compute node. In
this way, we maintain a remote index for the local B+-trees in each
compute node. These indexes compose the CG-index in our sys-
tem. Figure 1(a) shows an example of the CG-index, where each
compute node maintains a portion of the CG-index. Figure 1(b)
gives an example of mapping B+-tree nodes to compute nodes in
the overlay. To process a query, we first look up the CG-index for
the corresponding B+-tree nodes based on the overlay routing pro-
tocols. And then following the pointers of the CG-index, we search
the local B+-trees in parallel.

The CG-index is disseminated to compute nodes in the system.
To improve the search efficiency, the CG-index is fully buffered in
memory, where each compute node maintains a subset of CG-index
in its memory. As memory size is limited, only a portion of B+-
tree nodes can be inserted into CG-index. Hence, we need to plan
our indexing strategy wisely. In this system, we build a virtual ex-
pansion tree for the B+-tree. We expand the B+-tree from the root
node step by step. If the child nodes are beneficial for the query
processing, we will expand the tree and publish the child nodes.
Otherwise, we may collapse the tree to reduce maintenance cost
and free up memory. Algorithm 1 shows the general idea of our in-
dexing scheme. Initially, the compute node only publishes the root
of its local B+-tree. Then, based on the query patterns and our cost
model, we compute the benefit of expanding or collapsing the tree
(line 4 and line 7). To reduce maintenance cost, we only publish in-
ternal B+-tree nodes (we will not expand the tree to the leaf level).
Note that in our expanding/collapsing strategy, if a B+-tree node is

indexed, its ascendent and descendant nodes will not be indexed.
Overlay routing protocol allows us to jump to any indexed B+-tree
nodes directly. Therefore, we do not need to start the search from
the B+-tree’s root.

Algorithm 1 CGIndexPublish(Ni)

1: Ni publishes the root node of its B+-tree
2: while truedo
3: Ni checks its published B+-tree nodenj

4: if isBeneficial(nj .children) then
5: expand the tree fromnj by indexingnj ’s children
6: else
7: if benefit(nj )<maintenanceCost(nj ) then
8: collapse the tree by removingnj and indexnj ’s parent

if necessary
9: wait for a time

4. THE CG-INDEX
Different from [10], where a global B+-tree index is established

for all the compute nodes in the network, in our approach, each
compute node has its local B+-tree, and we disseminate the local
B+-tree nodes to various compute nodes. In this section, we discuss
our index routing and maintenance protocols. The index selection
scheme will be presented in next section. To clarify the represen-
tation, we useupper-caseandlower-casecharacters to denote the
compute node and B+-tree node, respectively.

4.1 Indexing Local B+-tree Nodes Remotely
Given a range, we can locate the BATON node responsible for

the range (the node whose subtree range can fully cover the search
range). On the other hand, the B+-tree node maintains the infor-
mation about the data within a range. This observation provides us
with a straightforward method to publish B+-tree nodes to remote
compute nodes. We employ thelookupprotocol in the overlay to
map a B+-tree node to a compute node and store the meta-data of
the B+-tree node at the compute node’s memory.

To publish B+-tree nodes into CG-index, we need to generate a
range for each B+-tree node. Based on their positions, the B+-tree
nodes can be classified into two types: 1) the node is neither the
left-most nor the right-most node at its level and 2) the node and its
ancestors are always the left-most or right-most child.

For the first type of nodes, we can generate their ranges based
on the parents’ information. For example, in Figure 2, nodec is
nodea’s second child. So its range is from the first key to the

1209



12 35

5 8 12 22 26 30 35 35 40 45

a [0,45]

b [0,12]

45 60 80r [0, 100]

c [12,35] d [35,45]

Figure 2: B+-Tree Nodes and Their Index Ranges

second key ofa, namely (12,35). The second type of nodes only
provide an open range (no lower bound or no upper bound). We
use the smallest value and the largest value in current tree as bound
values. To reduce update cost, we slightly increase the range. For
example, in Figure 2, we use 0 as the lower bound instead of 5,
the actual smallest value. After defining the lower bound and upper
bound of the tree, we can generate a range for the type 2 nodes.
For example, the ranges of noder and a are (0,100) and (0,45)
respectively. The lower bound and upper bound can be cached in
memory, and updated when new data are inserted into the left-most
or right-most leaf nodes.

To publish a B+-tree node, we first generate its rangeR. Then,
based on the BATON routing protocols, we obtain the compute
nodeN , which is responsible for the lower bound ofR. Step by
step, we forward the request to the ancestors ofN until we reach
the one whose subtree range can fully containR. The B+-tree node
is then indexed in that node. For additional details, please see the
appendix (section A).

In the cluster system, as the processing nodes are low-cost work-
stations, there may be node failures at any time. Single point of
failure can be handled by our replication strategy. But when a sub-
set of nodes are offline (e.g. a rack switch is down), all replicas
may be lost. To handle such problem, the compute node refreshes
all its published B+-tree nodes occasionally.

4.2 Query Processing
Given a range queryQ, we need to search the CG-index to locate

the B+-tree nodes whose ranges overlap withQ. We can simulate
the overlay’s search algorithm to process the query. Algorithm 2
shows a general range search process. Starting from the lower
bound ofQ, we follow the right adjacent links to search sibling
nodes until reaching the upper bound ofQ. However, the range
search of many overlays, including BATON’s, could be further op-
timized. Supposek nodes overlap withQ. The average cost of a
typical range search in BATON is estimated as1

2
log2 N+k, where

N is the total number of compute nodes in the system.

Algorithm 2 Search(Q = [l, u])

1: Ni=lookup(l)
2: perform local search onNi

3: while Ni = Ni.right andNi.low < u do
4: perform local search onNi

The first optimization to the range search algorithm is that in-
stead of starting the search from the lower bound, we can start at
any point inside the range. Suppose the data are uniformly dis-
tributed among nodes andR is the total range, this optimization
reduces the average cost of searching a node in a rangeQ from
1
2

log2 N + k to 1
2

log2
QN

R
+ k.

The existing analysis ignores the effect ofk, which in fact dom-
inates search performance in a large-scale overlay network. As a
simple example, in a 10,000-node network, suppose the data are
uniformly partitioned among processing nodes,k = 100 if Q

R
=

0.01. To reduce the latency of range search, the second optimiza-

tion is to increase parallelism. We broadcast the query to the pro-
cessing nodes that overlaps with the search range in parallel.

Finally, the new search algorithm is summarized as:

1. Locate a random processing node in the search range (opti-
mization 1).

2. Following the parent link, locate the root node of a BATON
subtree, The subtree covers the whole search range.

3. Selectively broadcast the query to the descendants of the sub-
tree (optimization 2).

4. In each processing node, after receiving the search request,
do a local search for the CG-index.

Parallel search algorithm reduces the average cost from1
2
log2N+k

to 1
2

log2
QN

R
+ log2 N , wherelog2 N is the height of the BATON

tree. For detail algorithms, please refer to the appendix.

5. ADAPTIVE TUNING
In this section, we propose our adaptive indexing strategy based

on the cost model of overlay routings. Our adaptive scheme selec-
tively indexes local B+-tree nodes according to query patterns by
expanding the local B+-tree from the root node dynamically.

5.1 Cost Modeling
We now consider the cost of publishing a local B+-tree node in

the network under the adaptive approach. We do so by reviewing
the procedures of query processing and index maintenance. Gener-
ally, we consider three types of costs: network routing cost, local
search cost and index maintenance cost. All the costs are estimated
approximately. We useα andβ to denote the average cost of a
random I/O operation and the cost of sending an index message,
respectively. As we evaluate CG-index on Amazon’s EC2 [1],α
andβ are estimated based on the results of [24, 12].

In query processing, we first locate the compute nodes responsi-
ble for our search key. This incurs1

2
βlog2N cost in the structured

overlays, whereN is the total number of nodes in the cluster. After
locating the compute nodes, we retrieve the indexed B+-tree nodes
in the CG-index. As the index is fully buffered in memory, the local
retrieval cost can be discarded.

Suppose the height of B+-treeT is h andn is T ’s node with
heighth(n). Then, processing queries via the index ofn will incur
αh(n) cost in the local search. We save a cost ofα(h − h(n)) by
searching fromn instead of the root node.

On the other hand, to synchronize the local B+-tree index with
the remote one, we need to send index update messages. The B+-
tree leaf nodes incur much higher update cost than the internal
nodes. Assume that the updates happen uniformly among the leaf
nodes. To model the update cost in the local B+-tree, we define
the parameters in Table 5.1. On average, the nodes of B+-tree have
3m

2
keys. Synchronization is performed when an indexed B+-tree

node splits or merges with other nodes. Thus, we need to compute
the probability of splitting or merging a noden with heighth(n).

Table 5.1 Parameters
m B+ tree’s order
h height of the node
p1 probability of insertion
p2 probability of deletion

This problem can be formalized as a random walk problem with
two absorbing states. The start state is at3m

2
and the two absorbing

states arem and2m, respectively. With probabilityp1, we move to
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the state2m and with probabilityp2, we move to the statem. The
random walk problem can be solved by the theorems in [22], and
we obtain the following result:

psplit =
(p2

p1
)
3m
2 − (p2

p1
)m

(p2
p1

)2m
− (p2

p1
)m

(1)

pmerge =
(p2

p1
)2m

− (p2
p1

)
3m
2

(p2
p1

)2m
− (p2

p1
)m

(2)

wherepsplit and pmerge are the probabilities of splitting the
node and merging the node, respectively. Furthermore, based on
[22] we can compute the average updates required for triggering a
splitting or merging as:

nu =
m(psplit − pmerge)

2(p1 − p2)
(3)

Thus, given the probabilities of updating the child nodes, we can
compute the effect to the parent nodes. Iteratively, we can estimate
the update probability of nodes at any level.psplit andpmerge of
the child node equalp1 andp2 of the parent node, respectively. Fi-
nally, suppose there areU updates in a time unit, we can compute
the number of updates for each node in the B+-tree. To simplify
the discussion, we useg(ni) to represent the number of update
messages of a B+-tree nodeni (we discard the complex formula of
functiong for simplifying the presentation). As it takes1

2
log2 N

hops to notify the corresponding compute node, the total cost of
maintainingni in the remote index is1

2
βg(ni) log2 N . To handle

node failure, multiple replicas are kept to improve the availability
of CG-index (replication strategy is discussed in Section 5). Sup-
pose there arek replicas for an index entry. The cost of maintaining
ni and its replicas isk

2
βg(ni) log2 N

Another kind of maintenance cost is the republication cost. As
mentioned above, to handle unexpected network failures, a com-
pute node will periodically republish its local B+-tree nodes. Sup-
pose republication happens everyT time unit. The cost is estimated
as β log2 N

2T
. Finally, suppose there areQ queries overlapping with

the B+-tree noden in a time unit, the total cost of indexing n is:

cost(n) = αQh(n) +
1

2
β(kg(n) +

1

T
) log2 N (4)

5.2 Tuning Algorithm
The intuition of our adaptive indexing strategy is to selectively

publish the local B+-tree nodes based on the query distribution.
Initially, only the root node of the B+-tree is indexed. However,
publishing the root node of the B+-tree does not provide efficient
search, as its range could be big and this may result in redundant
visit of the compute node and local search. To solve this problem,
we remove the index of the root node and publish the nodes at the
second level (root node’s child nodes) when some child nodes are
frequently searched over time. The query can then jump directly
to the second level of the local B+-trees. Similarly, if we find that
indexing the nodes is no longer beneficial, we remove the nodes’
index and publish their parent node instead. With the same princi-
ple, we can recursively expand or shrink the range being indexed,
and thereby, increasing or reducing the number of index nodes be-
ing indexed. By doing so, we build a dynamic global index based
on query distribution and an adaptive expansion of the local B+-
trees. To reduce maintenance cost, we only publish internal B+-
tree nodes into CG-index. Consider a local B+-tree in Figure 3, the
shaded nodes will be indexed in the CG-index based on the query
patterns.

Given the cost model, the compute node can estimate the cost
of a specific indexing strategy. Specifically, the compute node is

a [0,100]

b [0,20] c [20,50] e [80,100]

f [20,30] g [30,40] h [40,50]

i [20,25] j [25,30] k [40,45] l [45,50]

d [50,80]

Figure 3: Example of B+-tree Indexing Strategy(shaded nodes
are published in the CG-index)

responsible for a key rangeR for routing purposes in the overlay.
It stores the index for remote B+-tree nodes, whose ranges are cov-
ered byR. As a query is routed based on the search range, the
compute node must receive any query that overlaps withR. It can
have a precise description about the query distribution inR. Hence,
the compute node has full information to compute the cost of the
current index.

Algorithm 3 and Algorithm 4 generalize our adaptive indexing
strategy. In Algorithm 3, we show how to expand the indexed tree.
In line 1, we collect the query statistics and generate a histogram
to estimate the query patterns. We compare the cost of indexing a
B+-tree node to the cost of indexing all its child nodes (line 5-7). If
indexing the child nodes can improve the search performance, we
will remove the index of the parent node and publish the indexes
of the child nodes. In this way, we expand the indexed tree. The
indexed B+-tree node should periodically report its cost status (line
9). Based on the reported status, we can decide whether to collapse
the tree. In Algorithm 4, we show the process of collapsing. We
group the received reports by their parent nodes (line 1-2). When
we receive the reports from all the child nodes, we start to evaluate
the cost of different index strategies (line 3-9). If indexing the par-
ent node can reduce the maintenance cost, we replace the indexes
of all the child nodes with the index of the parent node (line 6-8).
Both Algorithm 3 and Algorithm 4 are invoked occasionally to tune
the performance of CG-index.

Algorithm 3 Expand()

1: compute the query histogram H
2: for ∀ B+-tree nodeni ∈ Sn do
3: c1 = ni’s current cost
4: c2 = ni’s child nodes’ cost
5: if c2 < c1 then
6: removeni from Sn

7: notify ni’s owner to index the child nodes ofni

8: else
9: statusReport(ni)

Algorithm 4 Collapse(B+-tree node ni)

//receiving a status report fromni

1: n = ni.parent
2: putni in n’s child list Ln

3: if Ln is full then
4: c1 =

P

∀ni∈Ln

cost(ni)

5: c2 = cost of indexingn
6: if c2 < c1 then
7: remove index of nodes inLn

8: notify the owner to index the B+-tree noden
9: clearLn

To guarantee the correctness of tuning approach, the expansion
and collapse operation are set to be atomic operations. E.g. in ex-
pansion operation, if nodeni tries to replace its index entry with the
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entries of its children’s, either all the children’s entries are created,
or the expansion operation fails and we keep the old entry.

THEOREM 1. If the expansion and collapse are atomic opera-
tions, the adaptive indexing strategy can provide a complete result.

PROOF. See the appendix.

6. MAINTENANCE

6.1 Updating CG-index
In the CG-index, updates are processed concurrently with search.

To maximize the throughput and improve the scalability, we adopt
the eventual consistent model, which has been adopted in distributed
systems [13]. Two types of updates, lazy update and eager update,
are supported When updates of local B+-tree do not affect the cor-
rectness of search results, we adopt lazy update. Otherwise, eager
update is applied to perform synchronization as soon as possible.

THEOREM 2. In CG-index, if the update does not affect the key
range of a local B+-tree, the stale index will not affect the correct-
ness of the query processing.

PROOF. See the appendix.

A close observation reveals that only updates in the left-most
or right-most nodes can violate the key range of a local B+-tree.
Given a B+-treeT , suppose its root node isnr and the correspond-
ing range is[l, u]. The index strategy ofT is actually a partitioning
strategy of[l, u], as 1) each node ofT maintains a sub-range of
[l, u] and 2) for any valuev in [l, u], there is an indexed node ofT ,
whose key range coversv. For example, in Figure 3, the root range
[0, 100] is partitioned into sub-ranges of[0, 20], [20, 25], [25, 30],
[30, 40], [40, 45], [45, 50], [50, 80] and[80, 100]. Except left-most
and right-most nodes (those nodes responsible for the lower bound
and upper bound of the root range), updates in other nodes can only
change the way of partitioning. Suppose in Figure 3, nodei andj
merge together. The sub-range[20, 25] and[25, 30] are replaced by
[20, 30]. Regardless of how the root range is partitioned, the query
can be correctly forwarded to the node based on the index, even if
the index is stale. Therefore, if the updates do not change the lower
bound or upper bound of the root range, we adopt the lazy update
approach. Namely, we do not synchronize the index with the local
B+-tree immediately. Instead, after a predefined time threshold, all
updates are committed together.

Given two nodesni andnj , lazy updates are processed in the
following ways.

1. If ni is merged withnj and both of them are published into
the CG-index, we replace the index entries ofni andnj with
the index entry of the merged node.

2. If ni is merged withnj and only one node (suppose it isni)
is published into CG-index, we remove all the index entries
of nj ’s child nodes and updateni’s index entry as the new
merged one.

3. If ni is published into the CG-index and split into two new
nodes, we replaceni’s index entry with the index entries of
the new nodes.

In the index entry, two attributes, IP address and block number,
are used in query processing. Specifically, IP address is used to
forward the query to a correct cluster server. And block number is
applied to locate the corresponding B+-tree node when performing
local search. Based on the above analysis, the IP address is always

correct if the updates do not change the lower bound or upper bound
of the B+-tree. However, the block number may be invalid due to
node merging and splitting. In such case, we just start searching
from the root node.

On the other hand, some updates in the left-most and right-most
nodes may change the lower bound and upper bound of the B+-
tree. In that case, the old index entry may generate false positive
and false negative in query processing. As an example, suppose key
“0” is removed from nodeb in Figure 3,b’s key range will shrink
to [5, 20]. If applying the old index to process query[−5, 3], the
query will be forwarded to the cluster server, which actually cannot
provide any result. That is, the index generates false positives. On
the contrary, suppose a new key“ − 5” is inserted into nodeb, the
key ranges ofb anda are updated to[−5, 20] and[−5, 100], respec-
tively. If the old index entry is applied to process query[−10,−2],
false negative is generated as the CG-index fails to retrieve the data
from some cluster servers. False positive does not violate the con-
sistence of the result and we adopt lazy update strategy to handle it.
False negative is crucial for the consistency. Therefore, we apply
eager update strategy to synchronize the index.

In eager update, we first update the indexed nodes (including
their replicas) in CG-index. If all indexed nodes have been suc-
cessfully updated, we update the local B+-tree nodes. Otherwise,
we roll back the operations to keep the old indexed nodes in CG-
index and trigger an update failure event.

THEOREM 3. The eager update can provide a complete result.

PROOF. See the appendix.

6.2 Replication
To guarantee the robustness of the CG-index, we create multi-

ple replicas for a cluster server. Replications are performed in two
granularities. We replicate both the CG-index and local B+-tree
index. When a cluster server is offline, we can still access its in-
dex and retrieve the data from DFS. The replicas are built based on
BATON’s replication protocol. Specifically, the index entries main-
tained by a BATON node (master replica) are replicated in its left
adjacent node and right adjacent node (slave replicas). Therefore,
each node has 3 replicas (Dynamo [15] keeps 3 replicas typically.
In Starfish [17], 3 replicas can guarantee 99.9% availability, if the
compute node is online for 90% of time). The master replica is
used to process queries and the slave replicas are used as backups.
When a BATON node fails, we apply the routing tables to locate its
adjacent nodes to retrieve the replicas. We first try to access the left
adjacent node and if it also fails, we go for the right adjacent node.

In either lazy update or eager update, we need to guarantee the
consistency between the replicas. Suppose BATON nodeNi main-
tains the master replica of index entryE. To updateE, we send
the new version ofE to Ni, which will forward the update to the
living replicas. The corresponding BATON nodes, when receiving
the update request, will keep the new version ofE and respond to
Ni. After collecting all the responses,Ni commits the update and
ask other replicas to use the new index entries.

In BATON, the node occasionally sends ping messages to its ad-
jacent nodes and nodes in its routing table. That ping message can
be exploited to detect node failure. If we have not received the ping
response from a specific node fork times, we assume the node fails
and broadcast the information to all cluster servers. When a node
fails, its left adjacent node is promoted to be the primary copy. If
both the node and its left adjacent node fail, the right adjacent node
is promoted to be the primary copy.

Each update is assigned a timestamp. When a BATON node
restarts from failure, it asks current master replicas to get the latest
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updates. By comparing the timestamp of an index entry, it replaces
the stale entry with the new one. After that, it declares to be the
master replica of the corresponding index data and starts serving
the search. Note that, the query processing is resilient to node’s
failure as suggested by the following theorem.

THEOREM 4. In BATON, if the adjacent links and parent-child
links are up-to-date, the query can be successfully processed, even
if some nodes fail or the routing tables are not correct.

PROOF. See the appendix.

7. EXPERIMENT EVALUATION
To evaluate the performance of our system, we deploy it on Ama-

zon’s EC2 [1] platform. Details of experiment settings can be found
in the appendix. For comparison purpose, we implement a dis-
tributed B+-tree index described in [10]. We use “ScalableBTree”
to denote the index. The ScalableBTree is built on HP’s Sinfonia
[11], a distributed file system. As Sinfonia’s code is not publicly
available1, we use a master server (large instance of EC2 with 7.5
GB of memory and 4 EC2 compute units ) to simulate its behaviors,
e.g., data locating service and transaction service. In the ScalableB-
Tree index, each processing node acts as both client and server.
Servers are responsible for maintaining the index and the clients
are used to generate queries. The ScalableBTree is different from
the CG-Index in that it maintains a large B+-tree over the network,
whereas in the CG-Index, each node maintains a small local B+-
tree. For the ScalableBTree, we create a distributed B+-tree with
10 million keys. Therefore, the total data size of ScalableBTree is
less than that of the CG-Index. This is because for a large B+-tree,

1The authors could not release the codes due to HP’s copyright
concerns.

the size of internal nodes may be too large to be cached at the client
(the ScalableBTree index proposes to lazily buffer internal nodes in
clients).

7.1 Scalability
Figure 4 shows query throughput under different search ranges.

The best performance is achieved for the exact search query (s=0).
When the search range is enlarged, throughput degrades as more
nodes are involved. Scalability increases when we increase the
number of processing nodes. From Figure 5 to Figure 8, we show
the performance comparison with the ScalableBTree index under
different workloads. Figure 5 shows the CG-Index produces much
higher throughput for range queries. In the CG-Index, after locat-
ing leaf nodes, a query is processed by the local B+-trees in paral-
lel, while in the ScalableBTree, we cannot apply the parallel search
algorithm, because the leaf nodes are randomly distributed in the
cluster.

Figure 6 shows the update throughput of the system (inlogarith-
mic scale). In the CG-Index, the node generates uniform insertions
for its local B+-tree, while in the ScalableBTree index, the node
issues uniform insertions for the distributed B+-tree. In the CG-
Index, most updates can be processed by nodes locally, because
we only insert internal B+-tree nodes to CG-index, which has few
updates when update follows uniform distribution. Only a few re-
quests, resulting in node splitting or merging, trigger a synchroniza-
tion request to the network. In contrast, each insertion request in
the ScalableBTree index triggers a network round-trip. If an inter-
nal node is being split or merged, it needs to broadcast the change
to every node to update the version table.

In real systems, different types of operations are processed con-
currently. In Figure 7, we generate a mixed workload of exact
queries and range queries with selectivity 0.04. We vary the per-
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centage of range queries from 0% to 100%. That is, when the per-
centage is 0%, we have all exact match queries. ScalableBTree out-
performs the CG-Index in exact match search because most queries
only require one round trip to retrieve the data in the ScalableB-
Tree, while, in the CG-Index, following the routing protocols of
BATON, the query needs several hops to obtain the data. In fact, we
can improve the search efficiency of the CG-index by adopting the
same replication strategy of the ScalableBTree. However, this will
incur higher maintenance overheads for the client nodes. In other
cases (mixed workload), the CG-Index performs much better than
the ScalableBTree. In Figure 8, a mixed workload is generated,
with varying percentage of insertions and queries ( exact query :
range query = 6:4). The CG-Index demonstrates that it is superior
to the ScalableBTree in handling a mixed workload of queries and
updates efficiently.

7.2 Cost of Scaling-up and Downsizing
In Cloud systems where the storage and compute power are elas-

tic by design, new service nodes may join or leave the cluster in
batches. In this experiment, we double (e.g., 16→32) or half (e.g.,
32→16) the node number to evaluate expansion cost and collapse
cost respectively to evaluate the robustness and efficiency of our
proposal with respect to the system elasticity. As each node holds
the same amount of data, the collapse process needs to redistribute
more data than the expansion case (16→32 moves half data of 16
nodes to others while 32→16 moves all data of 16 nodes to the
rest). In Figure 9, we compare the cost of the two kinds of data dis-
tribution strategies: sequential expansion/collapse and parallel ex-
pansion/collapse. The x-axis label “16↔32” implies the network
is expanded from 16 to 32 nodes or collapsed from 32 to 16 nodes.
In the sequential expansion/collapse strategy, nodes join or leave
the network one by one while in the parallel setup, all nodes join
or leave the network simultaneously. Figure 9 shows that the paral-
lel expansion/collapse strategy is more efficient than the sequential
one. In the parallel expansion strategy, new nodes and old nodes are
grouped into pairs. New nodes obtain data from the old ones and
then they rebuild an overlay network. The parallel collapse strategy
works in the inverse direction. The result confirms the robustness
and efficiency of our proposal with respect to dynamic system re-
configuration due to application loads.

8. CONCLUSION
We have presented the design and implementation of a scalable

and high-throughput indexing scheme for SaaS applications in the
Cloud environment. We assume a local B+-tree is built for the
dataset stored in each compute node. And to enhance the through-
put of the system, we organize compute nodes as a structured over-
lay and build a Cloud Global index, called the CG-index, for the
system. Only a portion of local B+-tree nodes are published and
indexed in the CG-index. Based on the overlay’s routing protocol,
the CG-index is disseminated to compute nodes. To save mainte-
nance cost, we propose an adaptive indexing scheme to selectively
expand local B+-trees for indexing. Our scheme has been imple-
mented and evaluated in Amazon’s EC2, a real-world Cloud in-
frastructure. The experimental results show that our approach is
efficient, adaptive and scalable.
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APPENDIX

A. APPENDIX

A.1 BATON Overlay
In this paper, BATON is applied to organize the compute nodes.

Detailed description of BATON protocols can be found in [20]. In
BATON, each node is responsible for a key range, and each node
maintains routing pointers to predecessor, successor, parent, child
and sibling nodes. The BATON form of indexing is similar in spirit
to that of the B-tree. If we travel the BATON tree in an inorder
manner, we end up searching the key range sequentially.

In Figure 10, we show a BATON overlay, where dotted lines
connect the routing neighbors and we mark the key range of each
BATON node. Specifically, the nodes inH ’s left or right routing
table areH ’s sibling nodes with a distant of2x to H (0 ≤ x ≤
H.level − 1). To lookup a specific key, the node will first check
its own range. If the key is bounded by the range, it will do a lo-
cal search. Otherwise, it will search its left or right routing table
to locate a node most close to the key and forward the request to
the node. If no such routing node exists, the lookup request will
be forwarded to the parent, child or predecessor/successor node.
In BATON, the search cost and maintenance cost are bounded by
O(log2 N) hops, whereN is the number of nodes. A more effi-
cient variant of BATON (BATON* [19]) reduces the search cost to
O(logbN) with a larger fan-outb at the expense of incurring much
more maintenance overheads. Therefore, we use BATON in this
paper. To support the range index, we only need to slightly extend
the BATON overlay by recording the subtree range of each internal
node.

The compute node acts as a BATON node in the overlay. Using
the following interfaces (Table A.1) provided by BATON, we can
organize the cluster system as a BATON overlay and search the
index based on the routing protocols.

Table A.1 BATON Interface
join(IP) Join the BATON network
leave() Leave the BATON network
lookup(key) Lookup for the node responsible for the key
store(key, value) Publish a value using the key
remove(key) Remove the values with a specific key

A.2 Proofs
Proof of Theorem 1.

PROOF. The adaptive indexing algorithm starts from publish-
ing the root node of each local B+-tree. The initial state of the
CG-index provides a correct snapshot of the local indexes, as the
root nodes represent an overview of the local B+-trees. The initial
state can be changed to different indexing states via expansion and
collapse operations. If both expansion and collapse operation are

atomic operations, the indexing states must satisfy the following
property for a local B+-treeT (suppose its root range is [l, u]).

• Given a keyk in [l, u], we can find one and only one indexed
node ofT in CG-index.

This is because we always replace an indexed node with all its child
nodes and vice versa. Therefore, the adaptive indexing strategy can
return a complete result in the query processing.

Proof of Theorem 2.
PROOF. In the CG-index, we generate a key range for each B+-

tree node and publish the node based on the key range. The query
algorithm also routes the query based on the key range of an in-
dexed node. If the key range is not affected by the update, the
index is still valid, because all queries involving the node is still
sent to the correct node.

Proof of Theorem 3
PROOF. If no node fails, the eager update strategy can guarantee

the CG-index is consistent with local B+-tree. If the node respon-
sible for the indexed node fails, we cannot update all replicas of the
CG-index node successfully. Therefore, the eager update will keep
the old CG-index nodes and the local B+-tree node. The index is
still consistent. If the node responsible for local B+-tree fails after
all CG-index replicas are updated, the CG-index may not be con-
sistent with local index. However, it only triggers false positive.
Therefore, the query processing is still correct.

Proof of Theorem 4.
PROOF. In BATON, when a node joins the system, it obtains

its adjacent links and parent-child links directly from its contacting
node, while its routing neighbors are obtained via a stabilization
process. The routing neighbors are used to facilitate the routing.
However, without them, BATON can still route queries based on
adjacent/parent-child links. Even if we route the query based on
an inconsistent routing link, we can correct the routing process
via adjacent/parent-child links. If adjacent links or parent-child
links are incorrect due to node joining, the routing process will fail.
However, in Cloud system, node will not frequently join or leave
the system.

A.3 Algorithms
Algorithm 5 shows the publication process in BATON. We first

obtain the compute node responsible for the lower bound of the B+-
tree node based on the BATON routing protocols (line 1). Then,
step by step, we forward the request to the upper level nodes until
we reach the one whose subtree range can fully contain the B+-
tree node’s range. In line 4, the compute node stores the meta-data
of remote B+-tree node in the disk and buffers it in memory. The
stored information can be used to process queries. In lines 6 and
10, we tag the nodes with two values, indicating whether the query
should be forwarded to the parent node (e.g. the parent node stores
an index node whose range overlaps with the child node).

Algorithm 6 shows our parallel search algorithm. We first find
a node that can fully contain the search range (lines 1-3). Func-
tion lookup([l, u]) returns a compute node that overlaps with the
search range[l, u]. As discussed in section 4, instead of returning
the node responsible for the lower bound of the range, we return a
node that overlaps with the search range. This optimization reduces
the overhead of routing. Then, we broadcast the query message to
the nodes within the subtree (line 4-7). The broadcast messages are
sent to the nodes in parallel. After a node receives the search re-
quest, it starts searching its local CG-index. Besides the node itself,
we need to search the possible results in the ancestor nodes(lines 8-
10). Finally, the index search result (a set of indexed nodes,Sb) is
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Algorithm 5 Publish(n)

//n is a B+-tree node for indexing
1: Ni=lookup(n.low)
2: while TRUEdo
3: if Ni.subtree contains (n.low, n.up) then
4: storen atNi

5: if n’s range overlaps withNi’s right subtreethen
6: tagSet(Ni.rightchild)
7: break
8: else
9: if Ni.parent!=nullthen

10: Update the tag value ofNi

11: Ni=Ni.parent
12: else
13: break

returned to the query sender. Algorithm 7 shows the broadcast pro-
cess. The broadcasting is processed in a recursive way. To reduce
the network overheads, only the nodes within the search range will
receive the query (e.g. we do not invoke the broadcast algorithm
for the subtrees outside the search range).

Algorithm 6 ParallelSearch(Q = [l, u])

1: Ni=lookup([l, u])
2: while Ni’s subtree range cannot containQ do
3: Ni = Ni.parent
4: if Ni.leftchild.subtree overlaps withQ then
5: broadcast(Ni.leftchild,Q = [l, u])
6: if Ni.rightchild.subtree overlaps withQ then
7: broadcast(Ni.rightchild,Q = [l, u])
8: while Ni’s tag values in the search rangedo
9: local search onNi and put the indexed nodes overlapping

with Q into setSb

10: Ni = Ni.parent
11: forwardSb to query requestor

Algorithm 7 Broadcast(compute node Ni, Q = [l, u])

1: local search onNi

2: if Ni is not leaf nodethen
3: if Ni.leftchild.subtree overlaps withQ then
4: broadcast(Ni.leftchild,Q = [l, u])
5: if Ni.rightchild.subtree overlaps withQ then
6: broadcast(Ni.rightchild,Q = [l, u])

Suppose each BATON node can shareM bytes memory and each
B+-tree node’s index entry requiresE bytes, we can only support
up to M

E
indexed nodes. If the corresponding compute nodes have

enough memory for storing the child nodes’ index, the index is built
successfully. Otherwise, index replacement is triggered.

Algorithm 8 generalizes the index replacement process. The in-
dex replacement happens when a new B+-tree node is inserted into
CG-index. If there are more memory for the incoming nodes, we
just accept it and notify the requester (line 2-4). Specifically, letSn

be the nodes in local CG-index. The B+-tree nodes inSn can be
classified into two types. Supposenj ∈ Sn, andnp is nj ’s parent
node. Ifnp ∈ Sn, andnj does not have sibling nodes inSn, re-
placingnj with np cannot reduce the storage load ofNi. Thus,nj

is not a candidate for index replacement. By removing such type
of nodes fromSn, we get a candidate setS′

n (line 7-11). The new
B+-tree noden is inserted intoS′

n, and we rank the nodes inS′

n

based on the query histogram (line 12). Letmin(S′

n) be the node
with the least rank. Ifmin(S′

n) = n, Ni rejects the index request
for the new noden (line 13-14). Otherwise,Ni replacesmin(S′

n)
with n in its index and triggers a tree collapse (line 16-17).

To guarantee atomic indexing, if the node receives a reject noti-
fication, we will roll back the index (keep the current indexed node
and remove the newly built index).

Algorithm 8 IndexReplace(B+-tree node n,
compute node Ni)

//n is a new node to be indexed atNi

1: Sn = Ni’s index set
2: if Sn is not full then
3: acceptn in Sn

4: notify the sender with success
5: else
6: S′

n = {n}
7: for ∀nj ∈ Sn do
8: if getsibling(nj , Sn)==null then
9: np = nj ’s parent

10: if Ni.range cannot covernp.rangethen
11: S′

n = S′

n ∪ {nj}
12: rank nodes inS′

n by query histogram
13: if min(S′

n) == n then
14: rejectn and notify the sender
15: else
16: removemin(S′

n) and triggers a tree collapse
17: notify the sender with success

A.4 Details of Tuning Algorithm
Let Sn represent the remote B+-tree nodes indexed at the com-

pute nodeNi. Then, in a time period ofT1, Ni records a query set
Sq for Sn. Based onSq , we can estimate the cost of the current
indexing strategy and perform some optimization. For this pur-
pose, we build a query histogram at each compute node. Basically,
supposeNi’s subtree range is[li, ui], we partition the range intok
equal-length cells. Thus, cellj covers the range[ j(ui−li)

k
, (j+1)(ui−li)

k
).

Given a queryq ∈ Sq, suppose there arex cells involved inq, we
increase the counter of these cells by1

x
. Finally, we get a counter

arrayH = {c0, c1, ..., ck−1} for the query distribution.
Given an indexed B+-tree nodeni, we can compute its query

cost by searchingH . LetRi denote the histogram cells overlapping
with ni. The current cost ofni is estimated as:

cost(ni) = α
h(ni)

T1

X

x∈Ri

cx +
β

2
(kg(ni) +

1

T
) log2 N (5)

As mentioned before, we have two alternative indexing strategies:
indexing the child nodes ofni and indexing the parent node ofni.
Let nij representni’s child node. Supposeni hasm0 child nodes,
the strategy of indexing the child nodes incurs a cost of:

cost(ni.c) =
(h(ni) − 1)α

T1

X

x∈Ri

cx+
β

2
(

m0−1
X

j=0

kg(nij)+
m0

T
)log2N

(6)
Supposeni hasm1 sibling nodes, the strategy of indexing the par-
ent node incurs a cost of:

cost(ni.p) = α
(h(ni) + 1)

T1

m1
X

i=0

X

x∈Ri

cx +
β

2
(kg(ni.p) +

1

T
)log2N

(7)
Equation 5 and 6 can be computed by the node’s local infor-

mation while Equation 7 needs information from the sibling nodes.
Figure 3 illustrates a possible indexing strategy in the system, where
the shaded rectangles represent the B+-tree nodes being indexed. If
nodei wants to estimate the cost of indexing its parentf , it needs
to obtain the query distribution from its sibling nodej. Given that
node i does not know the details of its siblings, it is difficult to
collect the necessary information. An alternative is to collect the
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status of the child nodes in the parent node, e.g., nodef periodi-
cally checks the status of nodei andj. As nodef is not indexed,
the “pull” scheme is not applicable. Instead, we use the “push”
method. The indexed B+-tree nodes will periodically report their
query distribution information to the compute node that handles
their parent’s range. After collecting all the information, the com-
pute node decides on the indexing strategy. If it can save cost by
indexing the parent B+-tree node, the compute node will issue a
process to delete all indexes about the child B+-tree nodes and
notify the corresponding compute node to publish the parent tree
node.

The major cost of the adaptive approach is the cost of reporting
the status of the child nodes. To reduce overhead, we propose an
efficient optimization. As observed from Figure 3, nodea does not
have efficient information to change the indexing strategy, unless
all its child nodesb, c, d ande are indexed. Based on Theorem 5,
only nodesi, j, k andl need to report the status to their parents. We
therefore greatly reduce the communication cost.

THEOREM 5. The indexed B+ tree node needs to report its sta-
tus to the parent node, i.f.f. none of its siblings has an indexed
descendant node.

PROOF. In the tuning algorithm, the B+ tree node n is indexed
in the network if it does not have an indexed descendant node. If
all sibling nodes do not have an indexed descendant node, all the
siblings are indexed. Hence, the parent node can receive reports
from all the child nodes to decide whether to change the indexing
strategy.

A.5 System Optimizations
To further improve the performance of CG-index, we propose

three optimizations. Routing buffer is used to reduce the routing
overhead of the overlay. Selective expansion is used to reduce the
maintenance overheads of CG-index. And single local search is
proposed to reduce the index search cost.

A.5.1 Routing Buffer
Locating a specific key in the overlay incurs a cost ofO(log2N),

whereN is the total number of nodes in the overlay. To reduce rout-
ing cost, we apply a buffering approach. In a successfullookup(key)
operation in the overlay, the compute node responsible for thekey
will notify the requester about its key range and IP address. The
requester, once receiving the information, will store the key range
and IP address in its routing buffer. The routing buffer is limited
to s entries and is maintained with the LRU strategy. In the fu-
ture routing process, the node will check both its routing table and
routing buffer. The node nearest to the search key is selected as
the next hop. As the network is stable in Cloud systems, the rout-
ing buffer can efficiently reduce the routing overheads. Even if the
routing buffer is not consistent with the network, the query can be
routed to the destination based on the routing table. To detect the
stale routing buffer, the sender attaches the expected destination in
the message. The receiver will check its status against the expected
one. And it will notify the sender to update its routing buffer if it is
not the expected receiver.

A.5.2 Selective Expansion
The adaptive scheme can effectively tune the index based on

query distribution. It expands the B+-tree step by step. Heavily
queried nodes have a high probability of being published. How-
ever, if the query distribution is skewed, we do not need to publish
every child nodes. In B+-tree, the order of nodes are always set to
a large value (based on the disk block size). In our experiments,

a [0,20][50,100]

g [30,40]

i [20,25] j [25,30] k [40,45] l [45,50]

b [0,20] c [20,50] d [50,80] e [80,100]

f [20,30] h [40,50]

Figure 11: Example of Selective Expansion Strategy

each node can support up to 100 child nodes. If most queries focus
on a small number of child nodes, we can save the indexing cost by
only publishing the corresponding nodes.

In Algorithm 3, we compare the cost of indexing the current node
with the cost of indexing all the child nodes. As a matter of fact, the
order of B+-tree may be quite large. Indexing all the child nodes is
not necessary and incurs too much overhead. In Figure 3, suppose
the queries focus on the range [20, 50], we do not need to index the
nodesb, d ande. Instead of indexing all the child nodes, we only
select the beneficial ones for indexing.

Figure 11 shows the selective expansion tree of Figure 3. In the
selective expansion strategy, the parent node is kept in the index if
not all of its child nodes are indexed. For example, in Figure 11,
nodea is responsible for the ranges of its three none-indexed child
nodes,b, d ande.

Given an indexed B+-tree nodeni with m child nodes (denoted
as{nij |0 ≤ j ≤ m − 1}), we define anm-element vectorV =
{v0, ..., vm−1}. vj is 1, if the nodenij is selected to be indexed.
Otherwise,vj is 0. We can compute the indexing cost for a specific
V .

The optimal solution is to find a vectorV that can minimize the
above cost. Using brute force to search the solution is not practical
as there are2m possibilities. If we further consider memory size,
the optimal indexing problem is reduced to a 0-1 knapsack prob-
lem. Instead of searching for the optimal solution, we use a simple
but efficient heuristic method.

In fact, the cost of indexing a child node can be considered to
comprise two parts. First, the indexing benefit of query processing
is computed as:

benefit(nij ) = α
1

T1

X

x∈rij

cx (8)

Then, the cost of maintenance is estimated as:

costm(nij) =
β

2
(kg(nij) +

1

T
) log2 N (9)

A greedy heuristic method is to index the child node if its benefit
is greater than its maintenance cost until memory is full. This can
provide us with a good enough indexing plan. Algorithm 9 shows
the selective expansion scheme. The parent node decides whether
to index each specific child node individually. If a child node is
indexed, the parent node needs to be split (line 6). Let[li, ui] and
[lij , uij ] represent the ranges of the parent nodeni and its child
nodenij , respectively. After indexing nodenij , we split the range
of ni into [li, lij ] and [uij , ui]. We remove the current index of
ni and insert two new index entries based on the new ranges. The
insertion of the new index entries must be atomic. If it fails due to
memory limitation, we roll back the indexing operation and keep
the old index. In an extreme case, if all child nodes are beneficial
to indexing, the selective expansion scheme evolves into the full
expansion scheme.

In the selective expansion scheme, we keep a record of how the
B+-tree is indexed in the owner node. We generate a 2m-length
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Algorithm 9 SelectivelyExpand()

1: compute the query histogram H
2: for ∀ B+-tree nodeni ∈ Sn do
3: for ∀ni’s child nij do
4: if nij ’s benefit is greater than its costthen
5: indexnij

6: split the index range ofni

7: if ni does not have an indexed descendantthen
8: if ni’s benefit is less than its costthen
9: removeni’s index

10: statusReport(ni)

bitmap for each B+-tree node, wherem is the order of the tree.
If the subtree rooted atith child has been expanded for indexing,
we mark theith bit of the bitmap to 1. Based on the bitmap, the
owner node can help collapse the tree if necessary. Algorithm 10
shows the collapse operation for the selective collapse strategy. On
receiving an index removal notification, the owner node checks the
corresponding bitmap and combines the index entries if necessary.
First, it searches for the index entries that can be combined with
the removed child index (lines 4 to 7). LetI(i, j) denote the in-
dex entry for the range fromith child to jth child. The removed
child index are combined with the left or right adjacent index en-
tries (lines 8-14).

Algorithm 10 SelectivelyCollapse(B+-tree node ni)

//recieve the status report from nodeni

1: map=ni ’s parent bitmap
2: if map[i]==1 then
3: map[i]=0, x=i,y=i
4: while x-1≥ 0 and map[x-1]==0do
5: x=x-1
6: while y+1<m and map[y+1]==0do
7: y=y+1
8: if x!=i and y!=i then
9: combine I(x,i-1),I(i,i) and I(i+1,y) into I(x,y)

10: else
11: if x!=i then
12: combine I(x,i-1) and I(i,i) into I(x,i)
13: else
14: combine I(i+1,y) and I(i,i) into I(i,y)

Index replacement can be handled in the same way as the full
expansion case. As a matter of fact, the selective expansion strategy
reduces the cost of index replacement. As child nodes are indexed
individually in the selective expansion strategy, once it is decided
that a B+-tree node is to be removed from the index, we do not
need to find and remove all its siblings. The selective expansion
strategy makes our adaptive indexing scheme more flexible.

A.5.3 Single Local Search
The adaptive indexing scheme allows us to process queries with

indexed B+-tree nodes. After locating the indexed B+-tree nodes,
we forward the query to the corresponding local B+-trees to com-
plete data retrieval. Given a queryQ = [l, u], let Sb be the set
of indexed B+-tree nodes returned by Algorithm 6. We group the
nodes inSb by their owners. SupposeSb(Ni) denote the B+-tree
nodes from the compute nodeNi. We need to accessNi’s local
B+-tree based on the B+-tree nodes inSb(Ni). A close analysis
reveals that only one node inSb(Ni) is required to be accessed.

In a B+-tree, to retrieve the data within a continuous range, we
first locate the leaf node responsible for the lower bound of the
search range. Then, we scan the corresponding leaf nodes by fol-
lowing the leaf nodes’ links. All the involved internal nodes reside

in the path from the root to the first searched leaf node. The other
internal nodes, though overlapping with the search range, are not
searched. This observation motivates an optimization.

LEMMA 1. For a range queryQ = [l, u], the indexed B+-tree
nodes from the same compute nodeNi (e.g. Sb(Ni)) involved in
the query can be sorted into a continuous range based on their
responsible ranges.

PROOF. Our adaptive indexing scheme guarantees that there is
no overlap between the B+-tree nodes’ responsible ranges, and that
for any search point in the domain, there is an indexed B+-tree node
whose responsible range contains it. Thus, nodes inSb(Ni) can be
sorted into a continuous range based on their ranges.

LEMMA 2. For a range queryQ = [l, u] and the B+-tree node
set involvedSb(Ni), we sort the nodes inSb(Ni) by their ranges.
Only the first B+-tree node inSb(Ni) triggers a local search.

PROOF. Directly derived from Lemma 1 and the B+-tree’s search
algorithm.

Given a specific queryQ = [l, u] and an indexed B+-tree node
ni, the compute node can decide whether to issue a local B+-tree
search based on Theorem 6.

THEOREM 6. The B+-tree nodeni with range[li, ui] incurs a
local search for queryQ = [l, u], only if li ≤ l ∧ l ≤ ui or ni is
the left-most node of its level andl ≤ li ∧ li < ui.

A.6 Experiment Settings
The compute unit (small instance) in EC2 is a virtual server with

a 1.7 GHz Xeon processor, 1.7 GB memory and 160 GB storage.
Compute units are connected via a 250 Mbps network. Our sys-
tem is implemented in Java 1.6.0. Table A.6 lists the experiment
settings. In our system, each node hosts 500k tuples. The tuple
format is(key, string). Thekey is an integer key with the value
in the range of[0, 109] and thestring is a randomly generated
string with 265 bytes. The data are sorted by the keys and grouped
into 64M chunks. Therefore, each compute node hosts two chunks.
We generate exact queries and range queries for the keys in zipfian
distribution. When the skew factor is 0, the queries are uniformly
distributed. The major metrics in the experiment are query through-
put and update throughput. Based on the reports of [24, 12], we set
α

β
= 0.5 (the random disk read is slower than TCP/IP message

sending).

Table A.6 Experiment Settings
Name Default Value

node number 256
memory size 1M

use routing buffer false
skew factor (sf) 0.8

default selectivity (s) 0.04
adaptive period 10 sec

In our implementation, the page size of the local B+-tree is set
to 2K and the maximal fan-out is about 100. Before the exper-
iments begin, we load 500K keys into each local B+-tree. The
total number of tuples therefore varies from 8 million to 128 mil-
lion. We use a simulator to act as clients. The processing nodes
receive queries from the simulator continuously. After processing
one query, a node will ask the simulator to obtain a new query.
Thus, users’ queries are processed in parallel. In each experiment,
1000N queries are injected into the system, whereN is the number
of nodes in the system. Each experiment is repeated for 10 times
and we take the average result.
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