
Efficient RkNN Retrieval with Arbitrary Non-Metric
Similarity Measures

Deepak P Prasad M Deshpande
IBM Research - India, Bangalore, INDIA

{deepak.s.p,prasdesh}@in.ibm.com

ABSTRACT
A RkNN query returns all objects whose nearest k neighbors
contain the query object. In this paper, we consider RkNN
query processing in the case where the distances between
attribute values are not necessarily metric. Dissimilarities
between objects could then be a monotonic aggregate of dis-
similarities between their values, such aggregation functions
being specified at query time. We outline real world cases
that motivate RkNN processing in such scenarios. We con-
sider the AL-Tree index and its applicability in RkNN query
processing. We develop an approach that exploits the group
level reasoning enabled by the AL-Tree in RkNN process-
ing. We evaluate our approach against a Naive approach
that performs sequential scans on contiguous data and an
improved block-based approach that we provide. We use
real-world datasets and synthetic data with varying char-
acteristics for our experiments. This extensive empirical
evaluation shows that our approach is better than existing
methods in terms of computational and disk access costs,
leading to significantly better response times.

1. INTRODUCTION
The Reverse Nearest Neighbor (RNN) search problem has

received a lot of attention from the database community for
its broad application range such as marketing, decision sup-
port and resource allocation [17]. Given a set of data objects
and a query object, an RNN query retrieves all objects that
have the query object as it’s nearest neighbor. Similarities
between objects are often computed as a monotonic aggre-
gate of similarities in multiple attributes considered [14, 13].
Reverse k-NN (RkNN) generalizes the RNN query to find
objects that have the query among its k nearest neighbors.

The goal of an RkNN query is to find the influence of a
query object in the whole dataset. The classical motivat-
ing example [2] is the decision support task of identifying
the optimal location for a new Pizza store. Given several
location choices, the strategy is to pick the location that
can attract the most number of customers. A RkNN query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore. Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 21508097/10/09...$ 10.00.

returns the customers who are likely to use the new store
because of its geographical proximity as against the exist-
ing stores. The result set of RkNN could also precisely be
that set of customers to whom the store owner may want to
send promotional offer mailings since they are most likely to
respond positively to it because of the same reason.

We arrived at the problem of having to identify the RkNN
nearest objects in the scenario of business continuity plan-
ning for a service delivery organization that manages hun-
dreds of thousands of servers. A core job role in such an
organization is that of system administrators (admins) who
manage servers, and solve problems that occur in the servers
that they manage. Over time, they gain expertise in solving
problems specific to certain software, operating systems and
specific types of hardware. The expertise of a system admin-
istrator would then be represented as a vector of such ac-
quired expertise (e.g., operating system, network type etc.);
servers would also then map to such a space with appro-
priate values for the various categories. Matching admins
to servers need not always be done on the basis of exact
match; to choose the admin for a server running Linux, we
may choose to prefer an AIX specialized admin over a Win-
dows admin (if they are similar on other aspects) since AIX
is known to be more similar to Linux than Windows. Simi-
larity measures such as these (among OSes, Vendors of prod-
ucts etc) are often only available from domain knowledge,
and hence usually do not adhere to metric properties. The
suitability of an admin to a server would then be assessed us-
ing an aggregation function of the similarities between them
based on the various attributes/categories considered. The
influence of an admin is then assessed based on their RkNN
set; the RkNN set gives the set of servers for whom the
system admin in question is among the top-k best (highest
scored) admins. Such scores are critical to the business since
heavily skewed influence distribution among admins and at-
trition of highly influential admins are all causes of concern
due to obvious reasons. A similar scenario arises in choos-
ing a set of retail customers to send promotional mailings
to, for a new offer on a particular product. Since the re-
tail company would want to choose customers who are most
likely to respond positively, the RkNN set is a good choice
since that gives the set of users for whom the product would
be in their top-k preferred products. The weights in such
a case could be certain specific aspects of the product that
the company may want to highlight. In cases where sets and
categorical values are involved in the similarity search pro-
cess, the similarity measures between attribute values may
be non-metric; we discuss this further in Section 1.1.

1243

RkNN query is more expensive than the k Nearest Neigh-
bors query [19] due to the asymmetry, i.e., an object being
the nearest neighbor of another doesn’t imply that the lat-
ter is the nearest neighbor of the former, since it may have
other objects closer to it. Thus, the naive solution for RkNN
is significantly costlier (i.e., quadratic in the dataset size).

1.1 Non-metric Spaces
Many attributes in various domains are categorical and

the similarities between the various values often come from
domain knowledge. For example, operating system is a typ-
ical server attribute. Similarities between operating systems
come from domain knowledge with the domain expert defin-
ing the similarities for each pair of operating systems. In
such cases, the measures cannot be expected to comply with
the metric requirement of triangle inequality (and hence, are
not even arbitrary metric [2]). We will see in Section 2 that
non-metric similarity measures are indispensible in many do-
mains of interest. Attributes where the similarity between
values is arbitrary do not have a total ordering among their
values. For example, there is no global ordering of the op-
erating systems available. However, upon presentation of a
query, the values of the attribute may be ordered based on
similarity to the query value for that attribute.

Multi-dimensional indexing structures such as R-tree are
applicable only when there is an ordering of values for each
attribute (Euclidean space). In the case of arbitrary simi-
larity measures, an ordering of values for each attribute can
be arrived at, when values are considered with respect to a
chosen value for the attribute (typically, that of the object
under consideration). However, since different objects may
take different values for attributes, it is not possible to create
a single index that can be used for different objects under
consideration; this renders such an approach impractical.
M-tree [11] avoids the need for a Euclidean distance, but it
still requires the triangle inequality property. In the absence
of triangle inequality property, the similarity between a pair
of objects cannot be reasoned about by knowledge about
their separate similarities to a third object. This makes met-
ric space indexing structures (e.g., R-Tree [16], kd-tree [6],
M-Tree [11] etc.) for similarity search inapplicable.

1.2 Our Contributions
In this paper, we address RkNN retrieval on databases

of objects composed of multiple attributes. We focus on
the setting where the dissimilarity between a pair of objects
is measured as a monotonic aggregate of the dissimilarities
between their attribute values [5, 14] where such dissimi-
larities could be non-metric. We allow for the monotonic
aggregation distance function to be specified at query time.

Without the metric assumption, the naive method for
RkNN requires scanning the database for each object to
check if there are k objects closer to it than the query (see
Appendix C). Objects are discarded as soon as k closer ob-
jects are found. This requires n partial/full scans and has
a worst case complexity of O(n2) where n is the number
of objects. We have developed an IO friendly block based
version of the naive, called BR, that has the same com-
plexity, but requires fewer scans (Appendix C). Our main
contribution is a new algorithm ALT-RkNN, based on the
AL-Tree [13], a recently proposed non-metric space index
structure. It works by pruning out sub-parts, leading to
better average case complexity and requiring at most two

scans of the database. We illustrate the efficiency of ALT-
RkNN empirically through an extensive analysis.

Section 2 discusses related work. Section 3 defines the
problem formally and Section 4 presents our AL-Tree based
algorithm. Our experimental evaluation comprises Section 5
and Section 6 presents the conclusions.

2. RELATED WORK
The need for non-metric similarity functions has been ar-

gued in [15], that says that the triangle inequality property
is too restrictive to model the (dis)similarities as perceived
by humans. [21] opines that the conceptual notion of sim-
ilarity is centered around various aspects, and that differ-
ent aspects may be selected for comparing different pairs of
objects. Such choices of aspects to compare pairs cannot
be pre-determined; this makes metric assumptions inappli-
cable. Further, non-metric similarity measures have been
found to be useful in similarity search in various kinds of
data ranging from images to object trajectories [27, 7]. [24]
points out specific cases in which each of the metric prop-
erties (viz., reflexivity, symmetry and triangle inequality)
may not be intuitively satisfied. Two flavors of the RkNN
problem have been studied. Monochromatic RkNN is the
case where the query object comes from the search space
(e.g., finding the influence of a user among a set of users)
whereas Bichromatic is the case where the query object and
the search space are composed of different (types of) sets of
objects. The technique described in this paper can be ap-
plied to both Monochromatic and Bichromatic RkNN prob-
lems. Arbitrary metric spaces and even more constrained
versions (e.g., Euclidean spaces) and their properties have
been utilized to efficiently perform RkNN search. Such tech-
niques work by exploiting metric space properties to affect
pruning and hence are inapplicable for our setting; we briefly
review approaches for metric space RkNN in Appendix A.

There has been previous work on RkNN under non-metric
similarities; however, they cannot handle dynamically spec-
ified distance functions. With the dissimilarity function be-
ing static and fully specified beforehand, dissimilarities be-
tween pairs of objects could be pre-computed and stored.
Thus, to decide on an object’s membership in RkNN, its suf-
ficient to compare its dissimilarity to the query against the
object’s kth nearest neighbor dissimilarity in the database.
This straightforward index has been found to be effective in
RkNN processing [8]; more so when compressed [30]. Static
functions disallow changing even the weights between at-
tributes in a weighted sum distance function. Moreover,
such approaches require large pre-computation time and stor-
age, both being proportional toD∗K whereD is the database
size and K is the upper bound on the query time k.

Another related work is the distance based hashing [4]
used for 1NN computation under non-metric similarity mea-
sures. However, the asymmetric relationship between kNN
and RkNN makes it hard to adapt techniques for kNN to
RkNN. A simple adaptation of a 1NN scheme described in [4]
would necessitate more hash functions and require scanning
each bucket to which at least one kNN candidate of each
RkNN candidate maps to. This would still lead to an ap-
proximate answer,the kNN method being approximate.

3. PROBLEM DEFINITION
We now outline the RkNN problem and the setting more

1244

formally. Let D be the set of objects in the database; each
object in D has m attributes. The dissimilarity function di
for attribute i is a function di : Ai × Ai → < where Ai is
the domain of the ith attribute. The dissimilarity (distance)
between two objects is defined as any monotone function of
the distance between the corresponding attribute values:

d(Q,O) = f(d1(v1(Q), v1(O)), . . . , dm(vm(Q), vm(O)))

where vi(O) denotes the value of the ith attribute of O and
f(.) is any monotone combining function. Most commonly,
such functions assume the form of a weighted sum:

d(Q,O,W) =
∑

i

wi ∗ di(vi(Q), vi(O))

where W = [w1, . . . , wm], wi > 0 is the weight vector. We
deal with this weighted sum form through this paper; how-
ever, the technique proposed is easily generalizable to any
generic monotonic combining function (Appendix D.1). If
each di is bounded in [0, 1] and Σiwi = 1.0, then the distance
between any two objects is also bounded in [0, 1].

Definition 1. RkNN Query Problem: Given a query
object Q, k and a weight vector W , find all objects from D
that have fewer than k objects closer (i.e., more similar) to
them than Q. This corresponds to finding the set S ⊆ D:

S = {s ∈ D : |{u : u 6= s ∧ d(u, s,W) < d(Q, s,W)}| < k}

The inner set identifies the set of objects that are closer to
s than the query object Q, when the distance is computed
using the weight vector W . If the set has a size lesser than
k, s is part of the RkNN set, S. The inner set need not
be explicitly computed in an RkNN processing engine; it
suffices to check whether there are at least k objects closer
to s than the query to assess membership in the RkNN set.

We use D[j] to refer to the jth object in D whereas the
value of its ith attribute is denoted by vi(D[j]). The do-
main of the ith attribute, ai, is denoted by Ai whereas the
distance function for that attribute is denoted by di(. . .).
The query object Q and the attribute weight vector W =
[w1, w2, . . . , wm] are the user inputs to the retrieval system.

4. RKNN RETRIEVAL USING AL-TREE
We now briefly describe the AL-Tree [13] and our ap-

proach that uses the AL-Tree for efficient RkNN retrieval.

4.1 The Attribute Level (AL) Tree
Consider the database D and a specific ordering of at-

tributes. Each object can now be represented as a sequence
of values, the ith value corresponding to the ith value in the
chosen attribute ordering. The AL-Tree for D using the cho-
sen ordering is then precisely the prefix tree1 for the ordered
database. In such a tree, all the leaf nodes are at the same
level, i.e., level m, and each level in the tree corresponds to
a specific attribute, according to the chosen ordering. The
tree is compressed by collapsing each chain in the tree to the
head of the chain; such compressed chains form leaf nodes
at levels lesser than m. Each leaf in the tree maintains in-
formation about the objects that it stands for, and also any
values for remaining attributes (in cases of leaf nodes rep-
resenting collapsed chains). Any object in the database is

1http://en.wikipedia.org/wiki/Trie

Id OS Name DB Name

1 MS Windows (MSW) Informix

2 MS Windows (MSW) Oracle

3 RedHat Linux (RHL) Oracle

4 SuSE Linux (SL) DB2

5 SuSE Linux (SL) DB2

Table 1: Sample dataset

uniquely associated with a leaf node, and all duplicate ob-
jects map to the same leaf node. For any node N , Obj(N)
is used to to denote the set of all its descendant objects.

Figure 1: A Compressed AL Tree.

d1 MSW RHL SL

MSW 0.0 0.8 1.0
RHL 0.8 0.0 0.1
SL 1.0 0.1 0.0

d2 Informix DB2 Oracle

Informix 0.0 0.5 0.9
DB2 0.5 0.0 0.5

Oracle 0.9 0.5 0.0

Figure 2: Distance Functions.

Example 1. Consider the dataset in Table 1 with the cho-
sen attribute ordering. For OS=‘RHL’, there is a single
value of DB (‘Oracle’) in the database. The corresponding
chain, hence, can be combined into a single node E in the
corresponding AL-Tree represented by ([RHL,Oracle], {3}).
Similarly, the chain with OS Name of value ‘SL’ and DB of
value ‘DB2’ can be compressed into node D. The tree with
both the chains compressed is shown in Figure 1. In this
example, we represent the distance functions d1(. . .) and
d2(. . .) in Figure 2. d1(. . .) is non-metric; d1(MSW,SL) =
1.0 is greater than the sum of the distances d1(MSQ,RHL) =
0.8 and d1(RHL,SL) = 0.1. Now, consider a query Q =
[MSW, Informix] and the weight vector [0.5, 0.5]. Figure 1
has the tree annotated with the distance so far for each
node, from the query. The distance of the node H (i.e.,
[MSW,Oracle]), from the query is 0.5 ∗ d1(MSW,MSW)
+ 0.5 ∗ d2(Oracle, Informix) i.e., 0.45. The distance of F
is 0.5 ∗ d1(MSW,MSW) = 0.0. We will use such distances
to effect pruning in our RkNN approach. Further, we use
the Dataset in Figure 1 and the dissimilarities in Figure 2
with the Query [MSW, Informix] and k = 1 as our running
example; the result set for this is {[MSW, Informix]}.

4.2 RkNN Retrieval using AL-Tree
Now, we describe our approach for RkNN retrieval using

the AL-Tree index. We start by describing conditions that
enable pruning of AL-Tree nodes while searching for RkNN
results; this serves to lead up to the proposed approach.

4.2.1 Pruning Conditions
Each node in the AL-Tree denotes a certain choice of val-

ues for a subset of attributes. For example, the node H in

1245

Figure 1 denotes the choice [OS = MSW,DB = Oracle].
Let a candidate prefix be denoted by C = [a1 = c1, a2 =
c2, . . . , aj = cj], j ≤ m. This node encloses all data objects
(denoted by Obj(C)) that take the value ci for each attribute
i, i ≤ j. Since each di(., .) would return a value in [0, 1] (and
assuming ∀x, di(x, x) = 0.0) the maximum distance among
any pair of objects among Obj(C) would be:

MaxD(C) = Σm
i=j+1wi

The distance of the query to each object in Obj(C) is at
least that based on the attribute values fixed at C.

MinD(C,Q) = Σj

i=1wi ∗ di(vi(Q), ci)

We now specify a Simple Pruning Condition (SPC):

SPC = MinD(C,Q) > MaxD(C) ∧ |Obj(C)| > k

The first check verifies that every object c in Obj(C) is closer
to all other objects in Obj(C) than the query. The second
check ensures that Obj(C) has at least k + 1 objects. It is
easy to see that if both the checks are satisfied, no object in
Obj(C) would be in RkNN since each of them has k objects
(in Obj(C)) closer to it than the query. In the process of ex-
ploring the AL-Tree for RkNN results, one can safely discard
nodes that satisfy this simple pruning condition. We present
the MinD(.), MaxD(.), and |Obj(.)| values of each node in
our running example (w.r.t Q = [MSW, Informix], k = 1)
in Figure 3; it may be seen that SPC is able to prune D.
SPC is a sufficient condition for pruning, but it is not nec-
ssary. Nodes not satisfying SPC are not guaranteed to be
in the RkNN result. For example, SPC is unable to prune
E & H regardless of them being not part of the result.

D E F G H

MaxD(.) 0.0 0.0 0.5 0.0 0.0

MinD(.,Q) 0.75 0.85 0.0 0.0 0.45

—Obj(.)— 2 1 2 1 1

Pruned Nodes

D

Figure 3: Illustration of SPC.

Now, let us consider how another prefix C′ = [a1 =
c′1, . . . , ap = c′p] could help in pruning C. We are interested
in now calculating the maximum distance between pairs of
points, of which one is from Obj(C) and the other is from
Obj(C′). Let this be denoted by MaxD(C,C′):

MaxD(C,C′) = Σ
min{j,p}
i=1 di(ci, c

′
i) + Σm

i=min{j,p}+1wi

MaxD(., .) as defined above has two components; the ac-
tual distance between the values chosen in the candidates
for those attributes for which both candidates have chosen
a value (i.e., attributes for which the shallower candidate
has chosen values), and the sum of the upper bounds of dis-
tances on the remaining attributes (which is simply the sum
of the weights for those attributes). It is easy to see that
MaxD(C,C′) is at least as much as MaxD(C). Now, the
condition where C′ can be used to prune C is:

MinD(C,Q) > MaxD(C,C′) ∧ |Obj(C) ∪Obj(C′)| > k

The first part checks that each object in Obj(C) has all other
objects in Obj(C) ∪ Obj(C′) closer to itself than the query
and the second part checks whether there are enough objects
in the considered set to ensure that Obj(C) is not part of
the RkNN result. When both conditions are satisifed, we say
that C′ effects pruning of C. When a node C′ satisfies the

first condition, i.e., MinD(C,Q) > MaxD(C,C′), we say
that it supports C for pruning; this is because it contributes
a set of objects that are closer to each object in Obj(C) than
the query. If such a supporter has enough descendants, it
could satisfy the second condition, and thus effect pruning.
In our example, E both supports and effects pruning of H
since MinD(H,Q) = 0.45 is greater than MaxD(H,E) =
0.4 and |Obj(E) ∪ Obj(H)| = 2 is greater than k. The fact
that MaxD(C,C′) is always greater than MaxD(C) implies
that a node C can have other nodes effecting its pruning only
if MinD(C,Q) > MaxD(C).

Multiple supporters could together effect pruning of C.
Consider the case where we want to check whether a sup-
porter set {C1, C2, . . . , Cf} would enable pruning of C. In-
tuitively, each one of these Cis would then have to satisfy
the condition MinD(C,Q) > MaxD(C,Ci) and all of these
should collectively build up a set of cardinality at least k+1.

MinD(C,Q) > max{MaxD(C,Ci)}∧|Obj(C)∪
⋃

i

Obj(Ci)| > k

We could incrementally build up such sets of supporters until
they have enough descendants across them to affect pruning
of C. Let us consider the node E in our example and the
set {D,H}; since MaxD(E,D) = 0.3 and MaxD(E,H) =
0.40, both D and H are supporters of E, MinD(E,Q) =
0.85 being greater. Also, the number of descendants across
E,D & H turns out to be 4, which obviously is higher
than k (i.e., 1). Thus, this set of supporters is able to
prune E whereas the SPC was not able to. We are able
to prune nodes E, F and H using this condition as illus-
trated in Figure 4. This condition obviously is more power-
ful than SPC. Our technique for RkNN retrieval using the
AL-Tree works by exploring the AL-Tree starting from the
root, maintaining support information of nodes and effect-
ing pruning whenever possible. Pruning merely enables us
to judge that none of the descendants of a candidate would
be in the RkNN. Pruned candidates and their children may
still be useful to prune other candidates.

C Set (S) MinD(C,Q) max{MaxD(C,s ∈ S)} |Obj(C) ∪

⋃
s

Obj(s)|

E {D,H} 0.85 0.4 4

D {E} 0.75 0.3 3

H {E} 0.45 0.4 2

Figure 4: Nodes Pruned using Supporters.

A simple algorithm easily follows from the outlined prun-
ing conditions; one that compares nodes pairwise and prunes
out all prunable candidates (nodes). The rest form the result
set. We illustrate such an algorithm in Appendix C. Such
an approach, however, has a significant disadvantage; since
RkNN result sets are typically small, most of such compar-
isons involve at least one node that has been pruned, and
mostly are between nodes that would get pruned eventually.
We present an improved approach that tries to remedy this
and also strives to be more disk friendly, in the next section.

4.2.2 ALT-RkNN Algorithm
We now present the improved RkNN Algorithm (Algo-

rithm 1) that exploits pruning to optimize on disk access
and computational costs. The approach works by perform-
ing a depth-first traversal of the AL-Tree, updating the stack
after each expansion to discard any candidates possible to

1246

Alg. 1 ALT-RkNN

1. C = [Root]
2. Root.spt = φ
3. while(¬(∀c∈CLeaf(c)))
4. c = pop(C)
5. CC = children(c)
6. ∀c′ ∈ CC, c′.spt = c.spt
7. ∀s ∈ {C ∪ CC}
8. ∀c′ ∈ CC, c′ 6= s
9. if(s ∈ C∧!supports(c, s) ∧ supports(c′, s))
10. s.spt+ = |Obj(c′)|
11. if(s ∈ C∧!supports(s, c) ∧ supports(s, c′))
12. c′.spt+ = |Obj(s)|
13. if(s ∈ CC ∧ supports(s, c′))
14. c′.spt+ = |Obj(s)|
15. C = {c|c ∈ {C ∪ CC} ∧ (c.spt+ |Obj(c)|) ≤ k}
16. C′ = [Root]
17. ∀s∈Cs.spt = 0
18. while(C′ 6= φ ∧ C 6= φ)
19. c′ = pop(C′)
20. if(!c′.isLeaf)
21. C′.push(children(c′)); continue;
22. ∀s ∈ C
23. if(MinD(s, Q) > MaxD(c′, s))
24. s.spt+ = |Obj(c′)|
25. if((|Obj(s)|+ s.spt) > k)
26. C.remove(s)
27. return C

be discarded using the additional information from that ex-
pansion. We maintain, along with each candidate, a count
of the number of descendants across candidates that support
the present candidate in a variable spt (we do not need to
know who the supporters are, since we are interested only
in determining whether the node would get pruned or not);
this excludes the descendants of itself. Pruned candidates
are useful since they could effect pruning of other yet-to-be-
seen candidates. Since we discard pruned candidates as and
when they are found to be pruned, we may have a superset
of the RkNN result set at the end of the depth-first traver-
sal. We start with the only candidate in the set C being the
Root node, which gets expanded to its children, CC, (D, E
and F in our running example) in line 5. Children inherit
their parents supporters and hence have their spt’s initial-
ized thus in line 6. This property is due to the way in which
MaxD(., .) is computed; MaxD(., .) between a pair of nodes
is an upper bound of MaxD(., .) where a node is replaced by
a child. Thus, any node that supports another would support
all of latter’s children. We use supports(A,B) as a short-
hand for the check whether A supports B. The expansion
could cause two kinds of changes; the new children (i.e.,
CC) could find supporters among those nodes that did not
support its parent (lines 11-12), whereas other candidates
could find supporters among the new children (lines 9-10).
Since we only maintain and inherit counts (and not sets of
supporters), we need to be careful to exclude incrementing
spt for supporters whose support is inherited through the
parent. Also, nodes in CC may support one another; such
adjustments are made in lines 13-14. In our example, D,
E & F have their spts initialized to 0 and eventually have
it updated to 1, 2 and 0 respectively through lines 13-14.

Line 15 discards pruned candidates from C (C is a stack,
its modeled as a set for notational convenience); in our ex-
ample, D and E would get excluded. The only candidate
left, i.e., F would then be expanded. However, none of its
children attain pruning conditions through lines 9-14 of the
next iteration. This is because, E despite being able to ef-
fect pruning of H has been discarded earlier. We are left
with a superset of RkNN results at the end of the traversal.

The set C is then refined to build the RkNN set by another
pass over the AL-tree. The supporters counts of all nodes in
C are reset (line 17). The second pass over the tree (starting
at line 18) also proceeds in depth-first fashion and examines
each leaf that is encountered against all candidates in C.
If a leaf is capable of supporting a candidate in C, the spt
of the latter is updated (line 24). Any possible pruning is
performed then (lines 25-26). Since this pass traverses all
leaves (it could stop earlier only if C becomes empty earlier),
C is left with only RkNN results at the end. In our example,
we start with G and H and are left with G at the end; H
gets pruned when E is encountered in the traversal.

The strategy works like a Filter-Refine approach with the
first phase filtering out pruned candidates; the second phase
refines the remaining to weed out non-RkNN objects.
Memory Usage: Similar to algorithms for skyline and top-
k query processing [13, 22], ALT-RkNN needs at least as
much memory as the result set. During the first phase, the
memory requirement is determined by the maximum size of
the candidate set across iterations. The depth-first traver-
sal avoids a lot of shallow internal nodes (which, being shal-
low, are less likely to get pruned easily) from being held
in memory; however, ALT-RkNN may end up maintaining
a lot of leaf nodes that could have been pruned using pre-
viously pruned candidates. Thus, the candidate set size is
strongly dependent on the effectiveness of the pruning con-
ditions. The algorithm can be easily adapted to work with a
constant upper bound on memory - we outline the approach
here. When the number of candidates exceeds the mem-
ory size, we spill some of the candidates to disk. Only leaf
candidates are spilled to disk since internal node candidates
need to be further expanded. Due to the depth first traver-
sal, the number of internal node candidates is bounded by
the depth of the tree, so they can be easily held in memory.
The candidates written out to disk are potential RkNN can-
didates which need to be re-examined in the second phase,
in addition to the non-spilled candidates. This is done in
multiple passes, by loading as many candidates in each pass
as can be held in memory. We show in Section 5 that mem-
ory requirements tend to be extremely small; the need to
spill candidates to disk, hence, may not arise in practice.
Bichromatic Queries: Bichromatic RkNN queries involve
data of two classes. The query object (e.g., a pizza store)
comes from one class, whereas the objects to be retrieved
are of a different class (e.g., customers). ALT-RkNN can be
easily adapted to handle such cases; we give a rough sketch
here. The AL-Tree is built on the common schema on the
union of the two sets of objects, whereas each internal node
maintains the list of descendants coming from the two classes
separately. The support counts are incremented using just
the number of descendants that are of the query type. Thus,
the query type objects serve to prune out retrieved type
objects and do not figure in the results themselves.
Extensions: In many scenarios, objects have numeric and
categorical attributes. Further, the distance could well be a

1247

generic monotonic aggregate as against a weighted sum. We
discuss handling of such cases in Appendix D.

5. EXPERIMENTS
We now describe our experimental study where we com-

pare our approach against the Naive and the block-wise BR
algorithms (description in Appendix B).

5.1 Experimental Setup
Our experiments were run on an IBM X Series with Win-

dows Server 2003 on a Pentium 3.4 GHz Processor with 2.0
GB RAM. We compare the algorithms based on the disk
access (IO) costs, computational cost and response time.

IO costs are measured in terms of page IOs. Random
page IO is costlier than sequential page IO; we set the cost
ratio to 10 [22]. The aggregate IO cost is then the ratio-
based weighted sum of the IO costs. The available memory
can be used as a LRU cache to reduce IOs since repetetive
requests for the same page could be served from the cache.
We assume that the memory available is 5% of the dataset
size for our experiments. An analysis of IO performance
against varying ratios and varying memory in Appendix F.

The computational time is the sole indicator of the cost
when the database can be held in memory. To isolate the
computational costs from the IO costs, we use a scenario
where all the objects and indexes are loaded in memory;
all costs become purely computational (as IO is eliminated)
then. For a disk based system, response time is the most
significant measure, being the measure visible to the user.
We simulate the disk based implementation assuming page
access costs to be 1ms and 10ms for sequential and random
access respectively for a page size of 32 KB. These estimates
are based on reported figures on popular platforms [10, 1].
The response time is the sum of the computational time
and the IO costs, measured in terms of time. All numbers
reported are result of averaging over 100 random queries.

We use depth-first packing of the AL-Tree on disk with
sibling ordering chosen randomly at index-creation. The at-
tributes in the AL-Tree are arranged in the increasing order
of the number of distinct values. Top-k query processing ben-
efits from such an ordering [13]; we observed the same for
RkNN processing also. The intuition is that lesser number
of distinct values leads to more objects in each sub-tree, en-
abling better group level reasoning that is used for pruning.

5.1.1 Datasets
We use two real-world datasets, ForestCover2 and Census-

Income (CI)3 having densities 0.0004 and 0.069 respectively,
and a synthetic dataset generated from a normal distribution
for our experiments. Details appear in Appendix E.

5.2 Performance on Real Data
In these experiments, we compare ALT-RkNN and BR

algorithms against the Naive approach by varying the value
of k from 1 to 20. We also analyze the memory requirement
of the ALT-RkNN algorithm with varying k.

Computational Costs
The computational costs of the various algorithms over the
CI and FC datasets are illustrated in Figure 5 and Figure 6

2
http://kdd.ics.uci.edu/databases/covertype/covertype.data.html

3
http://kdd.ics.uci.edu/databases/census-income/census-income.html

respectively; the Y-axis plots the time in ms against k on
the X-axis. The Naive as well as the BR approach are seen
to slow down linearly with increasing k (at different rates).
Interestingly, the ALT-RkNN approach is seen to be rela-
tively insensitive to varying k. This could partly be traced
back to the skewed distribution of the real datasets. Objects
are often clustered around certain attribute value combina-
tions, and hence, internal nodes in those dense subtrees tend
to have enough descendants to get pruned, or to be able to
effect the pruning of other candidates. Such value-space ef-
fects are not visible to algorithms that deal with objects
one at a time, and hence, BR and Naive are both unable
to harness the skewed distribution of the datasets to their
advantage. In summary, ALT-RkNN is seen to outperform
both BR and Naive by large margins in computational costs.

IO Costs
Now, we study the IO costs of the various algorithms. The
exhorbitant IO costs incurred by the Naive approach due
to processing one object at a time is significantly brought
down by employing a block based approach such as BR.
ALT-RkNN, on the other hand, performs just two sequential
scans over the AL-Tree index (sequential scans since the tree
is visited in the query-independent depth first packing order);
one for each pass. Figures 7 and 8 illustrate the effects
with the IO costs plotted in logarithmic scale on the Y-
axis against k on the X-axis. ALT-RkNN is seen to be an
order of magnitude better than BR and upto three orders of
magnitude better than Naive. Regardless of k, ALT-RkNN
performs only two sequential scans on the index, and hence
scales well with k in terms of IO costs. Some more analyses
on IO performance appear in Appendix F.

Response Time
ALT-RkNN outperforms both the other approaches in the
composite response time measure too. The charts for the CI
and FC datasets are in Figure 9 and Figure 10 respectively
(time in ms against k). For the CI dataset, the response time
of Naive was around 30 times that of BR and ALT-RkNN;
hence, it is not visible. ALT-RkNN performs increasingly
well with denser datasets since higher density leads to more
efficient pruning. It is hence, promising to note that ALT-
RkNN outperforms both BR and Naive by healthy margins
even on a very sparse dataset such as FC.

ALT-RkNN Memory Usage
Among the algorithms that we consider for our experiments,
ALT-RkNN has a varying memory requirement, parameter-
ized heavily by the effectiveness of the pruning conditions.
We do have a way to limit the memory usage to a pre-
specified upper bound (Refer Section 4.2.2); here, we illus-
trate that the memory requirement is small enough that we
practically do not have to resort to such techniques in real
scenarios. We empirically analyze the memory requirement
as a fraction of the dataset size. The behavior of this mea-
sure with varying k is plotted in Figure 11. The memory re-
quirement for the ALT-RkNN is seen to be extremely small,
almost 4 orders of magnitude smaller than the dataset size.
ALT-RkNN, thus, requires an extremely small amount of
memory to work with, in most practical scenarios.

5.3 Performance on Synthetic Normal Data
We study the performance of the various algorithms over

1248

Figure 5: Computation
(ms) vs. k (CI)

Figure 6: Computation
(ms) vs. k (FC)

Figure 7: Disk I/O cost
(ms) vs. k (CI)

Figure 8: Disk I/O cost
(ms) vs. k (FC)

Figure 9: Response
Time (ms) vs. k (CI)

Figure 10: Response
Time (ms) vs. k (FC)

Figure 11: ALT-RkNN
Memory Usage vs. k

Figure 12: Response
Time (ms) vs. #Attribs
(Normal Data)

normally distributed (non-uniform) synthetic data. Syn-
thetic data enables us to vary data size, number of values per
attribute etc; Appendix E describes the dataset in detail.

Varying Dataset Sizes
For this experiment, we vary the dataset size from 0.1 to
1.2 million keeping the number of attributes and number of
values per attribute constant at 5 and 50 respectively. This
varies the data density from 0.0003 to 0.003. The response
time plots for k = 1 and k = 5 are in Figures 13 and 14
respectively. The behavior of Naive is worth noting; at very
low densities, the sparsity forces the Naive approach to go
significantly down the list of data objects before objects close
enough can be found. This operation is done for each object;
causing huge IO costs leading to larger response times. ALT-
RkNN is seen to consistently outperform both Naive and BR
for both values of k. This suggests that ALT-RkNN is able
to leverage the skew in the distribution to its advantage.

Varying Number of Values per Attribute
We now keep the dataset size and number of attributes con-
stant at 1 million and 5 respectively, varying the number of
values per attribute from 45 to 70 in steps of 5; this varies the
density from 0.0005 to 0.005. The results for k = 1 (Refer
Figure 15) show that ALT-RkNN significantly outperforms
the others. At k = 5 (Refer Figure 16), the gap between
ALT-RkNN and the other approaches widen further.

Varying Number of Attributes
AL-Tree achieves best performance when the number of at-
tributes are lesser (the tree is then shallower) and the data is
dense (that leads to increasing number of objects having the
same value for an attribute). We evaluate the performance
of the various algorithms with varying number of attributes.
We keep the dataset size at 1 million and the number of val-
ues per attribute at 50, and vary the number of attributes
from 3 to 7 (decreasing density and increasing tree depth in
the process). The response time plots for k = 1 and k = 5
are presented in Figure 12. It is seen that ALT-RkNN out-

performs both Naive and BR at lesser number of attributes.
Naive and BR, being object based approaches, are relatively
insensitive to the number of attributes since the dataset size
remains constant. It is interesting that ALT-RkNN is still
competetive to the object based approaches even with 7 at-
tributes at a very low density of 1.28 ∗ 10−6.

5.4 Discussion
From our experiments, we find that ALT-RkNN computa-

tional and IO costs are insensitive to k, however, the mem-
ory usage does go up by small amounts with increasing k.
ALT-RkNN is orders of magnitude cheaper than other ap-
proaches in terms of IO costs, making it the very obvious
choice for disk based implementations. The performance of
ALT-RkNN is however seen to deteriorate gracefully with
decreasing densities (as is the case with spatial indexes like
R-Trees), but is still seen to be competetive to BR at even
densities of the order of 10−6. At very low densities, with
very few attribute values repeating in the dataset, object
based approaches become more appropriate.

6. CONCLUSIONS
We have proposed an approach, ALT-RkNN, for efficient

RkNN query processing with arbitrary non-metric similarity
measures. This approach exploits the various properties of
the AL-Tree value space index to perform efficient RkNN
search on the AL-Tree. We illustrate the effectiveness of our
approach over theNaive approach and the BR approach that
performs block-based accesses for RkNN processing through
a series of experiments on real and synthetic datasets. ALT-
RkNN is seen to outperform other approaches on real and
normal data by large margins across varying IO cost ratios,
memory sizes and densities. It is able to harness the skew in
the data distribution to its advantage and is seen to perform
better with increasing density and k. Thus, ALT-RkNN is
seen to be the algorithm of choice for most real scenarios.

The AL-Tree has been found to be effective for top-k [13],
skyline [22] and RkNN retrieval with arbitrary similarity
measures. We are studying its applicability for queries such

1249

Figure 13: Response
Time (ms) vs. Density
(k=1) (Varying data
size, Normal Data)

Figure 14: Response
Time (ms) vs. Density
(k=5) (Varying data
size, Normal Data)

Figure 15: Response
Time (ms) vs. Density
(k=1) (Varying #Val-
ues, Normal Data)

Figure 16: Response
Time (ms) vs. Density
(k=5) (Varying #Val-
ues, Normal Data)

as reverse skyline [12] and for finding a subset of interesting
results for skyline & RkNN queries. AL-Tree is specifically
designed with categorical attributes in mind; we are explor-
ing how bucketing of contiguous values could help in dealing
with numeric attributes, while retaining the bounds.

7. REFERENCES
[1] How fast is your disk?

http://www.linuxinsight.com/how fast is your disk.html,
January 2007.

[2] E. Achtert, C. Böhm, P. Kröger, P. Kunath,
A. Pryakhin, and M. Renz. Efficient reverse k-nearest
neighbor search in arbitrary metric spaces. In
SIGMOD Conference, pages 515–526, 2006.

[3] E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and
A. Züfle. Reverse k-nearest neighbor search in
dynamic and general metric databases. In EDBT,
pages 886–897, 2009.

[4] V. Athitsos, M. Potamias, P. Papapetrou, and
G. Kollios. Nearest neighbor retrieval using
distance-based hashing. In ICDE, 2008.

[5] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and
G. Weikum. Io-top-k: Index-access optimized top-k
query processing. In VLDB, pages 475–486, 2006.

[6] J. L. Bentley. Multidimensional binary search trees
used for associative searching. CACM, 1975.

[7] G.-H. Cha. Non-metric similarity ranking for image
retrieval. In DEXA, pages 853–862, 2006.

[8] H. Chen, R. Shi, K. Furuse, and N. Ohbo. Finding
rknn straightforwardly with large secondary storage.
In INGS, 2008.

[9] O. Cheong, A. Vigneron, and J. Yon. Reverse nearest
neighbor queries in fixed dimension. CoRR,
abs/0905.4441, 2009.

[10] W. Chung, Gray and Horst. Windows 2000 disk io
performance. Microsoft Research TR, June 2000.

[11] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
efficient access method for similarity search in metric
spaces. In VLDB, 1997.

[12] E. Dellis and B. Seeger. Efficient computation of
reverse skyline queries. In VLDB, pages 291–302, 2007.

[13] P. M. Deshpande, D. P, and K. Kummamuru. Efficient
online top-k retrieval with arbitrary similarity
measures. In EDBT, pages 356–367, 2008.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. J. Comput.
Syst. Sci., 66(4):614–656, 2003.

[15] K. Goh, B. Li, and E. Chang. Dyndex: A dynamic

and nonmetric space indexer. In ACM Intl.
Conference on Multimedia, 2002.

[16] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, 1984.

[17] F. Korn and S. Muthukrishnan. Influence sets based
on reverse nearest neighbor queries. In SIGMOD
Conference, pages 201–212, 2000.

[18] H.-P. Kriegel, P. Kröger, M. Renz, A. Züfle, and
A. Katzdobler. Reverse k-nearest neighbor search
based on aggregate point access methods. In SSDBM,
pages 444–460, 2009.

[19] K. C. K. Lee, B. Zheng, and W.-C. Lee. Ranked
reverse nearest neighbor search. IEEE TKDE,
20(7):894–910, 2008.

[20] J. Lin, D. Etter, and D. DeBarr. Exact and
approximate reverse nearest neighbor search for
multimedia data. In SDM, pages 656–667, 2008.

[21] G. Murphy and D. Medin. The role of theories in
conceptual coherence. In Psychological Review, 1985.

[22] D. P, P. M. Deshpande, D. Majumdar, and
R. Krishnapuram. Efficient skyline retrieval with
arbitrary similarity measures. In EDBT, 2009.

[23] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High
dimensional reverse nearest neighbor queries. In
CIKM, pages 91–98, 2003.

[24] T. Skopal and J. Lokoc. Nm-tree: Flexible
approximate similarity search in metric and
non-metric spaces. In DEXA, pages 312–325, 2008.

[25] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse
nearest neighbor queries for dynamic databases. In In
SIGMOD Workshop on DMKD, pages 44–53, 2000.

[26] Y. Tao, D. Papadias, and X. Lian. Reverse knn search
in arbitrary dimensionality. In VLDB, 2004.

[27] M. Vlachos, D. Gunopulos, and G. Kollios. Robust
similarity measures for mobile object trajectories. In
DEXA 2002, 2002.

[28] C. Xia, W. Hsu, and M.-L. Lee. Erknn: efficient
reverse k-nearest neighbors retrieval with local
knn-distance estimation. In CIKM, 2005.

[29] C. Yang and K.-I. Lin. An index structure for efficient
reverse nearest neighbor queries. In ICDE, 2001.

[30] J. L. Yanmin Luo, Canhong Lian and H. Chen.
Finding rknn by compressed straightforward index. In
ISKE, 2008.

[31] M. L. Yiu and N. Mamoulis. Reverse nearest
neighbors search in ad hoc subspaces. IEEE TKDE,
19(3):412–426, 2007.

1250

APPENDIX

A. RKNN SEARCH IN METRIC SPACES
The Reverse Nearest Neighbor query (RkNN query with

k=1) and its variants were introduced in [17]; this also pro-
poses the RNN-Tree that facilitates the processing of such
queries. The RNN-Tree, a variant of the R-Tree [16] makes
use of a static distance function to pre-compute the distance
to the nearest neighbor from each object in the database.
Vicinity circles of this radius are built around each data
point; for a query, the RkNN result is the set of all points
within whose vicinity circles the query point falls. The
RdNN [29] tree supports both NN and RkNN queries for
various values of k using a single index when k is specified
at index creation time. Such vicinity circles cannot be pre-
computed with dynamic distance functions; the setting that
we explore in this paper. Estimates of kNN distances [28]
have been shown to help querying with various values of k
in RkNN. The MRkNN-CoP-Tree[2] is the first approach for
RkNN search over general metric spaces where the value of
k is specified at query time (as opposed to index creation
time, as for the earlier approaches) uses estimates of kNN
distances at run-time to guide the search process. Metric
spaces enable reasoning about the distance between a pair
of objects using their distances to a third object using the
triangle inequality. Such reasoning can be done at an aggre-
gate level to prune multiple objects in a single operation [3].
Euclidean spaces, being a specific type of metric spaces,
have been exploited to affect other types of optimizations
in RkNN search [9, 18, 20]. Filter-Refine approaches com-
prise two phases where the filter phase is used to select a
subset of the objects from the database that are necessar-
ily a superset of the RkNN results (but may include false
hits); the refine phase identifies such false hits and removes
them. It has been shown that fast boolean range queries
in metric-space indexes [23] and certain properties of well-
studied R-Tree indexes [25] are good tools in the filter phase.
[26] employs a best-first search on the R-Tree index in the
filter phase. [31] presents a unifying filter refine framework
for RkNN search incorporating various filtering and verifica-
tion approaches for metric spaces. None of these techniques
can be applied in the case of non-metric spaces. Approaches
for approximate RkNN try to compromise on the accuracy
of the results, and may incur some false misses in a bid
to speed up the processing. An approach [23] restricts the
search space to the k′ nearest neighbors of the query, where
larger values of k′ reduce the chances of false misses.

B. SEQUENTIAL ALGORITHMS FOR RKNN
Sequential algorithms do not build any indexes and work

by scanning the database; hence, they are applicable for
non-metric dissimilarity functions. We first consider a naive
algorithm and then an improved version of it.

B.1 Naive Algorithm
A naive approach for RkNN retrieval would check every

object for neighbors that are closer to it than the query; if
there are fewer than k such neighbors, the object in question
would be part of the RkNN result set. As illustrated in
Algorithm 2, for each object D[i] under consideration, the
count of objects nearer than the query object and a flag are
initialized to 0 and true respectively in line 3. The count is
incremented as and when more objects are found to be closer

Alg. 2 Naive

1. R = φ
2. ∀i, 0 ≤ i < |D|
3. count = 0, flag = true
4. ∀j , j 6= i ∧ 0 ≤ j < |D|
5. if (d(D[i], D[j], W) < d(D[i], Q,W))
6. if (count++ = k){flag = false; break; }
7. if(flag) R = R ∪ {D[i]}
8. return R

to D[i] than the query object; this continues till the count
reaches k, at which point it can obviously be confirmed to
be not part of RkNN set (by resetting the flag in line 6). All
those objects that are found to have fewer than k neighbors
nearer to them than the query, are added to the result set
in line 7. This completes the process. The naive approach
may do as many complete scans of the database as there are
objects, and thus could incur high IO cost.

B.2 Blockwise with Refilling (BR)
The Naive algorithm is similar to doing a self join of the

database D with itself. The join condition between two ob-
jects O1 and O2 is that O2 is closer to O1 than the query
object Q. For each object O, the number of objects it joins
with is counted and if this number is less than k, O is part
of the result set. Similar to block based join algorithms, we
can have a block based version of the Naive algorithm as
shown in Algorithm 3. Rather than scanning the database
once for each object as in the Naive, it makes use of the
available memory to hold several candidates and processes
them in the same scan of the database. Assuming that there
is sufficient memory to hold t pages with r objects each, it
starts by scanning t− 1 pages (leaving one page free for do-
ing the sequential page-by-page scan of the database) and
creating a candidate set C in line 1. Then it scans the
database and compares the objects with the candidates in
memory in lines 7 to 10. If a candidate has more than k
objects closer to it than the query, it is removed from the
candidate set. The refilling step does further optimization
by reading in the next batch of r objects (i.e. the next page)
whenever r objects have been eliminated from the candidate
set. That way more objects are processed in the same scan of
the database. However, this implies that for each candidate,
we have started comparing that from different points in the
database, depending on when that candidate was loaded.
To handle this, we keep track of the number of objects each
candidate is compared against in line 5. If a candidate has
been compared with all objects in the database (|D| in num-
ber), it can be removed from the candidate set and added
to the result if its count is less than k.

C. SIMPLE RKNN ALGORITHM
In this section, we present a simple RkNN Algorithm (Al-

gorithm 4) to illustrate how pruning conditions outlined in
Section 4.2.1 could be used to search the AL-Tree for RkNN.
The algorithm starts off with just the root node in the can-
didate set and progresses by repeatedly picking a node from
the candidate set and expanding it to it’s children - which
are then added to the candidate set in lieu of the picked
node (line 4). This simple algorithm keeps track of what

1251

Alg. 3 Blockwise with Refilling (BR)

Config: t pages, each capable of holding r objects
1. Scan t pages and create candidate set C
2. While C is not empty

/* Scan the database */
3. For each object O in the DB
4. For each candidate c in C
5. c.compared++
6. if(c = O)continue
7. if O is closer to c than Q
8. c.count ++
9. if (c.count = k)
10. remove c from C
11. if (c.compared = |D|)
12. remove c from C
13. if (c.count < k) add c to R
14. if r candidates have been removed
15. scan next page and create new

candidates in C
16. return R

Alg. 4 Simple RkNN

1. CS = {Root}
2. while(¬(∀c∈CSLeaf(c)))
3. C = getNext(CS)
4. CS = CS ∪ children(C)
5. for all (c ∈ CS, c′ ∈ children(C))
6. compute MaxD(c, c′)
7. Identify pruned nodes and mark them in CS
8. Return all objects from non-pruned nodes in CS

nodes are pruned when each expansion is performed (lines
5-7). This process goes on until the candidate set contains
only leaf nodes; at this point, all nodes that have not yet
been pruned comprise the RkNN result set.

Line 5 of the algorithm is a very expensive process since
it involves computation of the MaxD(., .) for every candi-
date in CS (CS also includes pruned candidates). This is
counter-intuitive to our original goal of using the pruning
conditions to prune out candidates and using such pruning
to optimize on computational costs. Our ALT-RkNN ap-
proach (Section 4.2.2) makes use of a candidate maintenance
strategy optimizing various such costs.

D. EXTENSIONS TO ALT-R KNN.
In this section, we consider handling of generic monotonic

aggregate dissimilarity functions and objects where certain
attributes are numeric.

D.1 Generic Monotonic Aggregate Dissimilar-
ity Functions

The ALT-RkNN algorithm works by checking between
MaxD(., .) and MinD(., .) and affecting pruning whenever
possible. We will now show that such functions are well-
defined in the case of any monotonic aggregate function.
Consider two objects where their dissimilarity on the ith at-
tribute is denoted by di, 0.0 ≤ di ≤ 1.0. Let the dissimilarity
function be denoted by f(. . .). The following inequality then

holds, f(. . .) being a monotonic aggregate:

f(d1, . . . , dk, 0.0, 0.0, . . . , 0.0) ≤ f(d1, d2, . . . , dm)

≤ f(d1, . . . , dk, 1.0, 1.0, . . . , 1.0)

Thus, any of the dis being replaced by 0.0 would lead to
a lower bound of f(. . .) whereas any of them being replaced
by 1.0 would give an upper bound of the same (the condi-
tion above is a special case where only some trailing dis are
changed). Now, consider two candidate prefixes, X = [a1 =
x1, . . . , aj = xj], j ≤ m and Y = [a1 = y1, . . . , ak = yk] with
their dissimilarity on the ith attribute being denoted by di.
MaxD(., .) andMinD(., .), being upper and lower bounds of
pair-wise dissimilarities between objects (one from Obj(X)
and another from Obj(Y)), can then be defined as follows:

MaxD(X,Y) = f(d1, d2, . . . , dmin{j,k}, 1.0, . . . , 1.0)

MinD(X, Y) = f(d1, d2, . . . , dmin{j,k}, 0.0, . . . , 0.0)

MaxD(X), the upper bound of dissimilarity between ob-
jects inObj(X) would then be intuitively the same asMaxD(X,X).
The ALT-RkNN algorithm can trivially be adapted to such
monotonic aggregate dissimilarity functions by using the
MinD(., .) and MaxD(., .) bounds defined above instead of
their counterparts in Section 4, the rest remaining the same.

D.2 Handling Numeric Attributes
Spatial indexes such as R-trees [16] are found to be very ef-

fective for similarity queries on numeric attributes. In most
cases, objects tend to have some numeric attributes in ad-
dition to categorical ones. The dissimilarities between two
objects would then typically be the sum of their dissimi-
larities on the numeric attributes (as computed using some
metric dissimilarity measures such as L1 or L2 norm etc.)
and that on categorical attributes as computed using the
appropriate monotonic aggregate dissimilarity function. We
outline a simple approach to utilize R-Tree indexes within
the ALT-RkNN framework. This involves building an R-tree
on numeric attributes at each leaf node of the AL-Tree (built
on categorical attributes), each such tree indexing just the
objects mapping to its respective leaf node in the AL-Tree.
The ALT-RkNN algorithm could then progressively deepen
the search beyond the AL-Tree leaf node by utilizing the R-
Tree hierarchy; we now illustrate how the MinD(., .)s and
MaxD(., .)s could be computed for such a traversal. The
bounds between pairs of AL-Tree nodes are trivial; that be-
tween an AL-Tree node and an R-Tree node would then be
the bounds between the former and the AL-Tree leaf node
that the latter is associated with. Among R-Tree nodes,
the actual distances between their corresponding AL-Tree
leaves are known; the upper bound is then formed by adding
the maximum distance between any pair of corners of the
corresponding bounding rectangles (each R-Tree node has a
corresponding bounding rectangle) whereas the lower bound
is formed by adding the minimum distance between any two
virtual points, one from each bounding rectangle. The ALT-
RkNN adaptation is then obvious, given the upper and lower
bounds. An alternative approach would be to invert the or-
dering and build an AL-Tree at the leaf node of every R-Tree
node; bounds can then be similarly defined.

1252

E. DATASETS USED
This section details the various datasets used in empirical

evaluation, and the rationale behind the choice. The Forest-
Cover4 dataset (FC) contains data of the Forest Cover type
for 581012 cells, each of size 30X30 meters over regions in
the United States. The attributes chosen from the dataset
had 67, 551, 2, 700, 2, 7 and 2 distinct values leading to
a low data density of 0.04%5. The Census-Income dataset
(CI)6 contains census data for 199523 people for 1970, 1980
and 1990 from the Los Angeles area. We choose a subset of
attributes, namely Age, Education, Number of Minor Fam-
ily Members, Number of Weeks Worked and Number of Em-
ployees, from the dataset, based on their utility in measuring
similarities between people. The attributes chosen have 91,
17, 5,53 and 7 distinct values respectively leading to a high
density of 6.9%. Datasets of widely varying densities were
chosen since that would help to generalize the empirical ob-
servations better. The similarities between different values
of attributes are chosen randomly from the interval [0-1].
The ALT-RkNN algorithm makes use of group level reason-
ing that is enabled by the tree structure of the AL-Tree data
structure. Skewed distribution, as is often the case with real-
world datasets, poses a favorable case for the ALT-RkNN al-
gorithm since the value space compression is effectively used
to enable effective group-level reasoning and pruning. To
be more comprehensive, we used synthetic datasets as well.
Usage of synthetic data enables us to test for varying den-
sities as well as varying data sizes. We generated synthetic
data with uniform random and normal distributions. Uni-
form random nature of data distributes data evenly across
the various values of attributes, and is hence, an unfavorable
case for the ALT based approach. Our experiments illustrate
that the ALT-RkNN approach is still competetive even in
those adverse scenarios (Refer Appendix G). Normal distri-
bution7 is often considered to exhibit many characteristics
that are often associated with real data. Hence, we choose
to study the performance of the approaches when applied to
synthetic data that come from a normal distribution as well.
For all the synthetic datasets, we generate the similarities
between attribute values using a random number generator.

Synthetic Normal Data
Normal data is characterised by a probability distribution
concentrated around the middle values; this makes it tricky
for generating non-metric space data since there is no global
ordering of values in such spaces. However, to build a nor-
mal distribution, we assume an ordering of values for each
attribute, and generate data to ensure that the distribution
is normal and hence is heavily concentrated around the mid-
dle values in the chosen ordering. It may be noted that we
still generate similarities between different values randomly;
hence values around the middle of the chosen ordering are
not designed to have higher similarities to each other. We
use a uniform random number generator and rejection sam-
pling8 to generate normal data. We choose the variance to
be 3, and the mean to be the index of the middle attribute

4
http://kdd.ics.uci.edu/databases/covertype/covertype.data.html

5
Data density is computed as the ratio of the number of data objects to the

maximum number of distinct tuples in the space

6
http://kdd.ics.uci.edu/databases/census-income/census-income.html

7
http://en.wikipedia.org/wiki/Normal distribution

8
http://en.wikipedia.org/wiki/Rejection sampling

in the ordering chosen for data generation. The difference
in distribution of values in the normal data (as against uni-
form random data) is expected to significantly influence the
performance of various approaches.

F. IO PERFORMANCE ANALYSIS
In this section, we analyze the IO performance of the

Naive, BR and ALT-RkNN algorithms against varying cost
ratios and varying available memory sizes on the Forest-
Cover and Census-Income datasets (Refer Appendix E).

IO Performance with Varying Ratios
We now analyze the IO costs of the various techniques against
varying ratios between random and sequential access costs.
The ratio depends on the characterstics of the storage sys-
tem and vary a lot [22]; this makes an analysis of IO costs
with varying ratios interesting. We plot the IO costs against
varying ratios in Figure 19. This confirms that the margins
in terms of IO costs among the various approaches (as ob-
served earlier in Figure 7) hold up for a variety of ratios.
A similar behavior was observed for the FC dataset too; we
omit the chart due to space constraints.

IO Performance with Varying Memory Sizes
Cache sizes are critical to disk intensive algorithms that tend
to revisit disk blocks. The Naive approach may visit a page
upto |D| times, once for each object in the database. The
ALT-RkNN approach works by making upto two full passes
over the AL-Tree index; the first pass calculates the short-
list of candidates from which false positives are eliminated
in the second pass. Both these passes are at most as costly
as simple sequential scans over the index since the candi-
dates are processed in the query-agnostic depth first manner
that they are stored. However, this means that the ALT-
RkNN could visit each page upto twice. With more available
cache, the BR approach could hold more objects’ state in-
formation together, thus reducing the number of scans of
the database. Thus, all the approaches that we evaluate in
this paper are influenced by cache sizes, by small or large
amounts. As described in Section 5.1, the available memory
is used as a LRU cache for the Naive and ALT-RkNN algo-
rithms and for holding the candidates in the BR algorithm.
Now, we analyze the performance of these approaches over
varying memory sizes. We vary the memory size from 3%
of the dataset size to 15%. The variation in IO costs for
the CI dataset is shown in Figure 17. The Naive approach
shows a steep fall in IO costs with increasing cache sizes since
larger number of revisits are served by the cache. The BR
and ALT-RkNN approaches have significantly small IO costs
even in very low cache percentages, and are hence not much
affected with variations in cache sizes. The chart for the
larger and sparser FC dataset presented in Figure 18 shows
a slightly different behavior in that the savings achieved by
Naive with increasing cache sizes is not as conspicuous as
for the CI dataset. This is because the FC dataset, being
sparser, forces the Naive to go significantly deep down (thus
scanning a larger number of objects) for every object before
it can be eliminated. Thus, when it gets to the next object
under consideration, the first page would have already been
eliminated from the cache. This shows that the Naive is ben-
efitted by increasing cache sizes on dense datasets whereas
the BR and ALT-RkNN are relatively insensitive to it.

1253

Figure 17: IO cost (ms) vs.
Memory % (CI)

Figure 18: IO cost (ms) vs.
Memory % (FC)

Figure 19: Disk IO Cost vs. Ra-
tio (CI)

G. EXPERIMENTS ON UNIFORM RANDOM
DATA

As stated in Appendix E, uniform random datasets pose
an adverse scenario for the ALT-RkNN approach since even
distribution of data among values causes least value space
compression. Further, uniform random data is precisely the
setting that causes subtrees to have maximally diverse de-
scendants (with higher average distance among them); thus
reducing the chances of early attaininment of the pruning
conditions in Section 4.2.1. This is also an unfavorable case
for BR and Naive approaches since they have reduced prob-
abilities of finding very close neighbors (by virtue of the
maximally diverse dataset induced by the uniform random
distribution). This hypothetical setting of uniform random
data provides us a means to analyze how ALT-RkNN (and
BR) compare against the Naive approach on adverse sce-
narios. We study the behavior with varying data densities,
where density is first varied by varying data size, and then
by varying the number of values per attribute.

Varying Dataset Sizes
For this experiment, we vary the dataset size from 100000
to 1.2 million keeping the number of attributes and number
of values per attribute constant at 5 and 50 respectively.
This varies the data density from 0.0003 to 0.003. It is
expected that increasing dataset sizes would lead to higher
response times. The response time graphs for experiments
with k = 1 and with k = 5 are represented in Figures 22
and 23 respectively. The behavior of Naive is similar to that
in synthetic normal data; incurring very high IO costs at low
densities. The overall trend of increasing response times
with increasing data sizes is reflected in both the charts.
Such effects are applicable to the BR approach too; however,
it is less pronounced since BR decides on a large number of
objects during each such pass in contrast to Naive which
progresses by making decisions per object. At not-so-low
densities, the ALT-RkNN is very competetive to Naive (Ref.
Figure 22) whereas BR is seen to give better response times.
For k = 5, both ALT-RkNN and BR are quite comparable
to each other on response times; they outperform the Naive
approach approximately by a factor of 3.

Varying Number of Values Per Attribute
We now study the effects of density (at constant dataset
size) on the various algorithms. We keep the dataset size and
number of attributes constant at 1 million and 5 respectively
and vary the number of values per attribute from 45 to 70 in
steps of 5; this varies the data density from 0.0005 to 0.005.

Figure 20: Response
Time (ms) vs. Density
(k=1) (Varying #Val-
ues, Uniform Random
Data)

Figure 21: Response
Time (ms) vs. Density
(k=5) (Varying #Val-
ues, Uniform Random
Data)

The better value space compression achieved by the AL-Tree
when the number of values per attribute is low does not
help much since the query also comes from the same space
(this makes pruning less effective); this causes the query to
have an increasing number of objects that take same values
on various attributes. Approaches like BR and Naive that
work by comparing objects are not benefitted by reduced
number of values per attribute since they work by comparing
objects. The results for k = 1 and k = 5 have been plotted
in Figures 20 and 21 respectively. The response times do not
exhibit significant variation (much on expected lines) with
density since the dataset size is held constant at 1 million.
Similar to the results for varying dataset sizes, the Naive and
ALT-RkNN approaches are comparable in response times at
k = 1 whereas BR and ALT-RkNN outperform Naive by
close to a factor of 2 at k = 5.

Figure 22: Response
Time (ms) vs. Density
(k=1) (Varying data
size, Uniform Random
Data)

Figure 23: Response
Time (ms) vs. Density
(k=5) (Varying data
size, Uniform Random
Data)

1254

