
Trie-Join: Efficient Trie-based String Similarity Joins with
Edit-Distance Constraints

Jiannan Wang Jianhua Feng Guoliang Li
Department of Computer Science and Technology, Tsinghua National Laboratory for Information Science and

Technology, Tsinghua University, Beijing 10084, China

wjn08@mails.thu.edu.cn; fengjh@tsinghua.edu.cn; liguoliang@tsinghua.edu.cn

ABSTRACT
A string similarity join finds similar pairs between two col-
lections of strings. It is an essential operation in many ap-
plications, such as data integration and cleaning, and has
attracted significant attention recently. In this paper, we
study string similarity joins with edit-distance constraints.
Existing methods usually employ a filter-and-refine frame-
work and have the following disadvantages: (1) They are
inefficient for the data sets with short strings (the average
string length is no larger than 30); (2) They involve large
indexes; (3) They are expensive to support dynamic update
of data sets. To address these problems, we propose a novel
framework called trie-join, which can generate results effi-
ciently with small indexes. We use a trie structure to index
the strings and utilize the trie structure to efficiently find
the similar string pairs based on subtrie pruning. We de-
vise efficient trie-join algorithms and pruning techniques to
achieve high performance. Our method can be easily ex-
tended to support dynamic update of data sets efficiently.
Experimental results show that our algorithms outperform
state-of-the-art methods by an order of magnitude on three
real data sets with short strings.

1. INTRODUCTION
The similarity join is an essential operation in many ap-

plications, such as data integration and cleaning, near du-
plicate object detection and elimination, and collaborative
filtering. Recently it has attracted significant attention in
both academic and industrial community. For example,
SSJoin [4] proposed by Microsoft has been used in the data
debugger project. A similarity join between two sets of
objects finds all similar object pairs from each set. For
example, given two sets of strings R = {kobe, ebay, . . . }
and S = {bag, koby, . . . }. We want to find all similar pairs
〈r, s〉 ∈ R × S , such as 〈kobe, koby〉.

Many similarity functions have been proposed to quantify
the similarity between two objects, such as jaccard similar-
ity, cosine similarity, and edit distance. In this paper, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

study string similarity joins with edit-distance constraints,
which, given two sets of strings, find all similar string pairs
from each set, such that the edit distance between each
string pair is within a given threshold. The string simi-
larity join has many real applications, such as finding near
duplicated queries in query log mining and correlating two
sets of data (e.g., people name, place name, address).

Existing studies, such as Part-Enum [1], All-Pairs-Ed [2],
Ed-Join [19], usually employ a filter-and-refine framework.
In the filter step, they generate signatures for each string
and use the signatures to generate candidate pairs. In the
refine step, they verify the candidate pairs and output the
final results. However, these approaches have the follow-
ing disadvantages. Firstly, they are inefficient for the data
sets with short strings (the average string length is no larger
than 30), since they cannot select high-quality signatures for
short strings and thus they may generate a large number of
candidate pairs which need to be further verified. Secondly,
they cannot support dynamic update of data sets. For ex-
ample, Ed-Join and All-Pairs-Ed need to select signatures
with higher weights. The dynamic update may change the
weights of signatures. Thus the two methods need to rese-
lect signatures, rebuild indexes, and rerun their algorithms
from scratch. Thirdly, they involve large index sizes as there
could be large numbers of signatures.

To address above-mentioned problems, in this paper we
propose a new trie-based framework for efficient string sim-
ilarity joins with edit-distance constraints. In comparison
with the filter-and-refine framework, our approach can ef-
ficiently generate all similar string pairs without the refine
step. We use a trie structure to index strings which needs
much smaller space than existing methods, as the trie struc-
ture can share many common prefixes of strings. To avoid
repeated computation, we propose subtrie pruning and dual
subtrie pruning to improve performance. We devise efficient
trie-join-based algorithms and three pruning techniques to
achieve high performance. Our method can be easily ex-
tended to support dynamic update of data sets.

To summarize, in this paper, we make the following contri-
butions: (1) We propose a trie-based framework for efficient
string similarity joins with edit-distance constraints. (2)
We devise efficient trie-join-based algorithms and develop
pruning techniques to achieve high performance. (3) We ex-
tend our method to support dynamic update of data sets
efficiently. (4) Experimental results show that our method
achieves high performance and outperforms existing algo-
rithms by an order of magnitude on data sets with short
strings (the average string length is no larger than 30).

1219

2. TRIE-BASED FRAMEWORK
In this section, we first formalize the problem of string

similarity joins with edit-distance constraints and then in-
troduce a trie-based framework for efficient similarity joins.

2.1 Problem Formulation
Given two sets of strings, a similarity join finds all simi-

lar string pairs from the two sets. In this paper, we use edit
distance to quantify the similarity between two strings. For-
mally, the edit distance between two strings r and s, denoted
as ed(r, s), is the minimum number of single-character edit
operations (i.e., insertion, deletion, and substitution) needed
to transform r to s. For example, ed(koby, ebay)=3. In
this paper two strings are similar if their edit distance is no
larger than a given edit-distance threshold τ . We formalize
the problem of string similarity joins as follows.

Definition 1 (String Similarity Joins). Given two
sets of strings R and S, and an edit-distance threshold τ , a
similarity join finds all similar string pairs 〈r, s〉 ∈ R× S
such that ed(r, s) ≤ τ .

2.2 Prefix Pruning
One näıve solution to address this problem is all-pair ver-

ification, which enumerates all string pairs 〈r, s〉 ∈ R × S
and computes their edit distances. However, this solution
is rather expensive. In fact, in most cases to check whether
two strings are similar, we need not compute the edit dis-
tance between the two complete strings. Instead we can do
an early termination in the dynamic-programming compu-
tation as follows [15].

Given two strings r = r1r2 . . . rn and s = s1s2 . . . sm, let
D denote a matrix with n+1 rows and m+1 columns, and
D(i, j) be the edit distance between the prefix r1r2 . . . ri and
the prefix s1s2 . . . sj . We use the dynamic-programming al-
gorithm to compute the matrix: D(0, j) = j for 0 ≤ j ≤ n,
and D(i, j) = min(D(i−1, j)+1, D(i, j−1)+1, D(i−1, j−
1) + θ) where θ = 0 if ri = sj ; otherwise θ = 1. D(i, j)
is called an active entry if D(i, j) ≤ τ . Figure 1 shows the
matrix to compute the edit distance between “ebay” and
“koby”. The shaded cells (e.g., D(1, 1)) denote active en-
tries for τ = 1. (For all running examples in the remainder
of this paper, we assume τ = 1.) To check whether r =
“ebay” and s = “koby” are similar, we first compute the
entries in row D(0, ∗) (only those entries circled by the bold
lines). As D(0, 0) and D(0, 1) are active entries, we compute
the entries in row D(1, ∗). Similarly, we compute the entries
in row D(2, ∗). We find that D(2, 1), D(2, 2) and D(2, 3)
are not active entries. Based on the dynamic-programming
algorithm, the following rows D(i > 2, ∗) cannot have active
entries, thus we can do an early termination. This prun-
ing technique is called prefix pruning. However the method
using prefix pruning for similarity joins also needs to do all-
pair verification. To improve prefix pruning and increase
performance, we make the following two observations.

2.3 Our Observations
Observation 1 - Subtrie Pruning: As there are a large
number of strings in the two sets and many strings share
prefixes, we can extend prefix pruning to prune a group of
strings. We use a trie structure to index all strings. Trie
is a tree structure where each path from the root to a leaf
represents a string in the data set and every node on the
path has a label of a character in the string. For instance,

1 4320j

0 1 32

1 1 2 4

2 2 32

32 4

4 4 3 3

e yab

1

2

3

4

0

i

k

o

b

y

3

4

3 3

3

4

Figure 1: Prefix pruning. Matrix for computing edit
distance of two strings “ebay” and “koby”. Shaded
cells denote active entries for τ = 1.

Figure 2 shows a trie structure of a sample data set with
six strings. String “ebay” has a trie node ID of 12 and its
prefix “eb” has a trie node ID of 10. For simplicity, a node
is mentioned interchangeably with its corresponding string
in later text. For example, both node “ko” and string “ko”
refer to node 14, and node 14 also refers to string “ko”.
Given a trie node n, let |n| denote its depth (the depth of
the root node is 0). For example, |“ko”| = 2.

13
k

o

b

y

14

15

16

0

a e

e

b

a

y

b
1

2 5

9

10

11

12

g y a
3 4

y

g e

6

7

8

17

SID String

s1

s2

s3

s4

s5

bag

ebay

bay

A sample data set

kobe

koby

s6 beagy

Figure 2: Trie index of a sample data set

Note that many strings with same prefixes share the same
ancestor nodes on the trie structure. Based on this property,
we can extend the idea of prefix pruning to prune a group
of strings. Given a trie and a string s, node n in the trie is
called an active node of string s if ed(s, n) ≤ τ . If n is not
an active node for every prefix of string s, then all the strings
under n cannot be similar to s. The reason is the following.
For any string with prefix n in the trie, say r, in the dynamic-
programming algorithm, we can take r as the row and s
as the column. As the row D(|n|, ∗) has no active entry,
r cannot be similar to s based on prefix pruning. Based on
this observation, we propose a new pruning technique, called
subtrie pruning : Given a trie and a string s, to compute the
similar strings of s on the trie, for each trie node n, if n is
not an active node of every prefix of s, we need not traverse
the subtrie rooted at n. The following Lemma shows the
correctness of the subtrie pruning.

Lemma 1 (Subtrie Pruning). Given a trie T and a
string s, if node n is not an active node for every prefix of
s, then n’s descendants will not be similar to s.

For example, consider the trie in Figure 2 and suppose
τ = 1. Given a string “ebay”, since node “ko” is not an
active node for every prefix of “ebay”, we can figure out
that all the strings in the subtree rooted at “ko” cannot be
similar to “ebay” based on Lemma 1, and thus those strings
under “ko” (e.g., “kobe” and “koby”) can be pruned.

Using subtrie pruning, we can devise a trie-search-based
method for similarity joins, called Trie-Search. Trie-
Search first constructs a trie structure for all strings in R,

1220

and then for each string s ∈ S , computes the active-node
set As of s based on subtrie pruning. We can also use the
incremental algorithm [9] to compute the active-node sets.
For each r ∈ As, if r is a leaf node (i.e., r ∈ S), 〈s, r〉 is a
similar string pair. For example, in Figure 2, given a string
s = “ebay”, A“ebay” = {4, 11, 12}. As node 4 (“bay”) is a
leaf node, 〈“ebay”, “bay”〉 is a similar string pair.

Observation 2 - Dual Subtrie Pruning: Subtrie pun-
ning only utilizes the trie structure to index strings in R. In
fact, the strings in S also share prefixes, and we can do sub-
trie pruning for the strings in S . To this end, we construct
a trie for stings in both R and S1, and use the trie to do
subtrie pruning for strings in both of the two sets. For ex-
ample, in Figure 3, based on subtrie pruning, all the nodes
in the subtrie rooted at “ko” can be pruned for the string
“ebay” in S . In terms of the similarity-join problem, there
are a collection of strings with prefix “eb” in S , and all such
strings cannot be similar to strings with prefix “ko”. Thus
we can prune the two subtries rooted at “eb” and “ko”.

……

e k

b

root

……

……

o

……

……

Figure 3: Dual subtrie pruning

Based on this observation, we propose a new pruning tech-
nique, called dual subtrie pruning : Given a trie, for any two
nodes u and v, if u is not an active node for every ancestor
of v, and v is not an active node for every ancestor of u,
we can prune the subtries rooted at u and v. The following
Lemma shows the correctness of dual subtrie pruning.

Lemma 2 (Dual Subtrie Pruning). Given two trie
nodes u and v, if u is not an active node for every ancestor
of v, and v is not an active node for every ancestor of u, the
strings under u and v cannot be similar to each other.

For example, in Figure 2, consider node “ba” and node
“ko”, as node “ba” is not an active node of “φ”, “k” and
“ko” and node “ko” is not an active node of “φ”, “b” and
“ba”, all strings in the subtries of the two nodes cannot be
similar, e.g., “bag” and “kobe”, “bag” and “koby”, “bay”
and “kobe”, “bay” and “koby”. It is not straightforward to
traverse the trie structure to find similar pairs using dual trie
pruning. This paper proposes efficient trie-based algorithms.

3. TRIE-BASED ALGORITHMS
In this section, using dual subtrie pruning, we propose

three efficient algorithms. For ease of presentation, here we
focus on self-join, that is R = S . Our approach can be easily
extended to R 6= S , and Appendix E gives the details.

3.1 Trie-Traverse Algorithm
Recall the trie-search-based algorithm Trie-Search (Sec-

tion 2.3), it can only use subtrie punning, and cannot use
dual subtrie pruning. To address this problem and improve

1
Appendix E gives the details about how to construct a trie structure

for two data sets.

performance, in this section we propose a trie-traversal-based
method, called Trie-Traverse.

Algorithm Description: Trie-Traverse first constructs
a trie index for all strings in S , and then traverses the trie in
pre-order. For each trie node, Trie-Traverse computes its
active-node set. When reaching a leaf node l, for s ∈ Al, if
s is a leaf node (i.e., s ∈ S), Trie-Traverse outputs 〈l, s〉
as a similar string pair. Appendix A gives the pseudo-code
of the Trie-Traverse algorithm.

Computing Active-Node Sets: Obviously, for the root
node, its active-node set is composed of the nodes with depth
smaller than τ . For example, in Figure 4, suppose τ = 1,
A0 = {0, 1, 9, 13}. For each of other nodes n, we compute
its active-node set An using its parent’s active-node set Ap,
where p denotes the parent of n. That is for each node in
An, it must have an ancestor in Ap based on dual subtrie
pruning. The following Lemma shows the correctness.

Lemma 3. Given a node n, let p denote n’s parent, for
each node n′ ∈ An, there must exist a node p′ ∈ Ap, such
that p′ is an ancestor of n′.

For example, in Figure 4, consider n = “kob” and its par-
ent node p = “ko”. To compute A“kob”, we only need to ver-
ify whether the descendants of nodes in A“ko” = {13, 14, 15}
are active nodes of “kob”. For the other nodes, e.g. node 2
(“ba”), its descendants (“bag” and “bay”) cannot be sim-
ilar to the descendants of ‘ko” (“kobe” and “koby”) based
on dual subtrie pruning.

13
k

o

b

y

14

15

16

0

a e

e

b

a

y

b
1

2 5

9

10

11

12

g y a
3 4

y

g e

6

7

8

17

…

{0,1,9,13}

{0,1,2,5,9,10,13}

{1,2,3,4,5,6,11}

{2,3,4,7}

{2,3,4,12}

{1,2,5,6,9}

{2,5,6,7}

{3,6,7,8}

{7,8}

{0,1,5,9,10,13}

{1,9,10,11}

{2,10,11,12}

{4,11,12}

{0,1,9,13,14}

{13,14,15}

{14,15,16,17}

{15,16,17} {15,16,17}

Figure 4: An example to use Trie-Traverse algo-
rithm to find all similar pairs (τ = 1)

Next we discuss how to use Ap to compute An. For each
active node p′ in Ap, we verify whether each of p′’s descen-
dants is an active node of n, by considering the following
operations: match, substitution, deletion, and insertion [9].
For example, in Figure 4, node 0 is the parent of node 9,
and we compute A9 based on A0 = {0, 1, 9, 13} as follows.
Consider node 0 in A0, as we can do a deletion operation on
node 0 (deleting e), thus node 0 is an active node of node 9.
In addition, we can also do an substitution for node 0, by
substituting “b” for “e”, thus node 1 is an active node of
node 9. Similarly node 13 is an active node. We can do a
match, thus node 9 is an active node. For node 9, we can do
an insertion, thus node 10 is an active node. Thus we can
compute A9 = {0, 1, 5, 9, 10, 13}. Similarly A10 = {1, 9,
10, 11}, A11 = {2, 10, 11, 12}, and A12 = {4, 11, 12}.

Note that in the worst case the time complexity of com-
puting An from Ap is O(τ ·|An|), since each active node only
can be computed from its ancestors within τ steps. There-
fore, the time complexity of Trie-Traverse is O(τ · |AT |)

1221

where |AT | is the sum of the numbers of the active-node sets
of all the trie nodes in the trie T . When traversing the trie
nodes, we need to maintain the trie and the active nodes of
ancestors of the current node. Given a leaf node l, let C(l)
denote the sum of the active nodes of ancestors of node l,
and Cmax is the maximal value of C(l) among all leaf nodes.
The space complexity is O(|T |+Cmax), where |T | is the size
of trie T . Example 1 shows how Trie-Traverse works.

Example 1. Consider the string set and the correspond-
ing trie structure in Figure 4. Initially, we construct a trie
index for all strings. We compute the active-node set of the
root node A0 = {0, 1, 9, 13}, which is composed of the nodes
with depths within τ = 1, since their edit distances to the
root node (an empty string) are within τ . Then we compute
active-node sets of every node using preorder traversal (fol-
lowing the dashed lines). This traversal can guarantee that,
for each node we always compute its parent’s active-node set
before its own active-node set. Consider node 2, we use its
parent’s active-node set A1 to compute its active-node set
A2. Similarly, we compute A3 using A2. As node 3 is a leaf
node, and node 4 is a leaf node in A3 = {2, 3, 4, 7}, thus we
output the similar pair 〈3, 4〉.

3.2 Trie-Dynamic Algorithm
Trie-Traverse has to compute the active-node sets for

every trie node. However, we need not compute all of them.
For instance, in Figure 4, consider node 3, as it is an active
node of node 2 (i.e. 3 ∈ A2). Based on the symmetry prop-
erty of active nodes: if u is an active node of v, then v must
be an active node of u, node 2 must be in the active-node
set of node 3 (i.e. 2 ∈ A3). Thus, we can avoid unnecessary
computation when computing the active-node set of node 3.

Based on this observation, we design a new algorithm,
called Trie-Dynamic, which avoids the redundant active-
node computation introduced by Trie-Traverse. Trie-
Dynamic dynamically constructs the trie structure. Ini-
tially, Trie-Dynamic constructs an empty trie with only a
root node (for empty string), and then incrementally inserts
strings into the trie. Given a new string s, for each prefix
of s, if the prefix is not in the trie, Trie-Dynamic inserts a
new node for the prefix and computes its active-node set on
the current trie. Suppose node n is a newly inserted node.
For each node v ∈ An, Trie-Dynamic updates Av by in-
serting n into Av based on the symmetry property. Finally,
as s is a leaf node, for each node r ∈ As, Trie-Dynamic
outputs the similar string pair 〈r, s〉. Appendix B gives the
pseudo-code of the Trie-Dynamic algorithm.

As Trie-Dynamic utilizes the symmetry property of ac-
tive nodes, its time complexity is reduced to O(τ

2
· |AT |).

As it needs to keep active nodes of all trie nodes, its space
complexity increases to O(|T | + |AT |). Example 2 shows
how the Trie-Dynamic algorithm works.

Example 2. Consider the string set in Figure 2, Figure 5
shows how to dynamically construct the trie structure by
adding a new string. Each node in the trie is associated with
an ID and its active-node set. In Figure 5(a), we initialize
a trie index with only a root node 0 and its active-node set
A0 = {0}. To insert a new string “bag”, as every prefix
of “bag” is not in the trie, we first insert node 1 with la-
bel “b” as a child of node 0 and compute its active-node set
A1 = {0, 1} using A0 = {0}, and update A0 by inserting
node 1 based on the symmetry property of active nodes, i.e,

(b) Insert “bag”

(a) Initialize

(d) Insert “bay”(c) Insert “ebay”

0

a

e

b

a

y

b
1

2

4

5

6

7

g
3

{0,1,4}

{0,1,4,5}

{1,4,5,6}

{2,5,6,7}

{0,1,2,4,5}

{1,2,3,6,8}

{2,3,8}

{6,7,8}

y
{2,3,7,8}

0

a

e

b

a

y

b
1

2

4

5

6

7

g
3

{0,1,4}

{0,1,4,5}

{1,4,5,6}

{2,5,6,7}

{0,1,2,4,5}

{1,2,3,6}

{2,3}

{6,7}

8

0{0}

0

a

b
1

2

g
3

{0,1,2}

{1,2,3}

{2,3}

{0,1}0

b
1{0,1}

{0,1} 0

a

b
1

2

{0,1,2}

{1,2}

{0,1}

Figure 5: An example to use Trie-Dynamic algo-
rithm to find all similar pairs (τ = 1)

A0 = {0, 1}; then insert node 2 with label “a” as a child
of node 1 and compute its active-node set A2 = {1, 2} us-
ing A1 = {0, 1}, and update A1 by inserting node 2, i.e,
A1 = {0, 1, 2}; finally insert node 3 with label “g” as a child
of node 2 and compute its active-node set A3 = {2, 3} us-
ing A2 = {1, 2}, and update A2 by inserting node 3, i.e,
A2 = {1, 2, 3}. Figure 5(b) gives the detailed steps.

Similarly, we can insert “ebay” (Figure 5(c)). In Fig-
ure 5(d), we insert “bay” into the trie. As the prefix “ba”
of “bay” is in the trie, we only need to create node 8 with
label “y” and append node 8 as a child of node 2. Com-
pared Figure 5(d) with Figure 5(c), we find that A2, A3, A7

are different. Because after we insert node 8 and compute
A8 = {2, 3, 7, 8}, we update the active-node sets of nodes in
A8(nodes 2, 3, 7). For each node n in A8, we add node 8
to n’s active-node set based on the symmetry property.

3.3 Trie-PathStack Algorithm
When inserting a new string, Trie-Dynamic may gener-

ate some new nodes and append them as children of any
existing node. Thus Trie-Dynamic may use active-node
sets of any existing node to compute the active-node sets
of newly added nodes. For example, in Figure 5(d), when
inserting a string “bay”, Trie-Dynamic generates a new
node 8 and appends it as a child of existing node 2, and
uses the active-node set of node 2 to compute the active-
node set of the newly inserted node 8. Thus although Trie-
Dynamic avoids unnecessary active-node computation in-
troduced by Trie-Traverse, Trie-Dynamic involve large
memory space to maintain the active-node sets of all trie
nodes.2 Recall Trie-Traverse, it first constructs a trie
index for all strings, and then gets similar string pairs by
traversing the trie in pre-order. Throughout the algorithm,
the maximal number of active-node sets thatTrie-Traverse
needs to maintain is the same as the maximal depth of trie
leaf nodes. To summarize, Trie-Traverse uses little mem-
ory space but involves unnecessary active-node computa-
tion; on the contrary, Trie-Dynamic avoids such repeated
computation but involves large memory space.

To address this problem, we propose a new algorithm,
called Trie-PathStack, which not only requires little mem-
ory space but also achieves much higher performance. The
basic idea behind Trie-PathStack is the following. Firstly,
when traversing the trie nodes, we maintain a “virtual par-
tial” subtrie to keep the visited nodes. For each unvisited
node, we first set it visited and then compute its active-

2
If we first sort the strings and then dynamically insert them into the

trie, Trie-Dynamic need not maintain all active-node sets. However it
has two problems: 1) it involves an additional sorting step; 2) it is still
expensive to update the active-node sets (the symmetry property).

1222

<0,{0}>

(a) init

top

top

top

<0,{0,1}>

<1,{0,1}>

<0,{0,1}>

<1,{0,1,2}>

<2,{1,2}>

<0,{0,1}>

<1,{0,1,2}>

<2,{1,2,3}>

<3,{2,3}>top

top

top

<0,{0,1}>

<1,{0,1,2}>

<2,{1,2,3}>

<0,{0,1}>

<1,{0,1,2}>

<2,{1,2,3,4}>

<4,{2,3,4}>

(b) push 1 (c) push 2

(d) push 3 (e) pop 3 (f) push 4

……

Figure 6: An example to use Trie-PathStack algo-
rithm to find all similar pairs (τ = 1)

node set in the virtual partial trie. For subsequent unvisited
nodes, when computing their active nodes, we only consider
the visited nodes. Thus we can avoid the redundant com-
putation. Secondly, we traverse the trie nodes in preorder
and use a stack to maintain the nodes that need to be up-
dated. Throughout the preorder traversal, we use a stack to
maintain the nodes from the root to the current node (with
corresponding active-node sets). When visiting a node n,
as its parent node must be the top element in the stack, we
can use the active-node set of the top element to compute
n’s active-node set. After computing n’s active-node set, we
only need to update the active-node sets of the topmost τ el-
ements (i.e., n’s ancestors within τ steps away from n) in the
stack. Because we can guarantee that any unvisited node’s
parent will be pushed into the stack, and only the topmost τ
nodes are active nodes of n. Experimental results shows that
Trie-PathStack can avoid a lot of unnecessary update.

Based on the two ideas, we devise the Trie-PathStack
algorithm. Trie-PathStack first constructs a trie for all
strings, and then traverses the trie nodes in preorder. Trie-
PathStack uses a runtime stack to maintain active-node
sets of nodes from the root to the current node. When
visiting a new node n, Trie-PathStack first computes its
active-node set using the virtual partial trie based on its par-
ent’s active-node set (the top element in the runtime stack),
and pushes n into the stack. Then Trie-PathStack up-
dates the active-node sets of n’s ancestors within τ steps
away from n (the topmost τ elements in the stack). If n is a
leaf node, Trie-PathStack outputs corresponding similar
string pairs and pops n from the stack. Appendix C gives the
pseudo-code of Trie-PathStack. Obviously its time com-
plexity is O(τ

2
·|AT |) and space complexity is O(|T |+Cmax).

Example 3 shows how Trie-PathStack works.

Example 3. Consider the string set and the correspond-
ing trie structure in Figure 2, Figure 6 shows how to use
Trie-PathStack to compute similar pairs. In the initial
step, besides constructing a trie index, we also create a stack
from the root node to the current node. We first push node
0 and its active-node set A0 = {0} into the stack, and get
its first child, node 1 (Figure 6(a)). In Figure 6(b), we com-
pute A1 = {0, 1} using A0 = {0}. Though node 2 is also an
active node of node 1, we ignore it since it is unvisited in
preorder traversal. We then update the active-node sets of
its ancestors by adding node 1 to A0 (the underlined num-
ber). We repeat these steps until visiting node 3 which has
no children. We pop node 3 (Figure 6(e)) from the stack
and push its sibling node 4 into the stack (Figure 6(f)). We

continue to push the first child of node 5(if any). When vis-
iting a leaf node, i.e., nodes 3 and 4, we output the similar
string pairs. We repeat above steps until the stack is empty.

Appendix D proposes a partition-based method to im-
prove Trie-PathStack for large edit-distance thresholds.

Theorem 1. Given a set of strings S and an edit-distance
threshold τ , Trie-Traverse, Trie-Dynamic, and Trie-
PathStack can compute all similar string pairs 〈s ∈ S , t ∈
S〉 such that ed(s, t) ≤ τ .

Proof. Due to space constraints, we omit the proof. In-
terested readers are referred to [18] for details.

4. PRUNING TECHNIQUES
This section proposes three techniques to improve perfor-

mance which can also reduce the sizes of active-node sets.

Length Pruning: Consider two strings r and s, if their
length difference is larger than τ , their edit distance cannot
be within τ [6]. We exploit this property for pruning in our
framework. In Figure 7, in the left box, for each node, we
maintain a range of lengths of strings in the subtrie, [ls, ll],
where ls is the length of the shortest string in the subtrie
and ll is the length of the longest string in the subtrie. For
instance, the length range of strings in subtrie of v is [5, 7]
and that of u is [2, 3]. As the lengths of strings from the
two subtries have at least two differences (larger than τ =
1), node v can be pruned from Au through length pruning,
although node v is an active node of node u.

root

uv[5,7] [2,3]

u

v

……

……

……

u

v

Length Pruning
Single Branch

Pruning
Count Pruning

u active node for vv pruned active node for uLegend:

Figure 7: Three pruning techniques (τ = 1)

Single-branch Pruning: If node v is an ancestor node of
node u and their subtries have the same leaf nodes, then
node v can be pruned from Au, even if node v is an active
node of node u. Intuitively, as there is only a single branch
from node v to node u, when we use Au to compute the
active-node sets of u’s children, v will not generate new leaf
active nodes, thus we can remove v from Au. We call this
pruning technique single-branch pruning. For instance, in
the center box of Figure 7, as node v and node u have the
same leaf nodes, based on single-branch pruning, v can be
pruned from Au.

Count Pruning: Given two nodes v and u, if there is only
one string that have both nodes v and u as prefixes, node
v can be safely pruned from Au because we cannot find two
strings in their subtries. As an example in the right box of
Figure 7, v can be excluded from Au since we cannot find a
similar string pair in both of their subtries.

We give an example to illustrate how to use the three
techniques for pruning. In Figure 2, consider computing the
active-node set of node 6, we have A6 = {2, 5, 6, 7}. Using
length pruning, we have A6 = {5, 6, 7}. Using single-branch
pruning, we have A6 = {6, 7}. Using count pruning, we
have A6 = {}. Using the three pruning techniques, we can
significantly reduce the number of active nodes.

1223

5. INCREMENTAL SIMILARITY JOINS
In this section, we discuss how to extend our method to

support dynamic update of data sets efficiently. Suppose we
have gotten the self-join results of a string set S , and then S
is updated by adding another string set ∆S , it is challenging
to do the similarity join incrementally. We formalize the
incremental similarity-join problem as follows.

Definition 2 (Incremental Similarity Joins). Given
a set of strings S, a new string set ∆S, and an edit-distance
threshold τ , an incremental similarity join finds all similar
string pairs (r ∈ ∆S, s ∈ S ∪∆S) such that ed(r, s) ≤ τ .

Due to space constraints, here we only show how to extend
Trie-PathStack algorithm to support incremental similar-
ity joins, and we can easily extend other algorithms to sup-
port update. Consider the trie index T constructed from S .
Given a new string set ∆S , we update the original trie T
to T ′ by inserting the strings in ∆S . In the updated trie
T ′, let ∆T denote the partial trie for strings ∆S . Then we
extend Trie-PathStack to find similar string pairs for trie
nodes in ∆T as follows. When reaching a trie node n, differ-
ent from Trie-PathStack which computes n’s active-node
set An from visited nodes, the incremental similarity-join
algorithm computes An from the nodes in T ′. Appendix F
gives the pseudo-code of the incremental similarity-join al-
gorithm. Example 4 shows how the algorithm works.

13
k

o

b

y

14

15

16

0

a e

e

b

a

y

b
1

2 5

9

10

11

12

g y a
3 4

y

g e

6

7

8

17

y

(a) init

top

top

top

<0,{0,1,13,9}>

<9,{0,1,5,9,10,13}>

<10,{1,9,10,11}>

<0,{0,1,13,9}>

<9,{0,1,5,9,10,13}>

<10,{1,9,10,11,18}>

<18,{10,11,12,18}>top

(b) push 9

(c) push 10 (d) push 18

……

18

<0,{0,1,13}> <0,{0,1,13,9}>

<9,{0,1,5,9,13}>

Figure 8: Incremental similarity joins on sample
data set in Figure 2 (∆S={“eby”}, τ = 1)

Example 4. Consider the trie structure T in Figure 2.
Suppose ∆S={“eby”}. Based on our incremental trie-join
algorithm, we update the original T to T ′ by inserting “eby”
(Figure 8) and get the partial trie ∆T marked by the dot
lines. Then we traverse the trie ∆T to find similar string
pairs. Initially, we push node 0 and its active-node set
{0, 1, 13} into the stack. Nodes 1 and 13 are the active nodes
in T ′. Next we push nodes 9, 10 and 18 into the stack. When
reaching leaf node 18 (Figure 8(d)), we output similar string
pair (18,12). The algorithm stops when the stack is empty.

6. EXPERIMENTS
We have implemented our method and conducted an ex-

tensive set of experimental studies on three real data sets:
English Dict, DBLP Author, and AOL Query Log. We com-
pared our algorithms with state-of-the-art methods, Part-
Enum [1], All-Pairs-Ed [2], Ed-Join [19](Appendix G.1). All
the algorithms were implemented in C++ and compiled us-
ing GCC 4.2.3 with -O3 flag. All the experiments were run
on a Ubuntu machine with an Intel Core 2 Quad X5450
3.00GHz processor and 4 GB memory. Appendix G.1 gives
detailed data-set descriptions and experimental settings.

6.1 Comparison of Four Trie-Based Algorithms
In this section, we evaluate our trie-join algorithms and

compare them with the baseline algorithm Trie-Search
on the three data sets. Figures 9(a)-9(c) illustrate their
performance by varying different edit-distance constraints.
Our three trie-join algorithms outperform Trie-Search,
even by 1-2 orders of magnitude on the AOL data set.
Trie-Traverse is approximately two times slower than
Trie-Dynamic and Trie-PathStack, as Trie-Traverse
does not take into account the symmetry property of two
active nodes and involves a lot of unnecessary computa-
tion. Trie-PathStack also outperforms Trie-Dynamic.
This is because after inserting (visiting) a new trie node n,
Trie-Dynamic needs to update |An| active-node sets, while
Trie-PathStack only updates τ (� |An|) active-node sets.
Throughout the algorithm, Trie-PathStack only main-
tains a small portion of active nodes. Appendix G.2 gives
the numbers of maintained active nodes for each algorithm.

6.2 Evaluation of Pruning Techniques
To evaluate the effect of the three pruning techniques, we

implemented and incorporated them into Trie-PathStack,
and compared them with Trie-PathStack without prun-
ing on the AOL data set. We used the number of pruned
active nodes to test the pruning power. Table 1 shows
the results. In the table, “No Pruning”, “Length”, “Sin-
gle Branch”, “Count”, and “All Pruning” respectively de-
note Trie-PathStack without any pruning technique, with
length pruning, with single-branch pruning, with count prun-
ing, and with all three pruning techniques. We can see that
the three pruning techniques indeed can prune useless active
nodes. For example, length pruning can prune about 25%
useless active nodes for the edit-distance threshold τ = 2
and count pruning nearly prunes 50% useless active nodes
for τ = 1. In addition, we also compared the running time
of employing different pruning techniques. The three prun-
ing techniques can improve the performance beyond Trie-
PathStack by 24.7% when τ = 1 and 14.7% when τ = 2.

Table 1: Numbers of active nodes (∗106) of Trie-
PathStack with different pruning techniques (AOL)
τ No Pruning Length Single Branch Count All Pruning

1 42.3 39.5 33.2 23.7 20.6
2 230.5 175.1 212.8 203.8 147.7

6.3 Comparison with Existing Methods
Index sizes: We compared index sizes with the state-of-
the-art methods on three data sets, as shown in Table 2.
We tuned their parameters and compared with their best
performance. We can observe that existing methods involve
much more memory than our method. For example, their
index sizes for the AOL data set are larger than 100MB,
while our method only has 29MB. The reason is that they
indexed a large number of signatures for the data set, but
we used a trie index to share the common prefixes of strings.

Table 2: Index sizes (MB)
Data Sets Trie-PathStack Part-Enum All-Pairs-Ed Ed-Join

Dict 2 16 30 10
DBLP 16 54 155 65
AOL 29 120 305 160

Efficiency: We compared efficiency of the four algorithms
on the three data sets. As the performance of state-of-the-
art methods highly depends on parameters settings, it took
considerable time for tuning parameters to optimize their
runtime for each experiment. Figure 10 depicts the results.

1224

0.1

1

101

102

103

104

1 2 3

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold

Trie-Search
Trie-Traverse
Trie-Dynamic

Trie-PathStack

1

101

102

103

104

105

1 2 3

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold

Trie-Search
Trie-Traverse
Trie-Dynamic

Trie-PathStack

1

101

102

103

104

105

1 2 3

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold

Trie-Search
Trie-Traverse
Trie-Dynamic

Trie-PathStack

(a) English Dict (b) DBLP Author (c) AOL Query Log
Figure 9: Comparison of the four algorithms

0.1

1

101

102

103
T

im
e

(s
ec

on
ds

)

Edit-Distance Threshold = 1

Trie-PathStack
Ed-Join(q=2)
Ed-Join(q=3)
Ed-Join(q=4)

All-Pairs-Ed(q=3)
Part-Enum(q=1,n1=1,n2=7)

1

101

102

103

104

105

106

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold = 2

Trie-PathStack
Ed-Join(q=2)
Ed-Join(q=3)
Ed-Join(q=4)

All-Pairs-Ed(q=3)
Part-Enum(q=1,n1=1,n2=7)

1

101

102

103

104

105

106

107

T
im

e
(s

ec
on

ds
)

Edit-Distance Threshold = 3

Trie-PathStack
Ed-Join(q=2)
Ed-Join(q=3)
Ed-Join(q=4)

All-Pairs-Ed(q=2)
Part-Enum(q=1,n1=2,n2=3)

(a) English Dict (b) DBLP Author (c) AOL Query Log
Figure 10: Comparison with state-of-the-art methods on three datasets

1

101

102

103

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

1

101

102

103

104

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

1

101

102

103

104

105

 10 20 30 40 50 60
T

im
e

(s
ec

on
ds

)
Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

1

101

102

103

104

105

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

(a) τ = 1 (b) τ = 2 (c) τ = 3 (d) τ = 4

1

101

102

103

104

105

106

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

1

101

102

103

104

105

106

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

1

101

102

103

104

105

106

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

1

101

102

103

104

105

106

 10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

Avg. Length

Ed-Join
Trie-PathStack

Bi-Trie-PathStack

(e) τ = 5 (f) τ = 6 (g) τ = 7 (h) τ = 8
Figure 11: Comparison of Ed-Join, Trie-PathStack, and Bi-Trie-PathStack on DBLP Authors+Title data set
(Note that Ed-Join did not finish in 106 seconds for τ = 7, 8 and the string length 10.)

In Figure 10, q is a parameter of gram based methods (the
length of a gram), and n1 and n2 are two additional param-
eters for Part-Enum, which denote the numbers of parti-
tion and enumeration respectively. Figure 10(a) shows that
Trie-PathStack is about 15 times faster than the best ex-
isting method Ed-Join (q = 3) on the English Dict data
set with τ = 1. Figure 10(b) shows that Trie-PathStack
outperforms the best existing method Ed-Join (q = 3), by
an order of magnitude on the DBLP Author data set with
τ = 2. In Figure 10(c), on the AOL data set with τ = 3,
the best q for Ed-Join was 2 instead of 3 (for the other two
data sets). Trie-PathStack took 1000 seconds while Ed-
Join (q = 2) involved 2600 seconds. Trie-PathStack is
always better than Ed-Join on the three datasets with short
strings (the average string length is no larger than 30). This
is because that Ed-Join can get effective pruning power with
large q values. But for short strings, it cannot choose large
q values, since such values will destroy the majority or all of
grams with only one edit error; while small q values will in-
crease inverted-list sizes and generate many more candidates
that need to be further verified.

Algorithm Selection: To help users select a good algo-
rithm, we conducted an experiment to suggest which algo-
rithms should be used for different data sets.

We used the DBLP Authors+Title data set in [19], in

which each string is a concatenation of author names and
the title of a publication. We truncated the prefix of each
string with lengths of 10, 20, 30, 40, 50, and 60, and ac-
cordingly generated 6 data sets with different length dis-
tributions. In Figure 11, we compared the running time
of three algorithms (Ed-Join, Trie-PathStack, and our
improved Trie-PathStack using bidirectional filtering for
both prefixes and suffixes as discussed in Appendix D, called
Bi-Trie-PathStack) by varying the edit-distance thresh-
olds from 1 to 8. From Figures 11(a)-(h), we can see that
when the average string length is no larger than 30, Bi-Trie-
PathStack is always superior to Ed-Join. This is because
for these strings, it is hard to select high-quality q-grams,
and thus Ed-Join has low pruning power and will result in a
large number of candidates which need to be further verified.

Even when the average string length is larger than 30,
for small thresholds (τ ≤ 3 in Figures 11(a)-(c)), Bi-Trie-
PathStack is still better than Ed-Join. This is because
when τ ≤ 3, Bi-Trie-PathStack only needs to run Trie-
PathStack twice for threshold b τ

2
c ≤ 1, andTrie-PathStack

is very efficient for smaller edit-distance thresholds. In ad-
dition, Bi-Trie-PathStack generates a smaller number of
candidates than Ed-Join and thus achieves higher efficiency.

Figures 11(a)-(c) also show that when τ is small, Trie-
PathStack has a good performance for short strings (the
average string length is no larger than 30). It is even faster

1225

Table 3: Algorithm selection
Avg. Length τ = 1 τ = 2 τ = 3 τ ∈ [4, 8]

(0,20] TP TP TP/Bi-TP TP/Bi-TP
(20,30] TP TP/Bi-TP Bi-TP Bi-TP
(30,40] TP Bi-TP Bi-TP Bi-TP/EJ
(40,60] Bi-TP Bi-TP Bi-TP EJ

than Bi-Trie-PathStack in some cases. This is because for
short strings, both Bi-Trie-PathStack and Ed-Join will
verify a large number of candidates, but Trie-PathStack
can directly generate all results. For larger thresholds (τ ≥
4) and longer strings (the average string length is larger
than 30), as shown in Figures 11(d)-(h), Ed-Join is more
efficient than our algorithms since in these cases since Trie-
PathStack and Bi-Trie-PathStack are expensive to com-
pute active nodes while Ed-Join can select high-quality q-
grams with low frequency and has high pruning power.

Table 3 illustrates how to select a good algorithm based
on the results from Figure 11, where TP, Bi-TP, and EJ
respectively denote Trie-PathStack, Bi-Trie-PathStack
and Ed-Join. We have the following observations. Firstly,
for τ ≤ 3, our methods outperform Ed-Join. Secondly, for
τ ∈ [4, 8], both Bi-Trie-PathStack and Ed-Join are effec-
tive for the data sets with the average string length within
(30,40]. Thirdly, for τ ∈ [4, 8], Ed-Join is more effective for
the data sets with the average string length within (40,60].

6.4 Additional Experiments
In Appendix G.3, we evaluate our incremental algorithm

for update of data sets. We evaluate our algorithms for R 6=
S in Appendix G.4 and test the scalability in Appendix G.5.

7. RELATED WORK
String similarity joins have been extensively studied [6,

1, 2, 4, 16, 19, 20]. Gravano et al. [6] proposed to use
SQL statements for similarity joins in relational databases.
Chaudhuri et al. [4] proposed a primitive operator for effec-
tive similarity joins. Arasu et al. [1] developed a signature
scheme which can be used as a filter for effective similarity
joins. Bayardo et al. [2] proposed all-pair similarity joins,
a prefix-filtering based algorithm. Xiao et al. [20] proposed
ppjoin to improve all-pair algorithm by introducing posi-
tional filtering and suffix filtering.

The other related studies are approximate string search-
ing [7, 12, 3] (See Appendix H) and approximate string
matching[13]. Given a collection of data strings and a query
string, approximate string searching finds all the strings
in the collection similar to the query string. Navarro [13]
studies approximate string matching, which given a query
string and a text string, finds all substrings of the text string
that are similar to the query string. These studies can be
used to look for common gene expressions. Note that these
two problems are different from our similarity-join problem,
which given two sets of strings, finds all similar string pairs.

The trie-based approach to deal with string similarity for
edit distance has been proposed in [9, 5], but they focus on
a different problem, fuzzy type-ahead search which returns
answers as users type in keywords letter by letter. They
emphasized an incremental algorithm to answer a query
based on the query’s prefixes. They are not designed for
the similarity-join problem. A straightforward method to
extend their methods to support similarity joins is as fol-
lows. Given two string sets R and S , for each string in S ,
we find its similar strings from set R. As discussed in Sec-
tion 2, this method is inefficient as they cannot utilize the
fact that the strings in S also share common prefixes. We
propose new effective algorithms and pruning techniques.

8. CONCLUSION
In this paper we have studied the problem of string sim-

ilarity joins with edit-distance constraints. We proposed
a new trie-based similarity-join framework which can effi-
ciently find all similar string pairs with small indexes. We
used a trie structure to index strings and devised three trie-
join algorithms based on dual subtrie pruning to achieve
high performance. We developed several optimization tech-
niques to enhance performance. We also extended our method
to efficiently support dynamic update of data sets. We have
implemented our algorithms and our approach outperforms
state-of-the-art methods on data sets with short strings (the
average string length is no larger than 30).

9. ACKNOWLEDGEMENT
This work is partly supported by the National Natural

Science Foundation of China under Grant No. 60873065,
the National High Technology Development 863 Program of
China under Grant No. 2009AA011906, and the National
Grand Fundamental Research 973 Program of China under
Grant No. 2006CB303103.

10. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact

set-similarity joins. In VLDB, pages 918–929, 2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW, pages 131–140, 2007.

[3] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust
and efficient fuzzy match for online data cleaning. In SIGMOD

Conference, pages 313–324, 2003.

[4] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, page 5, 2006.

[5] S. Chaudhuri and R. Kaushik. Extending autocompletion to
tolerate errors. In SIGMOD Conference, pages 707–718, 2009.

[6] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string joins
in a database (almost) for free. In VLDB, pages 491–500, 2001.

[7] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava.
Fast indexes and algorithms for set similarity selection queries.
In ICDE, pages 267–276, 2008.

[8] M. Hadjieleftheriou, N. Koudas, and D. Srivastava. Incremental
maintenance of length normalized indexes for approximate
string matching. In SIGMOD Conference, pages 429–440, 2009.

[9] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy
keyword search. In WWW, pages 371–380, 2009.

[10] M.-S. Kim, K.-Y. Whang, J.-G. Lee, and M.-J. Lee.
n-Gram/2L: A space and time efficient two-level n-gram
inverted index structure. In VLDB, pages 325–336, 2005.

[11] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, 2008.

[12] C. Li, B. Wang, and X. Yang. Vgram: Improving performance
of approximate queries on string collections using
variable-length grams. In VLDB, pages 303–314, 2007.

[13] G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surv., 33(1):31–88, 2001.

[14] S. C. Sahinalp, M. Tasan, J. Macker, and Z. M. Özsoyoglu.
Distance based indexing for string proximity search. In ICDE,
pages 125–, 2003.

[15] H. Sakoe and S. Chiba. Dynamic programming algorithm
optimization for spoken word recognition. pages 159–165, 1990.

[16] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD Conference, pages 743–754, 2004.

[17] K. U. Schulz and S. Mihov. Fast string correction with
levenshtein automata. IJDAR, 5(1):67–85, 2002.

[18] J. Wang, J. Feng, and G. Li. Trie-join: Efficient trie-based
string similarity joins with edit-distance constraints. Technical
report, Tsinghua University, 2010.
http://dbgroup.cs.tsinghua.edu.cn/technicalreports/triejoin.pdf.

[19] C. Xiao, W. W. 0011, and X. Lin. Ed-join: an efficient
algorithm for similarity joins with edit distance constraints.
PVLDB, 1(1):933–944, 2008.

[20] C. Xiao, W. W. 0011, X. Lin, and J. X. Yu. Efficient similarity
joins for near duplicate detection. In WWW, 2008.

1226

APPENDIX

A. TRIE-TRAVERSE ALGORITHM
Figure 12 gives the pseudo-code of the Trie-Traverse

algorithm. Different from Trie-Search, Trie-Traverse
uses dual subtrie pruning to find similar string pairs. It first
constructs a trie index for all strings (Line 2), computes the
active-node set of the root node (Line 4), and then calls its
subroutine findSimilarPair to find all similar string pairs
recursively (Lines 5-6). findSimilarPair first calculates the
active-node setAc of node c based on its parent’s active-note
set Ap (Line 2), using the incremental algorithm introduced
in Section 3.1, whose time complexity is O(τ · |Ac|). If c
is a leaf node, it calls a subroutine outputSimilarPair to
output all the similar string pairs of c (Line 3). Finally
findSimilarPair calls itself to compute the similar string
pairs of c’s descendants (Lines 5-6).

Algorithm 1: Trie-Traverse(S , τ)

Input: S : a collection of strings
τ : a given edit-distance threshold

Output: P = {(s ∈ S , t ∈ S) | ed(s, t) ≤ τ}
begin1

T = new Trie(S);2

Let r denote the root of Trie T .3

Ar= {n | for each trie node n, s.t., |n| ≤ τ};4

for each child node of r, c do5

P∪ = findSimilarPair(c, r,Ar);6

end7

Function findSimilarPair(c, p,Ap)

Input: c: a trie node
p: the parent of c
Ap: the active node set of p

Output: Pc = {(s ∈ S , t ∈ S) | ed(s, t) ≤ τ and s is a
leaf descendant of c}

begin1

Ac = calcActiveNode(c,Ap);2

if c is a leaf node then3

Pc∪ = outputSimilarPair(c,Ac);4

for each child node of c, d do5

Pc∪ = findSimilarPair(d, c,Ac);6

end7

Function outputSimilarPair(n,An)

Input: n: a trie node
An: n’s active-node set

Output: Pn ={(n, s ∈ An) | ed(n, s) ≤ τ}
begin1

for each leaf node l ∈ An (n 6= l) do2

Pn∪ = {(n, l)};3

end4

Figure 12: Trie-Traverse algorithm

B. TRIE-DYNAMIC ALGORITHM
Figure 13 gives the pseudo-code of the Trie-Dynamic al-

gorithm. Different from Trie-Traverse, Trie-Dynamic
avoids unnecessary computation of active-node sets by uti-
lizing the symmetry property of active nodes. Initially, Trie-

Dynamic constructs an empty trie with only a root node
(Line 2), and then incrementally inserts strings into the
trie. At each step, Trie-Dynamic maintains a trie in-
dex of all previously inserted strings. For a new string
s = s1s2 . . . sm, Trie-Dynamic inserts it into the trie struc-
ture as follows (Lines 4-10). First Trie-Dynamic finds the
trie node t = s1s2 . . . si which is the longest prefix of s. Then
Trie-Dynamic updates the trie by adding some new nodes
under node t (Line 6-7) and computing their corresponding
active-node sets (Line 8). As the active-node set of an ex-
isting node may be affected by a newly added node, Trie-
Dynamic updates all such active-node sets based on the
symmetry property (Line 9-10). Finally, as t is a leaf node
(i.e., s), Trie-Dynamic outputs the similar pairs (Line 12).

Algorithm 2: Trie-Dynamic (S , τ)

Input: S : a collection of strings
τ : a given edit-distance threshold

Output: P = {(s ∈ S , t ∈ S) | ed(s, t) ≤ τ}
begin1

T = new Trie();2

for each s = s1s2 . . . sm in S do3

Find trie node t = s1s2...si which is the longest4

prefix of s ;
for j=i+1 to m do5

c = new Node(sj);6

Append a new child node c to node t;7

Ac = calcActiveNode(c,At);8

/* update active nodes */
for each node a ∈ Ac (c 6= a) do9

add c to Aa;10

t = c;11

P∪ = outputSimilarPair(t,At); /* t is a leaf12

node */

end13

Figure 13: Trie-Dynamic algorithm

C. TRIE-PATHSTACK ALGORITHM
Figure 14 shows the pseudo-code of the Trie-PathStack

algorithm. Different from Trie-Traverse andTrie-Dynamic,
Trie-PathStack can achieve high performance with less
memory. Initially, Trie-PathStack constructs a trie struc-
ture T for all strings (Line 2). To avoid repeated active-
node computation, we logically maintain a virtual partial
trie index consisting of the nodes marked by “visited”. In
the beginning, we only set the root “visited” (Line 4). Ac-
cordingly, in this partial trie we define the active-node set

of a node u as A
′

u = {v|v ∈ Au, v has been visited} and

we can get A
′

r = {r} (Line 5). Throughout the Trie-
PathStack, we use a stack S to maintain active-node sets
of nodes from the root node to the current node. When
pushing a new node c into the stack, we first compute c’s
active-node set Ac

′ based on its parent’s active-node set Ap
′

by calling subroutine calcActiveNode′3 (Line 12), and then
update active-node sets affected by c (Line 13-15). In Trie-

Dynamic, for each active node a in A
′

c, we update A
′

a by

adding the node c . It needs to update |A
′

c| active-node
sets. But in Trie-PathStack, we only need to update the

3
Note that calcActiveNode

′ only returns visited nodes.

1227

Algorithm 3: Trie-PathStack (S , τ)

Input: S : a collection of strings
τ : a given edit-distance threshold

Output: P = {(s ∈ S , t ∈ S) | ed(s, t) ≤ τ}
begin1

T = new Trie(S);2

S = new Stack();3

Let r denote the root of Trie T and set r visited.4

A
′

r= {r};5

S.push(〈r,Ar
′〉);6

c = r.firstchild;7

while not S.empty() do8

while c is not null do9

〈p,Ap
′〉 = S.top();10

Set c visited.11

Ac
′ = calcActiveNode′(c,Ap

′);12

/* update active nodes */
for each ancestor node of c, t do13

if |c| − |t| ≤ τ then14

add c to At;15

if c is a leaf node then16

P∪ = outputSimilarPair(c,Ac
′);17

S.push(〈c,Ac
′〉);18

c = c.firstchild;19

〈p,Ap
′〉 = S.pop();20

c = p.nextsibling;21

end22

Figure 14: Trie-PathStack algorithm

active-node sets of n’s ancestors within τ steps away from
n, which is the topmost τ elements in the stack. This is
because for other active nodes (preceding nodes but not an-
cestors of c), they cannot be parent nodes for subsequent
nodes, so we will not use their active-node sets. Therefore
Trie-PathStack significantly decreases the number of up-

dated active-node sets from |A
′

c| to τ and performs more
efficient than Trie-Dynamic, although they both take into
account the symmetry property of active nodes.

D. IMPROVING TRIE-PATHSTACK ON LARGE
EDIT-DISTANCE THRESHOLDS

In this section, we improve Trie-PathStack to support
large edit-distance thresholds. Consider a string r = r1r2 . . . rn.
We divide r into two parts r1r2 . . . rbn

2
c and rbn

2
+1c . . . rn.

Note that for a string s, if r is similar to s within edit-
distance threshold τ (τ ≤ n), then at least one of the follow-
ing condition is correct: 1) the first part of r, r1r2 . . . rbn

2
c is

similar to a prefix of s within b τ

2
c; 2) the second part of r,

rbn

2
+1c . . . rn is similar to a suffix of s within b τ

2
c. For exam-

ple, given a string r = “arnold schwarzeneger”, if string s
is similar to r within τ = 5, then either the edit distance be-
tween a prefix of s and “arnold sch” is within 2 or the edit
distance between a suffix of s and “warzeneger” is within
2. We use this property to improve Trie-PathStack.

Given a string set S and a threshold τ , we first discuss how
to use Trie-PathStack to find all the string pairs 〈r, s〉 ∈
S × S such that the first part of r is similar to a prefix
of s within b τ

2
c. We can construct a new string set S1 that

consists of the first part of each string in S . Then we run the

Trie-PathStack on S1 and S with edit-distance threshold
b τ

2
c. For a string c in S1, to find all the strings in S whose

prefix is similar to c, we traverse the subtrie rooted at the
active nodes in Ac and get the leaf nodes. Clearly, these
leaf nodes have a prefix that is similar to c. Similarly, if
we reverse the strings in S , we can get all the string pairs
〈r, s〉 ∈ S × S such that the second part of r is similar to a
suffix of s within b τ

2
c. Based on the candidates generated

from the two cases, we verify them to generate final results.

E. SIMILARITY JOINS BETWEEN TWO
DIFFERENT SETS

In this section, we discuss how to extend our algorithm to
support similarity joins between two different sets R and S .
For ease of presentation, we first introduce a concept.

Definition 3. Given a trie T , a trie node n, and a string
set S, node n belongs to S if there exists a string s in S with
a prefix n.

For example, in the left of Figure 16, given the trie index
and S = {bag, beagy}, node “be” belongs to S , since there
exists a string s = “beagy” with a prefix “be”.

Algorithm 4: Trie-PathStack+ (R,S , τ)

Input: R, S : two collections of strings
τ : a given edit-distance threshold

Output: P = { (s ∈ ∆S, t ∈ S ∪∆S) | ed(s, t) ≤ τ}
begin1

T = new Trie(R ∪ S);2

S = new Stack();3

Let r denote the root of Trie T .4

Ar
′′= {n| for each trie node n, s.t., |n| ≤ τ and5

n ∈ S};
S.push(〈r,Ar

′′〉);6

c = r.firstchild;7

while not S.empty() do8

while c is not null and c ∈ R do9

〈p,Ap
′′〉 = S.top();10

Ac
′′ = calcActiveNode′′(c,Ap

′′);11

if c is a leaf node then12

P∪ = outputSimilarPair(c,Ac
′′);13

S.push(〈c,Ac
′′〉);14

c = c.firstchild;15

if c is not null then16

c = c.nextsibling;17

else18

〈p,Ap
′′〉 = S.pop();19

c = p.nextsibling;20

end21

Figure 15: Trie-PathStack+: a similarity-join algo-
rithm for two different sets

We take Trie-PathStack as an example to introduce our
idea and propose an algorithm, called Trie-PathStack+ as
shown in Figure 15. Different from Trie-PathStack algo-
rithm, Trie-PathStack+ builds a trie index on stings in
R∪ S (Line 2) and for each node belonging to R, computes
its active-node set composed of nodes belonging to S . The
active-node set of node r is defined as Ar

′′= {n| for each

1228

trie node n, such that |n| ≤ τ and n ∈ S} (Line 5), and
calcActiveNode

′′ returns those active nodes that belong to
S . We restrict that only nodes u ∈ R can be pushed into
the stack (Line 9).

0

a e

e

b

a

y

b
1

2 5

9

10

11

12

g y a
3 4

y

g

6

7

8

<0,{0,1}>

(a) init

top

top

top

<0,{0,1}>

<1,{0,1,2,5}>

<0,{0,1}>

<1,{0,1,2,5}>

<2,{1,2,3,5,6}>

(b) push 1 (c) push 2

<0,{0,1}>

<1,{0,1,2,5}>

<2,{1,2,3,5,6}>

<4,{2,3}>

(d) push 4

top

top <0,{0,1}>

(e) pop 4,2,1

……

<0,{0,1}>

<9,{0,1,5}>

(f) push 9

top

R S R[S

Figure 16: Similarity joins between R = {bay, ebay}
and S = {bag, beagy} (τ = 1). We push nodes in R
into the stack and find their active nodes in S.

Example 5. In Figure 16, we illustrate an example to
join two different string sets. On the left, it is the trie index
for strings in R = {bay, ebay} and S = {bag, beagy}. Each
node is marked by belonging to which set, such as R, S or
R ∪ S. In Figure 16(a), the stack is initialized with node 0
and A0

′′ = {0, 1}. Though node 9 is similar to node 0, it
is excluded from the set since node 9 /∈ S. After pushing
node 2 into the stack (Figure 16(c)), we then push node 4
into the stack, but will not push node 3 as node 3 /∈ R. In
Figure 16(d), as node 4 is a leaf node, we output similar
string pair (4, 3) by finding the leaf node in A4

′′ = {2, 3}.
We continue these steps until the stack is empty.

F. INCREMENTAL SIMILARITY JOINS
We extend Trie-PathStack to support incremental sim-

ilarity joins and Figure 17 shows the pseudo-code. Firstly,
we update the original trie T by inserting all strings in ∆S
and set the nodes in ∆T “unvisited”. Secondly, we initial-

ize A
′

r as r’s visited active nodes. Thirdly, we change the
condition of pushing an element into the stack. Fourthly,
we need push all unvisited elements into the stack.

Algorithm 5: IncrementalTrieJoin(T ,∆S , τ)

Input: T : a trie index of original collection of strings
∆S : a new added collection of strings

τ : a given edit-distance threshold
Output: P = {(s ∈ ∆S, t ∈ S ∪∆S) | ed(s, t) ≤ τ}
Change Line 2 in Trie-PathStack algorithm to1

“T .update(∆S)”(Insert new added strings into the
trie);
Change Line 5 in Trie-PathStack algorithm to2

“A
′

r= {n| for each visited trie node n, s.t., |n| ≤ τ}”;
Change Line 9 in Trie-PathStack algorithm to3

“while c is not null and c is not visited”;
Change Line 20- 21 in Trie-PathStack algorithm to4

“if c is not null then
c = c.nextsibling;

else
〈p,Ap

′〉 = S.pop();
c = p.nextsibling;”

Figure 17: Incremental trie-join algorithm

G. ADDITIONAL EXPERIMENTS
G.1 Experiment Setup
Data sets: 1) English Dict. It was composed of English
words from the Aspell spellchecker for Cygwin. 2) DBLP
Author. We extracted author names from DBLP dataset4.
3) AOL Query Log5. We randomly chose one million distinct
queries. Table 4 illustrates detailed statistical information
of the three data sets. Figures 18(a)-18(c) show their length
distribution respectively.

Table 4: Dataset statistics
Data Sets Sizes avg len max len min len |Σ|

English Dict 146,033 8.77 30 1 27
DBLP Author 613,542 12.82 46 4 37
AOL Query Log 1,000,000 20.94 500 1 37

Implementation of existing algorithms:

All-Pairs-Ed [2] is a q-gram-based algorithm. It generates
|s| − q + 1 q-grams for each string s, and selects the first
qτ + 1 grams as gram prefix according to the pre-defined
ordering on all grams. Those string pairs that do not share
any gram will be filtered and the survived string pairs will
be verified by the edit-distance calculation.

Ed-Join [19] improves All-Pairs-Ed with both location-based
and content-based mismatch filtering. Location-based fil-
tering decreases the number of grams in the prefix of each
string and content-based filtering reduces the amount of edit
distance verification.

Part-Enum [1] takes the q-gram set of a string as a feature
vector. For two strings, if their edit distance is within τ ,
then the hamming distance between their feature vectors is
smaller than qτ . They use this property for filtering. Part-
Enum includes two steps: 1) Partitioning. They divide every
feature vector into n1 partitions; 2) Enumeration. For each
partition, they further divide it into n2 sub-partitions and
generate several signatures. Finally, those string pairs that
share no signatures will be filtered.

For All-Pairs-Ed and Ed-Join, we downloaded their binary
codes from “Similarity Joins” project site6. For Part-Enum,
we modified the implementation in Flamingo Project7 to
support string similarity joins with edit-distance constrains.

G.2 Comparison of Numbers of Maintained
Active Nodes

Table 5: Maximal number of active nodes on AOL
τ Trie-Search,Trie-Traverse Trie-Dynamic Trie-PathStack

1 2444 42346799 2172

2 31374 230511829 18477

3 257896 2444928000 201825

Table 5 illustrates the maximal number of active nodes
that four algorithms need to store. We can see that Trie-
Dynamic keeps a rather large number of active nodes, since
it needs to maintain the active-node sets of all trie nodes.
For the other algorithms, the maximal number of active-
node sets is the same as the maximal depth of trie leaf
nodes. The number of active nodes for Trie-PathStack
is smaller than that of Trie-Search and Trie-Traverse,
since Trie-PathStack utilizes the symmetry property of
two active nodes.
4http://www.informatik.uni-trier.de/∼ley/db
5http://www.gregsadetsky.com/aol-data/
6http://www.cse.unsw.edu.au/∼weiw/project/simjoin.html
7http://flamingo.ics.uci.edu/

1229

0.5

1

1.5

2

2.5

 5 10 15 20 25 30

of

 S
tr

in
gs

(*
10

4)

String Length

1

2

3

4

5

6

7

8

 5 10 15 20 25 30 35 40 45

of

 S
tr

in
gs

(*
10

4)

String Length

1

2

3

4

5

 0 100 200 300 400 500

of

 S
tr

in
gs

(*
10

4)

String Length

(a) English Dict (b) DBLP Author (c) AOL Query Log

Figure 18: String length distribution

1

101

102

103

5+1 6+1 7+1 8+1 9+1

T
im

e
(s

ec
on

ds
)

of strings (*100K)

Incremental Trie-Join
Trie-PathStack

1

101

102

103

104

5+1 6+1 7+1 8+1 9+1

T
im

e
(s

ec
on

ds
)

of strings (*100K)

Incremental Trie-Join
Trie-PathStack

(a) τ = 2 (b) τ = 3
Figure 19: Evaluation of update on AOL Query Log
(e.g. 6+1 denotes |S| = 600K, |∆S| = 100K)

G.3 Evaluation of Update
In this section, we evaluate updates on AOL data set.

Initially, we selected 500K strings (S), and for each time, we
updated it by inserting 100K strings (∆S). We compared
the running time between incremental Trie-Join and Trie-
PathStack. We used speed-up to evaluate the benefit of our
method, which is the ratio between the running time of two
algorithms. Figure 19 shows the results. We can see that,
with the increase of data sets, the speed-up of incremental
Trie-Join against Trie-PathStack (from scratch) tends to
be larger. For example, in Figure 19(a), the speed-up for |S|
= 500K is 3.5 and that for |S| = 900K is 4.5.

G.4 Evaluation of Joining Two Data Sets
To evaluate the similarity join between two different data

sets, we selected 200K and 400K strings from DBLP Author
and tested the running time of joining them and the exper-
imental results are shown in Figure 20. Suppose we push
nodes in R into the stack and traverse the trie to find active
nodes in S . We can see that it is better to assign R as the
set with smaller size. This is because the smaller number of
nodes pushed into the stack, we need less time to traverse
the trie to find active nodes.

1

101

102

103

1 2 3

Edit-Distance Threshold

|R|=200K,|S|= 400K
|R|=400K,|S|= 200K

Figure 20: Evaluation of joining two different data
sets on DBLP Author

G.5 Scalability
We evaluated the scalability of Trie-PathStack and in-

cremental trie-join algorithm on AOL Query Log. Initially,

the data set was empty, and we inserted 100K strings at
each time. We compared the running time of the two algo-
rithms and Figure 21 shows the experimental results with
the increase of data sets. We observe that our incremental
algorithm scales better than Trie-PathStack. For exam-
ple, for 100K strings, both Trie-PathStack and incremen-
tal trie-join algorithm took 6.88s (τ = 2); For 1 million
strings, Trie-PathStack increased to 104.65s while incre-
mental trie-join algorithm only took 23s (τ = 2).

0.1

1

101

102

103

0+1 1+1 2+1 3+1 4+1 5+1 6+1 7+1 8+1 9+1

T
im

e
(s

ec
on

ds
)

of strings (*100K)

Incremental Trie-Join(τ=1)
Incremental Trie-Join(τ=2)
Incremental Trie-Join(τ=3)

0.1

1

101

102

103

0+1 1+1 2+1 3+1 4+1 5+1 6+1 7+1 8+1 9+1

T
im

e
(s

ec
on

ds
)

of strings (*100K)

Trie-PathStack(τ=1)
Trie-PathStack(τ=2)
Trie-PathStack(τ=3)

Figure 21: Scalability on AOL Query Log(e.g. 6+1
denotes |S| = 600K, |∆S| = 100K)

We also evaluated Bi-Trie-PathStack (Appendix D) for
the case that the active nodes cannot fit in main mem-
ory. We used the DBLP Author+Title dataset with average
string length 50 (Section 6.3). We set τ = 8. Bi-Trie-
PathStack took 29 MB for keeping the trie and 11 MB
for maintaining the active nodes (Bi-Trie-PathStack only
needs to maintain the active nodes of the trie nodes from the
root to a leaf node). To evaluate the I/O behavior, we set
the available main memory buffer was 10% of the maximum
memory. As it needs to read/write disk, the running time
of Bi-Trie-PathStack increased to 6.3 ∗ 104 second from
4 ∗ 104 second for in-memory setting.

H. RELATED WORK
There have been many studies on approximate string search [7,

12, 8, 3]. Schulz and Mihov [17] proposed an automaton-
based approach to address this problem. Sahinalp et al. [14]
proposed an index structure called “VP-tree” for answer-
ing NN queries in terms of an edit-distance function. Kim
et al. [10] proposed a novel technique called “n-Gram/2L”
to improve the space and time complexity for q-gram index
structures. Li et al. [12] proposed a new technique called
VGRAM to judiciously select high-quality grams with vari-
able lengths from a collection of strings for supporting ap-
proximate string queries efficiently. Li et al. [11] developed
several list-merging algorithms to improve search efficiency
by skipping elements on q-gram inverted lists.

1230

