
Achieving High Output Quality under Limited Resources
through Structure-based Spilling in XML Streams

Mingzhu Wei, Elke A. Rundensteiner
Worcester Polytechnic Institute, USA

samanwei|rundenst@cs.wpi.edu

Murali Mani
University of Michigan, Flint

mmani@umflint.edu

ABSTRACT
Because of high volumes and unpredictable arrival rates, stream
processing systems are not always able to keep up with input data
- resulting in buffer overflow and uncontrolled loss of data. To pro-
duce eventually complete results, load spilling, which pushes some
fractions of data to disks temporarily, is commonly employed in re-
lational stream engines. In this work, we now introduce “structure-
based spilling”, a spilling technique customized for XML streams
by considering the partial spillage of possibly complex XML ele-
ments. Such structure-based spilling brings new challenges. When
a path is spilled, multiple paths may be affected. We analyze pos-
sible spilling effects on the query paths and how to execute the
“reduced” query to produce partial results. To select the reduced
query that maximizes output quality, we develop three optimiza-
tion strategies, namely, OptR, OptPrune and ToX. We also exam-
ine the clean-up stage to guarantee that an entire result set is even-
tually generated by producing supplementary results. Our experi-
mental study demonstrates that our proposed solutions consistently
achieve higher quality results compared to the state-of-the-art tech-
niques.

1. INTRODUCTION
Motivation. XML stream systems have attracted researchers’ in-
terest recently [1–6] because of the wide range of potential appli-
cations such as publish/subscribe systems, supply chain manage-
ment, financial analysis and network intrusion detection. Differ-
ent from relational stream systems, XML stream processing expe-
riences new challenges: 1) the incoming data is entering the sys-
tem at the granularity of a continuous stream of tokens, instead of
self-contained tuples. This means the engine has to extract rele-
vant tokens to form XML elements. 2) We need to conduct dissec-
tion, restructuring, and assembly of complex nested XML elements
specified by query expressions, such as XQuery.

For most stream applications, immediate online results are re-
quired, yet network traffic may be unpredictable. When the arrival
rate is high, stream processing systems may not be able to keep up
with the input data - resulting in buffer overflow or uncontrolled
data loss. To produce eventually complete results, load spilling,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment,Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

which pushes some fractions of data to disks temporarily, is em-
ployed in relational stream engines [7–10]. In this work, we now in-
troduce “structure-based spilling”, a spilling technique customized
for XML streams by considering the partial spillage of complex
XML elements. In this context, we opt to produce partial results
during periods of distress - ideally focusing on the most essential
and time-sensitive information. The output of “delta” supplemen-
tary result structures is postponed to a later time, for instance, when
there is a lull in the input stream. To the best of our knowledge,
there is no prior work on exploring structure-based spilling. We
now motivate the practicability of structure-based spilling via con-
crete application scenarios below.

Example 1. In online auction environments, sellers may contin-
uously start new auctions. When customers search for “SLR cam-
eras”, all matching cameras and their product information should
be returned. Some key portions of the results, such as price and
customer ratings, will be displayed first, which aid customers in
making decisions. Many consumers tend to use a two-stage pro-
cess to reach their decisions [11] instead of inspecting complete
product information immediately. Consumers typically identify a
subset of the most promising alternatives based on the displayed
results. Other product attributes, such as sizes, and features, are
often evaluated later after consumers have identified their favorite
subsets. When system resources are limited, the query engine may
spill unimportant attributes to disk while producing partial results
containing key information such as price and customer ratings.

Example 2. In network intrusion detection systems, XML stream-
ing data may come from different nodes of the wide-area network.
We need to analyze the incoming packet information to detect po-
tential attacks. If some packets are dropped, the discarded pack-
ets may contain the information related to the attack. In this case,
dropping packets directly may lead to a later failure to detect and
understand the ins and outs of attacks. Instead, pushing unimpor-
tant fractions of data into disks temporarily when system resources
are limited can avoid such problem.

Example 3. Facebook users may edit their personal profiles and
send messages to their friends at any time. Status updates, com-
posed of possibly nested structures including updates from friends,
recent posts on the wall and news from the subscribed group, are
generated continuously. However, different users might be inter-
ested in specific primary updates. For instance, a college student
wants to make new friends. He wants to be notified when his
friends add new friends. A girl who likes watching pictures hopes
to get notified as soon as her friends update their albums. When
the system resources are limited, it may be favorable to delay the
output of unimportant updates and instead only report “favorite up-
dates” to the end users.

Let us look at a structural spilling example. Query Q1 and its

1267

Q1:
FOR $a in stream()/a
RETURN

<pairQ1>
$a//b, $a/d, $a/b/c

</pairQ1>

SJ $a=/a

Query Plan

3 4
$a/b/c

(b)

2
$a//b $a/d

1

Query Q1(a)

Figure 1: Query Q1 and Its Plan

plan are shown in Figure 1. Query Q1 returns three path expres-
sions,$a//b, $a/d and$a/b/c. The plan conducts structural joins
on the binding variable$a and these three path expressions. In this
work, we assume any path and any number of paths in the query can
be spilled to disk when the system cannot keep up with the arrival
rate. Assume the path/a//b is chosen to be spilled, i.e., all b ele-
ments on path/a//b are flushed to disk. Note that data correspond-
ing to paths 2 and 4 in the plan is actually affected (as side effect) by
such spilling. For each output tuple (e.g.,<pairQ1> in Q1), par-
tial result structures are produced since bothb andc elements are
missing. In this case, several savings arise. First, since complete
b elements are pushed to disk from the token stream, we do not
need to bother to extract “c” elements from the input at this time.
In other words, we bypass the processing of tokens from “<c>”
to “</c>”. Second, we no longer need to conduct structural joins
between$a and$a//b nor between$a and$a/b/c. Henceforth,
we refer to the user query after spilling has been applied asreduced
queryand the early output produced by it asreduced output.

Such structural-based spilling brings new challenges which do
not exist in relational streams. There are many options to spill
paths from a given query. Different reduced queries may vary in
their processing costs and output quality. Hence the correct choice
of appropriate reduced query raises many issues: 1) which addi-
tional paths in the query are affected by spilling a particular path;
2) how to estimate the cost of alternative reduced queries as well
as the partial result quality; and 3) which potential reduced query
should be chosen to obtain maximum output quality. We tackle
these challenges using a three-pronged strategy. One, we examine
how to execute reduced queries given varying spilling effects on the
query. Two, we provide metrics for measuring the quality and cost
of the alternative reduced queries. Three, we transform the reduced
query selection problem into an optimization problem, namely, the
design of the reduced query that maximizes output quality. Our
goal is to generate as many high-quality results as possible given
limited resources.

In addition, to eventually produce entire yet duplicate-free re-
sult set, we need to generate supplementary results correctly at a
later time when the system has sufficient computing resources. For
this, we design an output model to match supplementary “delta”
structures with partial result structures produced earlier. To gener-
ate supplementary results, we determine what extra data to flush to
disk to guarantee that the entire result set can be produced.
Contributions. Our contributions are summarized as below:

1. We propose a general framework to address structure-based
spilling which can be applied in any XML stream system.

2. We formulate our structure-based spilling problem into an
optimization problem, namely, to find the reduced query that
maximizes the output quality based on our structure-based
quality and cost model for XML streams.

3. We study the effect on different paths in the query for a par-
ticular spilled path and examine how to execute the reduced

query.

4. To solve the spilling problem, we develop a family of three
optimization strategies, OptR, OptPrune and ToX. OptR and
OptPrune are both guaranteed to identify an optimal reduced
query, with OptPrune exhibiting significantly less overhead
than OptR. ToX uses a heuristic-based approach, which is
much more efficient than OptR and OptPrune.

5. We propose an output quality model for evaluating the output
quality for different reduced queries, and a cost model for
evaluating the execution cost for different reduced queries.
This output quality model and the cost model are used by
our algorithms.

6. Our experimental results demonstrate that our strategies con-
sistently achieve higher quality results compared to the state-
of-the-art techniques.

2. OVERVIEW OF OUR APPROACH

Execution Engine Disk
Manager

Plan
Generator

Result
Monitoring

Register
Query

Plan
Optimizer

stream

GUI

Spill Candidate
Generation

Reduced
Query
Generation

Figure 2: Architecture for Spilling Framework

The architecture of our spilling framework is shown in Figure 2.
After the queries are registered with the query engine, an initial
plan is generated and optimized. The execution engine will in-
stantiate the query plan and start processing input streams. The
problem of deciding when the system needs to spill data is not a
question specific to XML stream. Any existing approach from the
literature [7, 8] could be employed here. We employ a memory
buffer to store input stream data. As soon as a token is processed,
we clean this token from the buffer. We assume a threshold on the
memory buffer that allows us to endure periodic spikes of the input.
When buffer occupancy exceeds the given threshold, we trigger the
spilling.

When spilling is triggered, first, the possible spilling candidates
are examined. We then derive the reduced queries for each spilling
candidate. The query optimizer runs the optimization algorithm to
pick the optimal reduced query. Finally the reduced query is instan-
tiated, in place of the previously active query, initiating the spilling
process. Later when the arrival speed becomes near zero, we invoke
the clean up processing to generate supplementary results based on
disk-resident data.

Recall that any path and any number of paths in the query can
be spilled. We describe the details of possible spilling candidates
in Section 4. Now let us illustrate how to pick the optimal spilling
candidate to produce maximum output quality. We require the op-
timal reduced query should be able to consume all the input, i.e.,
the processing speed of the optimal reduced query should be faster
than or equal to the arrival rate. For example, assume we have
two spilling candidates for Q1,/a//b and /a/b/c. The data is
shown in Figure 3(a). Figures 3(b) and (c) list output results after

1268

spilling /a//b and /a/b/c respectively. Assume the arrival rate is
500 topmost elements/sec (for Q1,a is the topmost element). As-
sume the cost to produce each<pairQ1> element when spilling
/a//b is 0.6 milliseconds. The cost of producing each<pairQ1>
when spilling/a/b/c is 1 millisecond. The processing rates when
spilling /a//b and/a/b/c are 1000/0.6 =1333 and 1000/1=1000
respectively. Both values are greater than the arrival rate. Therefore
spilling either/a//b or /a/b/c can both meet our goal of consum-
ing all the input. However, the output quality for each spilling path
is different. When spilling/a//b, since onlyd elements are present
in the results, the quality for each<pairQ1> is 1 (quality computa-
tion is detailed in Appendix D). The quality when spilling/a/b/c
is 3 sinceb (including partialb and completeb) and d elements
are returned. In this case, the output quality when spilling/a/b/c
within 1 second is 500*3 and the quality when spilling/a//b is
500*1. Therefore spilling path/a/b/c yields higher output qual-
ity than/a//b. We will describe the detailed algorithm to find an
optimal candidate in Section 6. This structural spilling framework
is general and can be applied in any XML stream engine. The de-
tailed explanation of why our spilling framework is general can be
found in Appendix B.

(a) Data (b) Result after spilling /a//b (c) Result after spilling /a/b/c

b1 b2 b3 d1

e1 e2

pairQ1

d1

pairQ1

b1 e3

a1

b2 d1

e1c1 e2c2 b3

…

Figure 3: Data and Output for Q1

To eventually produce the entire yet duplicate-free result set, we
have to generate supplementary results correctly. We propose a
complementary output model, which extends from the hole-filler
model in [12], to facilitate the matching of the supplementary re-
sults with prior generated output. In addition, we examine what ex-
tra data must be flushed to guarantee the generation of the correct
“delta” structure in supplementary results. The details of generat-
ing supplementary results can be found in Appendix E.

3. BACKGROUND
Queries Supported.We support a subset of XQuery in this work.
Basically, we allow (1) “for... where... return...” expressions (re-
ferred to as FWR) where the “return” clause can further contain
FWR expressions; and (2) conjunctive selection predicates where
each predicate is an operation between a variable and a constant.
The grammar of the supported XQueries can be found in Appendix A.
A large range of common XQueries can be rewritten into this sub-
set [13]. The rewriting rules for some forms of queries, such as
queries with “let” clause, or queries with FWR expressions nested
within “for” clause, can be found in Appendix A.

Algebraic Query Processing. We assume the queries have been
normalized using the techniques in [14]. Queries are then trans-
lated into a plan. Namely, for each binding variable in the “for”
clause, a structural join is conducted between the binding variable
and the paths in the “return” clause. Paths in the “return” clause
are translated into inputs to the structural join operator. The ex-
pressions in the “where” clause are mapped to select operators. Fi-
nally a tagging function is on top of the plan taking care of the
element construction. Here we focus primarily on the structural
join, the core part of the XQuery plan, while tagging is not further
discussed. For instance, for the plan in Figure 1, structural join is
conducted between$a and each of its branches.

Basic Processing Unit (BPU)refers to the smallest input data

unit based on which we can produce results independently. It can
be a document or a topmost element extracted by the query. When
we encounter the end of a BPU in the incoming data, we can pro-
duce the result structure. For example, for query Q1, the BPU is
ana element on path/a. When is encountered, we can pro-
duce<pairQ1> result structures. This provides an efficient way to
produce output as early as possible for XML streams [15]. In this
work, BPU is the topmost element in the query tree.

4. SPILL CANDIDATE SPACE
In this section we examine all possible spill candidates. To do

this, we represent the query using a query pattern tree. For example,
the query pattern tree for Q1 is given in Figure 5(a). Each node in
the query tree indicates an XPath expression. The semantics of
the supported XPath expression can be found in Appendix A. We
use single line edges to denote the parent-children relationship and
double line edges to denote the ancestor-descendant relationship.

We assume any node and any number of nodes in the query tree
can be spilled. Each of them forms a spill candidate. To analyze
the total number of potential spilling candidates, consider a com-
plete query pattern tree with depthd and fixed fan-outf . The total

number of nodes in the query tree|T | =
d−1
P

i=1

f i=fd
−1

f−1
. Since any

number of nodes in the query tree can be spilled, the total number
of potential spilling candidates isC0

|T |
+C1

|T |
+ ...+C

|T |

|T |
= 2|T |,

which is bounded byO(2fd

) .
An example query tree and its possible candidates are shown in

Figure 4. Query tree is shown on the left and its possible candi-
dates are shown on the right. Each node in the lattice represents
one candidate. The top candidate means spilling nothing (i.e., ini-
tial query). The bottom candidate indicates spilling everything (i.e.,
empty query). Each leveli lists all candidates spillingi nodes from
query tree. The candidate space scales quickly since it is exponen-
tial in the number of nodes in the query tree.

We now reduce the spill candidate space using the insight that
some candidates may result in the same spilling effects. Recall that
when we spill data corresponding to a pathp from the query tree, all
its descendants are also flushed to disk. This leads to the following
observation:

OBSERVATION 4.1. If a spill candidate includes two nodes which
satisfy the ancestor-descendant (or parent-child) relationship, it
has the same spilling effect as the candidate containing the ances-
tor (parent resp.) node.

∅∅∅∅

{a}

{b,c}

{a,b,c}

{a,b}

{b} {c}

{a,c}

a

b

c

(a) Query Tree (b) Possible Candidates

Figure 4: Query Tree and Its Spill Candidates

For instance, in Figure 4(b), the underlined candidate{b, c} has
the same spilling effect as{b}. The candidates with strike-through
have the same spilling effect as{a}. Clearly, we should avoid ex-
amining such candidates with the same spilling effects. Hence we
introduce a minimum non-redundant spill candidate space.

Minimum Candidate Space. We design an algorithm that gen-
erates the minimum set of all non-redundant spill candidates. The

1269

idea is to generate non-redundant candidates from the subtrees re-
cursively. For a tree of heighth, to generate all possible non-
redundant candidates, it picks zero or one candidate from the set of
candidates generated by each subtree of heighth−1 and composes
them to one new candidate. Or, it can also generate a new candi-
date which consists of a single root node. The detailed algorithm
is described in Appendix C. The total number of potential spilling
candidates generated using this algorithm isO(2fd). The mini-
mum spill candidate space for query Q1 is shown in Figure 5(b).
Its size is much smaller than that of the original candidate space
which is25 = 32.

(a) Query Tree for Q1

{c}

{//b,c}{ b,c}

{d} {//b}

{c,d} {//b,d}

{b,//b,c}{b,c,d} {//b,c,d}

{ b,//b,c,d}

{ a,b,//b,c,d}

∅∅∅∅

(b) Minimum Spill Candidate Space

b

a

d b

c

Figure 5: Minimum Candidate Space for Q1

5. GENERATE CORRECT REDUCED OUT-
PUT

5.1 Determine Spilling Effects
For each spill candidate, we need to derive its corresponding re-

duced query and generate the correct reduced output. As shown in
Section 1, when a path is spilled, multiple paths in the query may
be affected. To generate the reduced output correctly, we have to
determine the spilling effects on the paths in “for”, “where” and
“return” clauses for each spilling candidate. Each path in the query
corresponds to a set of subtrees in the document. For instance,/a/b
returns the subtrees rooted at nodesb whose parents are of typea.
Due to spilling, either the root or the non-root nodes in the subtree
can be missing. Here we define two categories of spilling effects
on paths in the query to distinguish between different missing loca-
tions of the subtrees:

• Root missing or unaffected. When the roots of subtrees for
a query path are missing, we call thisroot missing. Other-
wise, it isunaffected. For instance, for path/a//b, the roots
of some subtrees are missing when spilling/a/b. This is be-
cause path/a/b is contained by/a//b. In other words, they
satisfy the following relationship:

P
\

S//∗ 6= ∅ (1)

Here P indicates a path in the query andS indicates the
spilled path.

• Subpart missing or unaffected. When non-root nodes in
the subtrees corresponding to a path in the query are miss-
ing, we call itsubpart missing. Otherwise, it is unaffected.
For instance,/a/b is subpart missing when spilling/a/b/c
becausec nodes in the subtrees are missing due to spilling.
The query paths which are subpart missing satisfy the fol-
lowing relationship:

P/ ∗ // ∗
\

S//∗ 6= ∅ (2)

To determine root missing and subpart missing, we use the ap-
proach in [16] which constructs the product automaton ofP and
S. The complexity of this approach is O(|P|* |S|). Since these two

categories are orthogonal, there are 2*2=4 combinations. They are:

• Root missing and subpart missing(SRAM). E.g., when spilling
/a//b, /a/b is SRAM because both root and subpart are missing.

• Root unaffected and subpart missing(SAM). E.g., /a/b is
SAM when spilling/a/b/c sincec nodes in subtrees are missing.

• Root missing and subpart unaffected(RAM). This is not possi-
ble. Because we assume when a path is spilled, all its descendants
are also spilled.

• Root unaffected and subpart unaffected(UA). In this case, both
root and subpart are unaffected.

5.2 Reduced Query Execution
We now describe how to execute a reduced query based on the

knowledge of spilling effects. The reduced query results are output
as long as the result is correct, even if the result structures are par-
tial. In other words, the reduced query execution should satisfy the
maximal output property [17]. Therefore we propose the follow-
ing policies for reduced query execution so that we can produce as
much correct output as possible.

• Affected path in “for” clause . When the binding variable is
SRAM, the number of bindings may be reduced. In this case
we can still produce output as long as the binding variable
does not return empty. When the binding variable is subpart
missing (SAM), although a subpart of the binding variable
is missing, it does not affect the number of iterations of the
“loop counter”. Therefore SAM on the “for” path does not
affect result generation.

EXAMPLE 5.1. Figure 6(a) shows the case when the bind-
ing variable is SAM. In Figure 6(a), the spilled path is/a/b.
The binding variable$a is SAM due to spilling/a/b. The
iterations of “for” loop are unaffected.

(a) Spill /a/b

SJ $a=/a

3 4
$a/b/c$a//b $a/d

1

SR UA SR

Disk

S

(b) Spill /a/d

SJ $a=/a

3 4
$a/b/c

2
$a//b $a/d

1

UA SR UA

Disk

S

2

USAM UA SRAMS SR

Figure 6: Plan for Q1 with Spilling Effects

• Affected path in “return” clause . The structural join is
conducted between a binding variableV and all its branches.
Based on query semantics, the structural join between a bind-
ing variableV and one branchB(i) is independent from the
structural join betweenV and other branches. Therefore a
“return” path being affected by spilling does not block the
output of other “return” paths in the same FWR block.

EXAMPLE 5.2. Figure 6(a) shows the case that the re-
turned paths$a//b and$a/b/c are both SRAM due to spilling
/a/b. For data in Figure 3(a), onlyb3 andd1 are present in
the < pairQ1 > results. In Figure 6(b),/a/d is spilled.
Only $a//b and$a/b/c produce results. In both cases, re-
turned pairQ1 elements are partial since they are not com-
posed of all the returned substructures.

• Affected path in “where” clause. When a “where” path
falls into SAM, if the missing subpart is not needed for the

1270

predicate evaluation, we do not block the predicate evalua-
tion. However, when the “where” path is SRAM, the predi-
cate evaluation cannot be conducted on all the elements. In
this case, we may not know whether the results should be out-
put or not. Therefore we treat affected SRAM on the “where”
paths as blocking. Whenever a “where” path is SRAM, the
output for its corresponding FWR and its inner FWR block
thus do not produce anything in our model.

Q2: FOR $a in stream()/a
WHERE $a/d=“55”
RETURN<pairQ2>

$a/d/f, $a/e, $a/b/c
</pairQ2>

Q3: FOR $a in stream()/a
RETURN <result>$a/c,

FOR $b in $a/b
WHERE $b/e =“6”
RETURN $b/f

</result>

SJ $a=/a

4
$a/b/c $a/d/f $a/e

1

UA S

Disk

S

3
$a/d

2 σ
UA

5
SR $b=$a/b

SJ $a=/a

5

$a/c

$b/f

1

UA

S

$b/e

2

σ SR

SJ
S

Disk

UA

4

3

(a) Spill /a/d/f (b) Spill /a/b/e

Figure 7: Reduced Query Plans for Q2 and Q3

EXA MPLE 5.3. Query Q2 has a predicate on$a/d. Fig-
ure 7(a) shows the reduced query plan when spilling/a/d/f .
“Where” path $a/d is SAM. In this case, the predicate eval-
uation is not affected and we can return partial results. Now
let us look at Q3 which has a predicate in the inner FWR
block. Figure 7(b) shows the reduced plan when spilling
/a/b/e. For the inner FWR block, since$b/e is SRAM, the
predicate evaluation cannot be conducted. Therefore the in-
ner FWR block cannot produce$b/f . However, since$a/c
in the outer FWR block is unaffected, we can produce$a/c
in the result.

6. CHOOSE THE OPTIMAL STRUCTURE
TO SPILL

6.1 Formulation of Optimization Problem
For each spill candidate, a reduced query is derived to produce

the reduced output. For each reduced query, we measure its unit
quality and unit processing cost. Unit quality for a reduced query
is defined as the quality gained by executing the reduced query on
a topmost element. Unit processing cost is the average time of pro-
cessing a topmost element. The detailed description of our qual-
ity and cost model can be found in Appendix D. Our goal is to
pick structures to spill so as to optimize the output quality. The
problem can be formulated as follows. Given the following in-
puts: 1. Data arrival rateλ in the number of topmost elements per
time unit; 2. Unit quality gained by executing each reduced query
{ν0, ν1, ..νn}; 3. Unit processing costs for each candidate reduced
query{C0, C1, ..Cn}. We aim to find a spill candidate whose cor-
responding reduced query satisfies the following two conditions:
(1) Consume all input elements in 1 time unit; and (2) Maximize
total output quality.

Given a spill candidate, we first derive its corresponding reduced
queryQi. We use1/Ci to calculate how many elements can be
processed when executingQi per time unit. Since the processed
data cannot exceed the incoming data, the total output quality is
calculated using the formula below:

νi ∗ min{λ, 1/Ci} (3)

6.2 Algorithms for Spill Optimization
Optimal Reduction(OptR). The first algorithm we propose, called
Optimal Reduction (OptR), employs an exhaustive approach. It
searches the entire candidate space and picks the candidate which
yields the highest output quality.

The procedure proceeds as follows: 1) Iterate over each spill
candidate in a top-down manner in the candidate lattice and derive
a reduced queryQi. 2) Then estimate the cost, unit quality as well
as total output quality ofQi. The candidate query that has the
highest output quality will be chosen as the reduced query at the
spilling phase.

Remember from Section 4 thatf is the fan-out andd is the depth
of the query pattern tree. Since it is an exhaustive approach, the
search complexity is equal to the size of the minimum candidate
space, which isO(2fd).

EXAMPLE 6.1. Assume the arrival rate is 20 topmost elements/s.
The unit cost and unit quality for the initial query are 0.1s and 6
respectively. The available CPU resources are 1 second. In this
case, the reduced query needs to process 20 topmost elements while
achieving the highest output quality. The unit processing cost and
unit quality for each candidate are shown in Figure 8. We pick spill
candidate{b, c} since its corresponding reduced query yields the
highest output quality, namely, (1/0.05)*2 =40.

∅∅∅∅

{c}

{//b,c}{ b,c}

{d} {//b}

{c,d} {//b,d}

{b,//b,c}{b,c,d} {//b,c,d}

{ b,//b,c,d}

{ a,b,//b,c,d}

[0.1,6]

[0.0625,4] [0.079,5] [0.0375,1]

[0.05,2] [0.0375,1] [0.016,0] [0.054,3]

[0.024,1] [0.02,1] [0.015,0]

[0.012,0]

[0.012,0]

Figure 8: Optimization Using OptR

Optimal Reduction with Pruning (OptPrune) . Optimal Reduc-
tion with Pruning (OptPrune) applies additional pruning to elimi-
nate suboptimal solutions. It explores the spill candidate space in
a top-down manner and removes less promising solutions based on
the observation below.

OBSERVATION 6.1. In the top-down candidate space traversal,
when we reach a candidatedi and find it is capable to consume all
input data, then the candidates below it (candidates which include
all paths indi) can all be pruned.

The reason is that if candidatedi can produceri result structures,
the candidates below it tend to spill more paths. The quality of each
result structure is not higher than that of candidatedi. However,
the number of output result structures may stay unchanged since all
input data is consumed. Therefore, the total quality of the candidate
belowdi is guaranteed not to be higher than that ofdi.

EXAMPLE 6.2. In Figure 9(a), candidate{b, c} can consume
all input. In this case, we can prune candidates below it,{b, c, d},
{b, //b, c} and{b, //b, c, d} directly. Similarly, candidates below
{//b} and{c, d} can be removed.

To estimate the search complexity, since the worse case for Opt-
Prune is checking every candidate without pruning anything, there-

1271

(a)Optimization Using OptPrune

{c}

{//b,c}{b,c}

{d} {//b}

{c,d} {//b,d}

{b,//b,c}{b,c,d} {//b,c,d}

[0.0625,4] [0.079,5] [0.0375,1]

[0.05,2] [0.0375,1]

∅∅∅∅
[0.1,6]

…

{c}

{//b,c}{b,c}

{d} {//b}

{c,d} {//b,d}

[0.0625,4] [0.079,5] [0.0375,1]

∅∅∅∅
[0.1,6]

…

(b)Optimization Using ToX

Figure 9: OptPrune and ToX Example

fore the worst case for OptPrune isO(2fd). However, our ex-
perimental results will show that the actually complexity is much
smaller thanO(2fd).
Top-down Expansion Heuristic (ToX). We now present a Top-
down eXpansion heuristic (ToX), which has much more efficient
running time compared to OptR and OptPrune. ToX starts from
simple spill candidates and stops at the first candidate which is able
to consume all the input.
ToX proceeds as follows:
Step 1.Check candidates which spill one leaf node (candidates on
the top level of the lattice). If we find a candidate which is able to
consume all input and achieve highest total output quality among
candidates considered so far, stop. Otherwise go to step 2.
Step 2.Pick the candidate which has the highest quality/cost ratio
on this level and move to candidates connecting it one level lower.
Step 3.If one of the new candidates can consume all the input and
achieve the highest total output quality among candidates consid-
ered so far, stop. Otherwise go back to step 2.

The complexity of ToX isO(f2d) which is much smaller than
that of OptR and OptPrune.

EXAMPLE 6.3. In Figure 9(b), we first check the candidates
which only spill one node. We find{//b} can consume all input.
We consider{//b} optimal and stop. The total output quality is
min{20, 1/0.0375}*1 = 20.

7. EXPERIMENTAL RESULTS
In this section, we conduct a comparative study of the three opti-

mization algorithms OptR, OptPrune and ToX. In addition, we also
employ an algorithm, calledRandom, which iteratively selects one
among all possibly substructures randomly until enough substruc-
tures are spilled so that the input load can be handled by the corre-
sponding reduced query. The experimental results demonstrate that
our proposed solutions consistently achieve higher quality com-
pared to the Random approach. The experiments are divided into
three categories:

• The first set of experiments compares the performance of our
proposed spilling strategies with Random approach in two
cases. One case is when the network is fast and reliable, i.e,
the input sources are never blocked. The other case is when
the network is unreliable.

• The second set of experiments tests the impact of different
selectivity and different query path sizes on the performance
of our approaches.

• The third set of experiments compares the overhead of dif-
ferent spilling approaches.

Experimental Setup. We have implemented our proposed ap-
proaches in an XML stream system called Raindrop [15]. The data
sets are generated using ToXgene [18]. All experiments are run on
a 2.8GHz Pentium processor with 512MB memory.

7.1 Comparison of Spilling Approaches

7.1.1 Reliable networks
A reliable network never incurs suspensions of data transmis-

sion. For achieving this, we set arrival interval between two top-
most elements to a fixed value. In this set of experiments, we set
arrival interval to 0.025s and 0.02s respectively. The arrival rates
under these two settings are higher than the processing speed. We
use Q1 as the running query. Spilling is invoked as soon as the
memory buffer threshold is reached.

To compare the performance of alternative approaches, we use a
new “fine-grained” quality metric to measure the quality of par-
tial outputs instead of using traditional throughput metric. The
reason is that throughput typically refers to the number of (com-
plete) output elements in XML produced. However, in this work
of producing partial structures, a traditional throughput metric is
not so meaningful. The detailed quality model can be found in Ap-
pendix D.

We study the output quality gained by taking different optimiza-
tion approaches. Figures 10(a) and 10(b) show the cumulative out-
put quality using four optimization strategies when the arrival inter-
val is 0.025s and 0.02s respectively. Observe that OptR, OptPrune
and ToX gain higher quality than Random after spilling starts. OptR
and OptPrune both gain higher quality than Random and ToX. This
is because OptR and OptPrune guarantee to find the optimal struc-
tures to spill.

Because the reliable network never incurs suspension of data
transmission, the clean up processing is invoked after all the data
has arrived (after time 5500). In the clean up phase, the supple-
mentary results are generated based on the disk-resident data. Fi-
nally all four spilling approaches produce the complete result set
and reach the same output quality.

When the arrival interval is 0.02s, the cumulative quality in-
creases slower than the case that the interval is 0.025s. This is
because when the arrival rate is increased, the reduced query may
need to spill more structures to consume all the input.

7.1.2 Unreliable networks
Having evaluated our spilling approaches in the absence of trans-

missions, we proceed to examine the performance for unreliable
networks. To simulate unreliable network, we generate arrival in-
tervals using Pareto distribution that is widely used in case of bursty
network [19]. Figure 10(c) shows the cumulative quality for four
approaches. Observe that all of them have step-like performance
due to switching between the spilling and clean up phase. The slope
of segments corresponding to the spilling phase for OptR and Opt-
Prune is larger than that of ToX and Random. This indicates that
output quality for OptR and OptPrune is increased faster than that
of ToX and Random.

7.2 Impact of Selectivity and Path Size
Next, we illustrate that the output quality is affected by the se-

lectivity distribution of the binding variable and each branch. We
run the query Q4 below:

Q4: FOR $o in stream(“test”)/list/o
RETURN $o/P1, $o/P2, $o/P3, $o/P4

We generate five test data sets which satisfy the following re-

1272

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 1000 2000 3000 4000 5000 6000 7000 8000

C
um

ul
at

iv
e

Q
ua

lit
y

Time (ms)

OptR
OptPrune

ToX
Random

(a) Reliable network, 0.025s

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 2000 4000 6000 8000 10000

C
um

ul
at

iv
e

Q
ua

lit
y

Time (ms)

OptR
OptPrune

ToX
Random

(b) Reliable network, 0.02s

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1000 2000 3000 4000 5000 6000

C
um

ul
at

iv
e

Q
ua

lit
y

Time (ms)

OptR
OptPrune

ToX
Random

(c) Unreliable network

Figure 10: Performance Comparison of Four Approaches

quirements: 1) all test data sets contain the same number of tokens;
and 2) the numbers of elements corresponding to each returned path
are equal; and 3) the element sizes corresponding to each returned
path are equal. Based on the cost model in Appendix D.2, the lo-
cating costs spent on locating each returned path are the same. The
join costs between the binding variable and each returned path are
the same too. In addition, the spilling costs when spilling each re-
turned path are also the same. For each data set, the selectivity
between the binding variable and its branches can be different. We
use five different sets of selectivity which differ in their standard
deviations. Figure 11 shows that the output quality is higher when
there is a bigger variance among selectivity for OptR and OptPrune.
This is because OptR and OptPrune tend to spill the return paths
with low selectivity which yield low output quality given the same
spilling and computation cost. We observe that the quality of the
reduced query achieved by the Random approach does not change
a lot because Random approach does not keep the returned paths
having large selectivity.

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5

A
vg

 Q
ua

lit
y(

/s
)

Standard Deviation of Selectivity

Random
ToX

OptR
OptPrune

Figure 11: Quality for Varying Selectivity

Wenow illustrate that the output quality is affected by the pattern
size. All testing data sets have the same number of elements and
selectivity for each returned paths. And all test data sets contain
the same number of tokens. Figure 12 shows that the output quality
changes with varying standard deviation of return path size. For the
Random approach, the output quality does not change a lot. How-
ever, for OptR and OptPrune, the output quality is much higher than
the quality achieved by Random approach when the standard devi-
ation of pattern size increases. This is because the reduced queries
with smaller returned path size have smaller spilling cost, resulting
in lower overall processing cost. In this case, OptR and OptPrune
would pick such reduced queries since they have relatively higher
quality/cost ratios and thus higher quality.

7.3 Overhead of Spilling Approaches
In this work, optimization is conducted in an online fashion to

assure continuous responsiveness of our system. Here we study

 0

 10

 20

 30

 40

 50

 60

0.82 2.31 2.94 3.92 5.1

A
vg

 Q
ua

lit
y(

/s
)

Standard Deviation of Path Size

Random
ToX

OptR
OptPrune

Figure 12: Quality for Varying Path Size

 0

 100

 200

 300

 400

 500

 600

 2 3 4 5 6 7

T
im

e(
m

s)

Query Tree Size

OptR
OptPrune

ToX
Random

Figure 13: Overhead of Four Approaches

the overhead of four spilling strategies, measured by the time spent
on choosing which structure to spill. We study the relationship
between the complexity of the query and the overhead of the opti-
mization methods. We use five queries which vary in the size of the
query trees. In Figure 13, when the queries become complex, the
overhead of ToX is much smaller than OptPrune and OptR since
it stops at the earliest candidate which consumes all input. We
observe that the overhead of OptPrune is much smaller than that
of OptR. This indicates that our pruning method is indeed effec-
tive at reducing the search cost. Given that both approaches can
achieve the highest quality, OptPrune is obviously a better option
than OptR. However, when the query becomes more complex, Opt-
Prune may not be a practical solution since its overhead is larger
than ToX and Random. In this case, we resolve to utilize our
lightweight ToX solution.

8. RELATED WORK
In relational streams, flush algorithms have been proposed to

maximize the output rate or to generate a subset of results as early
as possible [7–10]. We can apply their techniques on coarse-grained

1273

spilling in XML, which is spilling complete topmost elements to
disk. However, such coarse-grained spilling misses the novel XML-
specific opportunities for spilling. In this work, we instead focus on
the fine-grained XML-specific structural spilling approach.

[17] first proposes to produce approximate results for XQuery
when no input for some operators in the plan exists. However, they
do not address the case that substructures are missing from the in-
put. [20] addresses structural shedding problem in XML streams.
However, it only considers queries containing independent returned
paths. Also, since it is focusing on shedding, how to generate sup-
plementary results is not discussed.

[1–6] evaluate XQuery expressions over XML streaming data.
One approach [2, 5] combines automaton and algebra to process
XML stream data. E.g., Tukwila [5] and YFilter [2] model the
whole automaton processing as one mega operator while modeling
the rest data manipulation such as filtering and restructuring in al-
gebraic operators. [1, 3, 4, 6] use automata or automaton-like SAX
event handlers to process the whole query. As discussed in Ap-
pendix B, the only limitation of our structural spilling framework
is that the cost model measuring processing costs is related to the
specifics of the implementation of query processing. Therefore, we
can apply our spilling techniques to other XML stream systems as
long as we plug in their cost models.

9. CONCLUSIONS
We propose the first structure-based spilling strategy that ex-

ploits features specific to XML stream processing. Our structure-
based spilling framework is general and can be applied in any XML
stream system. We analyze the effect on different paths in query
for a particular spilled path. We design an output quality model
for evaluating the quality of partial returned structures. A comple-
mentary output model is proposed to match supplementary results
with reduced output. To solve the spilling problem, we develop
three strategies, OptR, OptPrune and ToX. The experimental results
demonstrate that our proposed solutions achieve higher quality re-
sults compared to state-of-the-art techniques.

10. REFERENCES
[1] C. Koch, S. Scherzinger, N. Scheweikardt and B. Stegmaier, “FluxQuery: An

Optimizing XQuery Processor for Streaming XML Data,” inInternational
Conference on Very Large Data Bases (VLDB), 2004, pp. 228–239.

[2] Y. Diao et al., “Query Processing for High-Volume XML Message Brokering,”
in International Conference on Very Large Data Bases (VLDB), 2003, pp.
261–272.

[3] A. Guptaet al., “Stream Processing of XPath Queries with Predicates,” inACM
SIGMOD, 2003, pp. 419–430.

[4] B. Ludascher,et al., “A Transducer-Based XML Query Processor,” in
International Conference on Very Large Data Bases (VLDB), 2002, pp.
227–238.

[5] Z. Ives,et al., “An XML Query Engine for Network-Bound Data,”VLDB
Journal.

[6] F. Penget al., “XPath Queries on Streaming Data,” inACM SIGMOD, 2003, pp.
431–442.

[7] T. Urhanet al., “Xjoin: A reactively-scheduled pipelined join operator,”IEEE
Data Engineering Bulletin, vol. 23, no. 2, pp. 27–33, 2000.

[8] M. Mokbel, et al., “Hash-merge join: A non-blocking join algorithm for
producing fast and early join results,” inProceedings of ICDE, 2004, p. 251.

[9] R. Lawrence, “Early hash join: a configurable algorithm for the efficient and
early production of join results,” inVLDB, 2005, pp. 841–852.

[10] W. H. Tok,et al., “A stratified approach to progressive approximate joins,” in
EDBT ’08: Proceedings of the 11th international conference on Extending
database technology. New York, NY, USA: ACM, 2008, pp. 582–593.

[11] G. Häublet al., “Consumer decision making in online shopping environments:
The effects of interactive decision aids,”Marketing Science, vol. 19, no. 1, pp.
4–21, 2000.

[12] L. Fegaras,et al., “Query processing of streamed xml data,” inCIKM, 2002, pp.
126 – 133.

[13] I. Manolescu,et al., “Answering XML Queries on Heterogeneous Data
Sources,” inProceedings of the 27th VLDB Conference, Edinburgh, Scotland,

2001, pp. 241–250.
[14] L. Chen, “Semantic caching for xml queries,” Ph.D. dissertation, Worcester

Polytechnic Institute, 2004.
[15] H. Su, J. Jian and E. A. Rundensteiner, “Raindrop: A Uniform and Layered

Algebraic Framework for XQueries on XML Streams,” inCIKM, 2003, pp.
279–286.

[16] M. F. Fernandez, D. Suciu, “Optimizing Regular Path Expressions Using Graph
Schemas,” inICDE, 1998, pp. 14–23.

[17] J. Shanmugasundaram,et al., “Architecting a network query engine for
producing partial results,” inWebDB, 2000, pp. 17–22.

[18] D. Barbosa, A. Mendelzon, and J. Keenleyside et al., “ToXgene: a
Template-Based Data Generator for XML,” inProceedings of WebDB, 2002,
pp. 49–54.

[19] M. E. Crovella,et al., “Heavy-tailed probability distributions in the world wide
web,” in In A Practical Guide To Heavy Tails, chapter 1. Chapman Hall,
1998, pp. 3–26.

[20] M. Wei, et al., “Utility-driven load shedding for xml stream processing,” in
WWW, 2008, pp. 855–864.

[21] N. Tatbul,et al., “Load shedding in a data stream manager,” inVLDB, 2003, pp.
309–320.

[22] B. Babcock,et al., “Load shedding techniques for data stream systems.” in
MPDS, 2003.

[23] S. Al-Khalifa, et al., “Structural joins: A primitive for efficient xml query
pattern matching,” inIEEE International Conference on Data Engineering
(ICDE), Feb 2002, p. 141.

[24] Y. Wu, J. M. Patel and H. V. Jagadish, “Structural Join Order Selection for
XML Query Optimization,” inICDE, 2003, pp. 443–454.

[25] M. Wei, et al., “Achieving high output utility under limited resources through
structure-based spilling in xml streams,” Worcester Polytechnic Institute, Tech.
Rep., 2009.

1274

APPENDIX

A. GRAMMAR OF SUPPORTED QUERIES
The grammar of the supported XQuery expressions is shown in

Figure 14. A large range of common XQueries can be rewritten into
this subset [13]. A query with “let” clauses can be rewritten into an
XQuery without “let” clauses (by Rule NR1 in [13]). A query with
FWR expressions nested within a “for” clause can also be rewritten
into our supported subset format (by RuleNR4 in [13]). The filter
expression in an XPath can be moved into the “where” clause.

CoreExpr ::= ForClause WhereClause? ReturnClause
| PathExpr

PathExpr ::= PathExpr “/”|“//” TagName|“∗”
| varName
| streamName

ForClause ::= “for” “$”varName “in” PathExpr
(“,” “$”varName “in” PathExpr)∗

WhereClause :: = “where” BooleanExpr
BooleanExpr ::= PathExpr CompareExpr Constant

| BooleanExpr and BooleanExpr
| PathExpr

CompareExpr ::=“ =′′|“! =′′|“ <′′|“ <=′′|“ >′′|“ >=′′

ReturnClause = “return” CoreExpr
|<tagName>CoreExpr (“,” CoreExpr)∗ </tagName>

Figure 14: Grammar of Supported XQuery Subset

B. GENERAL FRAMEWORK FOR STRUC-
TURAL SPILLING

The framework we propose to address the structural spilling prob-
lem in this work is general, meaning it could be applied to any
XML stream management system. Recall that to solve the struc-
tural spilling problem, we have to examine the possible spilling
candidates, derive the spilling effects, measure the quality as well
as cost of the reduced queries, and run the optimization algorithm
to choose the optimal reduced query. As discussed in Section 4,
the spill candidates are generated based on the query pattern tree,
which is directly derived from the query. For each spilling can-
didate, determining the spilling effects in the query is resolved by
deciding the data dependency relationship between the spilled path
and paths in the query. Hence determining spilling effects is related
to the query semantics. It is not related to the specifics of the imple-
mentation of query processing. The quality model in Appendix D
measures the output quality based on the query result. Again this
is solely based on the query semantics and thus general. Note that
our optimization algorithms to search the optimal reduced query
are cost-based approaches. Obviously, the execution cost measure-
ment for each spilling candidate in other stream engines may be
different from that of our system because of the specifics of query
processing. For this, we can plug in the cost model of other stream
engines. In this case, the optimality of our search algorithms can
still be guaranteed.

C. ALGORITHM GENERATING MINIMUM
SET OF
SPILLING CANDIDATES

The algorithm that generates the minimum set of all non-redundant
spill candidates is described below:

Algorithm 1 minCandidates
Input: Query TreeT
Output: candidate setS
void minCandidates(Node root)
if root is leaf then

return{root};
else

for each childCi do
Si = minCandidates(Ci);
Si = Si ∪ {∅};

end for
//Assume root has w children. Generate candidates.
S = S1 × S2... × Sw;
S = S ∪ {root};
returnS;

end if

D. METRICS FOR QUALITY AND COST
Our optimization goal is to select the optimal paths to spill to

maximize output quality. In this work we focus on maximizing
the quality of the reduced output. We now describe the metrics of
quality and cost for measuring the alternative reduced queries.

D.1 Output Quality Model
Previous studies on approximate query answering tend to focus

on the relational model, where the output quality is usually mea-
sured by the throughput or the cardinality [21, 22]. However, in
our work, since each output result may be partial, measuring the
throughput or cardinality of the output is no longer so meaningful.
Here we propose a “fine-grained” output quality model which aims
to measure the quality of partial XML output results. We measure
the quality of the reduced output based on the following factors:

1. Cardinality . Since a return structure may be composed of
nested substructures, some substructure may only return a
subset. So we incorporate the cardinality of each substruc-
ture into the output quality.

2. Shape. Returned substructures may not be of the full shape
when the corresponding paths in the query fall into SAM. To
differentiate such substructures from others, we now define a
shape indicatorto indicate how full each substructure is.

The shape indicator for a pathq in the query can be calculated as
Sq = Size of element after spilling

Size of element without spilling
(Here we assume the size

of an element is fixed).

When a path falls in SAM, its shape indicator is less than 1. In
this sense the quality is “punished ” because of returning incom-
plete substructures.

Recall that the topmost element is the smallest data unit which
can produce a result structure. We defineunit qualityas the quality
gained by executing the reduced query on a topmost element. We
measure unit quality using the formula below:

ν =
X

n

j
X

i=0

X

q∈B(i)

Nq ∗ Sq (4)

Heren indicates the number of return structures generated per
topmost element. Each returned structure is composed of j sub-
structures.q denotes the type of nodes matching branchB(i). Nq

andSq denote the cardinality and shape indicator ofq, respectively.

EXAMPLE D.1. We calculate the unit quality of Q1 for data in
Figure 3(a) (plan is shown in Figure 1). The quality of each sub-

1275

Path Quality

Spill /a/b Spill /a/b/c

$a//b 1*1 1*1+2*0.5

$a/d 1*1 1*1

$a/b/c 0 0

Figure 15: Quality for Q1

structure is shown in Figure 15. For each topmost elementa, a
result structure<pairQ1> is returned. In this example, only one
result structure is produced. Hencen=1. The result structure is
composed of three substructures,$a//b, $a/d and $a/b/c. This
indicatesj=3. When spilling path/a/b, d1 and b3 are returned.
The unit quality of the reduced query is 1+1=2. When spilling
/a/b/c, $a//b returns three elements,b1, b2 and b3. For b1 and
b2, their shape indicators are both equal to 0.5 since theirc chil-
dren are missing. So the output quality for$a//b is 1+2*0.0.5= 2.
The unit quality for Q1 is 1+2=3.

D.2 Cost Model
We now define a cost model for comparing alternative reduced

queries. We measure the cost as the average time of processing a
topmost element (we call it the unit processing cost). We divide
the processing cost into the following parts:Locating Cost(LC)
that measures the cost spent on retrieving data andJoin Cost(JC)
spent on structural joins. In addition, in the spilling stage, since we
need to flush data to disk, we call the cost spent on spilling data
Spilling Cost(SC). Since our goal is to optimize the quality of the
reduced query, we focus on the cost model of measuring runtime
cost savings for the reduced query.

Locating Cost. The locating cost indicates the cost spent on re-
trieving tokens. Automata are widely used for pattern retrieval over
XML streams [2, 4]. The relevant tokens are “recognized” by the
automata and then assembled into elements. The formed elements
are passed up to the algebra plan to perform structural join and
filtering. Let us use an example to illustrate the locating savings.
The automaton (the automaton is augmented with a stack to keep
track of the context of the tokens) for Q1 is shown in Figure 16 .
When the start tag matching path/a//b is encountered, the
automaton transitions to states4. Sinces4 is a destination state, it
will invoke a flag to henceforce buffer tokens until the end token of
b arrives. Similarly start tag<c> will lead the automaton to tran-
sit to states6. When spilling/a//b, we still need to transition to
states4, so that we can recognize the tokens to be flushed to disk.
However, the automaton does not need to transition to states5 nor
s6 since the data corresponding to/a/b/c will be “automatically”
flushed to disk due to spilling. In this case, the transition costs for
s5 ands6 are saved. Such locating cost savings arise due to the
subtree of/a/b/c being contained by subtree of/a/b. While the
detailed locating cost model is discussed in [20], we estimate the
locating cost savings using the formula below [20]:

X

q∈Api
nactive(q)Ctransit (5)

HerePi indicates the query paths whose subtrees are contained
by subtrees of spilled paths.Api denotes the set of states corre-
sponding toPi and its dependent states in the automaton.nactive(q)
denotes state invoking times andCtransit denotes the transition
cost. The notations are in Table 1.

SJ $a=/a

$a/b/c$a//b $a/d

1

a

s1 s2

s5 s6

s7

c

s3

b

d

*
s4λ

b

Figure 16: Locating Cost Savings When spilling/a//b

Notation Explanation
APi Set of states of patternPi and its dependent

states.
nactive(q) The number of times that stack top contains a

state q when a start tag arrives
Ctransit Cost of transition to states in automaton
NP Number of elements matchingP for a topmost

element
S1 Join Selectivity
MP Size ofP (number of tokens contained in each

element)
Cj Cost of comparing two elements
CI/O Cost of disk I/O
Cs Cost of stack operation

Table 1: Notations Used in Cost Model

Join Cost. Since we assume stream data arrives in order, the el-
ements for both join inputs are sorted. We can apply an efficient
structural join algorithm, such as Stack-Tree-Anc [23], since both
inputs are sorted. Using the cost model for this algorithm [24], we
estimate the cost of structural join using the formula as below :

2 ∗ NV NB(i)S1Cj + 2NV Cs (6)

HereNV andNB(i) indicate the number of binding variables
and branches per topmost element. Based on Equation 6, we can
easily calculate the structural join savings for the reduced query.

Spill Cost. Although join computations are saved due to spilling,
we now have to consider the additional costs associated with spilling.
As will be discussed in Appendix E, we may have to spill other
paths to enable future supplementary result generation. Let us use
SP to denote the set of paths to be spilled to disk. The spill cost
can then be calculated as follows:

X

p∈SP

NpMpCI/O (7)

Runtime Statistics Collection. We collect the statistics needed
for the costing using the estimation parameters described above.
We piggyback statistics gathering as part of query execution. For
instance, we attach counters to automaton states to calculateNP

andnactive(q). And we collectMP andS1 in algebra operators.
We then use these statistics to estimate the cost of reduced queries
using the formulas given above. Note that some cost parameters in
Table 1 such asCtransit, APi , Cj andCI/O are constants. We do

1276

not need to measure them during the query execution.

E. GENERATE SUPPLEMENTARY RESULTS
In this section, we first describe the complementary output model

we propose to utilize to match the supplementary “delta” structure
with partial reduced outputs produced earlier. Then we examine
what extra data must be flushed to guarantee the generation of sup-
plementary results.

E.1 Complementary Output Model
In the clean up stage, supplementary results are generated to

“complement” the reduced output produced earlier. So that to-
gether these two output “pieces” can be united logically to represent
the full content. Since partial result structures may be generated
for each output tuple, this requires us to design an output model
that can efficiently match the supplementary “delta” structure with
the reduced output produced earlier. Here we proposecomplemen-
tary output model, which extends from the hole-filler model [12].
The hole-filler model has been designed to organize out-of-order
data fragments when an XML document is split into multiple frag-
ments. Our idea is to explicitly mark a hole in the output element
with a unique identifier to indicate missing data. In the later cleanup
stage, we produce fillers to fill in these holes, which in our context
are supplementary results. The reduced outputs and supplementary
results for Q1 when spilling/a/b are shown in Figures 17(c) and
(d) respectively.

To distinguish and match efficiently between holes and fillers, we
define three types of IDs, namely, BPU ID (BID), Result Structure
ID (RID) and Path ID (PID). Only fillers and holes with the same
IDs can be matched. For instance, the first filler in Figure 17(d)
indicates the missingb1 andb2 for path$a//b (whose PID is 2) in
the<pairQ1> element for the first BPU (a element). The second
filler indicates the missingc1 andc2 for path$a/b/c (whose PID
is 4) for the first BPU.

<pairQ1>
<Hole: Bid="1" Rid =“1” Pid=“2“ / >
 ….
<d>d1</d>
<Hole: Bid="1" Rid =“1” Pid=“4” />
</pairQ1>

<pairQ1>
…
</pairQ1>

<Filler: Bid = “1” Rid =“1” Pid = “2”>
 b1
 b2

</ Filler >

<Filler :Bid = “1” Rid =“1” Pid = “4”>
<c> c1</c>
<c> c2 </c>
<//Filler >

(c) Reduced Output (d) Supplementary Output

b1 e3

a1

b2 d1

e1c1 e2c2 b3

(1,26)

(2, 9)

(3,5) (6,8)

(10, 17)

(11,13) (14,16)

(18, 20) (21, 25)

(22, 24)

…

(a) Plan for Q1 (b) Data

SJ $a=/a

3 4
$a/b/c

2
$a//b $a/d

1

Figure 17: Example for Output Model

E.2 Determine Extra Data to Spill for
Supplementary Query Execution

To produce eventually complete results set, we have to generate
supplementary results correctly. In this section, we determine what
extra data must be flushed to disk to guarantee the generation of
supplementary results. Our goal is to spill a minimum set of data

ID For Return ID For Return
1 SAM UA 7 UA UA
2 SAM SRAM 8 UA SRAM
3 SAM SAM 9 UA SAM
4 SRAM UA
5 SRAM SRAM
6 SRAM SAM

Table 2: Possible Combinations Between For Binding and Its
Branches

needed for supplementary query execution. The eventual result set
must be guaranteed to be both complete and duplicate-free.

Since structural join is the core component in the queries we con-
sider, we focus on how to spill extra data to reconstruct the struc-
tural join results correctly. Either the “for” path or the “return”
path can be of three types, namely, SRAM, SAM, or UA. There
are totally 3*3 =9 combinations between the binding variable and
branches. The possible combinations are listed in Table 2. Note
that if “where” path is SRAM, the output is blocked. Hence we
ignore this case.

Note when the binding variable is SAM, query execution is not
affected. Hence cases 1, 2 and 3 can be regarded to be the same as
cases 7, 8 and 9 respectively. Clearly, it is not necessary to consider
case 7 since complete results are produced in this case. Finally we
only need to consider cases 4-6, 8 and 9. We now list one typical
case below to show how to determine what extra data to flush to
disk and how to compute supplementary results. Similarly, we can
generate supplementary results for other cases. The details about
those cases can be found in [25].

Binding Variable is UA and Branch is SRAM. In this case,
multiple branches may fall into SRAM at the same time. However,
the output of the structural join ofV with branchB(i) is indepen-
dent from the output of the structural join betweenV and other
branches. The case that one branch operator falls into SRAM is
considered first and can be easily extended to the case that multiple
branches are SRAM. Assume that the binding variableV is UA and
one branchB(i) is SRAM. We use superscriptm andd to distin-
guish between data kept in memory and data on disk. We represent
the structural join results between the binding variableV andB(i)
using the following equation:

V ⊲⊳S B(i) = V ⊲⊳S (Bm(i) ∪ Bd(i))
= (V ⊲⊳S Bm(i)) ∪ (V ⊲⊳S Bd(i))

(8)

Obviously, the results ofV ⊲⊳S Bm(i) have already been pro-
duced by the reduced query execution. We only need to calculate
the supplementary resultsV ⊲⊳S Bd(i). Hence we have to recon-
struct the structural join betweenV andBd(i) and the extra data to
be spilled is the data corresponding to the binding variableV . We
use a subscript to indicate the time the data was spilled. Assume
that structuresV andB have been pushed k times to disk, meaning
the spilled data isV1, V2, ... Vk andBd

1 , Bd
2 , ... Bd

k respectively. As
we mentioned in Section 3, the query results generated based on a
basic processing unit are independent from others. We assume we
spill data in batch of one or more basic processing units. We thus
conclude thatVx does not need to join withBd

y if x is not equal toy
since they do not belong to the same basic processing unit. There-
fore the missing structural join results betweenV andB(i) at time
k can be calculated asVk ⊲⊳S Bd

k(i).
For instance, for the plan of Q1 in Figure 1, when path/a/b is

spilled, path$a//b is SRAM. The structural join between$a and

1277

$a//b can be calculated using Equation 8.

F. ACKNOWLEDGMENTS
This work has been partially supported by the National Science

Foundation under Grant No. NSF IIS-0414567.

1278

