
Database-support for Continuous Prediction
Queries over Streaming Data ∗

Mert Akdere
Brown University

Providence RI, USA

makdere@cs.brown.edu

Uǧur Çetintemel
Brown University

Providence RI, USA

ugur@cs.brown.edu

Eli Upfal
Brown University

Providence RI, USA

eli@cs.brown.edu

ABSTRACT
Prediction is emerging as an essential ingredient for real-time mon-
itoring, planning and decision support applications such as intru-
sion detection, e-commerce pricing and automated resource man-
agement. This paper presents a system that efficiently supports
continuous prediction queries (CPQs) over streaming data using
seamlessly-integrated probabilistic models. Specifically, we de-
scribe how to execute and optimize CPQs using discrete (Dynamic)
Bayesian Networks as the underlying predictive model. Our pri-
mary contribution is a novel cost-based optimization framework
that employs materialization, sharing, and model-specific optimiza-
tion techniques to enable highly-efficient point- and range-based
CPQ execution. Furthermore, we support efficient execution of
top-k and threshold-based high probability queries. We character-
ize the behavior of our system and demonstrate significant perfor-
mance gains using a prototype implementation operating on real-
world network intrusion data and deployed as part of a real-time
software-performance monitoring system.

1. INTRODUCTION
Traditional data management systems enable users to efficiently

query the past state of the world as is represented by the database.
Many modern applications require a streaming database system
that can deliver results with low latency, hence enabling the user
to query the present state of the world. Thus, we see a trend to-
wards shrinking the ”reality gap” to zero. But for some applica-
tions, even this is not good enough; there is often a desire to get out
in front of the present by querying the predicted (i.e., forecasted)
future state(s) of the database. In a similar manner, some appli-
cations may leverage predictions for missing or unknown database
values. Suchpredictiveapplications are increasingly deployed in
order to identify and exploit opportunities, or avert calamities in a
variety of IT or business monitoring, planning and decision-support
scenarios.

An important subclass of predictive applications involve real-
time processing. As a case in point, consider network intrusion
detection. We can observe various characteristics of a network
connection (such as the protocol used, duration, number of bytes

∗Thiswork has been supported by the National Science Foundation
under the grants IIS-0905553 and IIS-0448284.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment,Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

sent, etc.) in real time and predict, based on historical traffic pat-
terns accumulated a priori, whether the connection is likely to be
an attack, either because it exhibits a similar pattern as a previous
attack or it deviates from a typical connection pattern. In either
case, we would like to flag suspicious connections as early as pos-
sible to trigger quick preventative action to avoid or mitigate po-
tential damages (e.g., close the port and sandbox the corresponding
server thread). Such real-time predictive applications demand the
key ability to continually perform real-time predictions. Currently,
these applications are typically supported by application-level code
that uses the underlying database as a dumb data store. The broad
goal of our work is to push this key real-time predictive capability
to the database layer in an attempt to leverage existing data model-
ing, query execution and optimization frameworks while providing
generic, highly-efficient CPQ support. Most of this functionality,
which are available in DB systems (already debugged/optimized),
needs to be duplicated to perform similar optimizations when pre-
diction is done outside the DB engine.

To this end, this paper describes a system that efficiently supports
Continuous Prediction Queries (CPQs) over real-time data streams.
In particular, we describe how to execute and optimize CPQs on top
of probabilistic inference models, specifically the discrete Bayesian
Networks (BNs) [1, 4] and their variant Dynamic Bayesian Net-
works (DBNs) [16]. Of course, there is a large suite of predictive
models, including regression models and classifiers. Yet, among
these (D)BNs constitute an important class that is widely used in
practice. Their common use and that they can be naturally repre-
sented and used in the relational model make them a good candidate
for native DB support. BNs are not new; they have been extensively
studied in a variety of domains including AI, machine learning and
statistics [1, 4]. As such, our contribution is not to introduce a
new BN technique but to demonstrate how existing BN approaches
can benativelysupported by a database system to perform highly-
efficient CPQ over streaming data.

Previous work showed how BNs can be represented by a func-
tional relational model and predictive queries be supported using
extended relational operators [2, 8]. We build on these results and
describe how to create a rich plan space for CPQs and perform
cost-based optimization in this space. Our primary contribution
is a cost-based optimization framework that combines materializa-
tion, sharing and model-specific optimization techniques for CPQs
using BN-based predictive models.

In more detail, our contributions can be outlined as follows:
- CPQs using BNs: We use BNs to support CPQs without tem-
poral attributes (e.g., predict whether each incoming network con-
nection is an attack or not). BNs are graphical models that use
conditional independence information to compactly represent joint
distributions of variables. Given a BN on a set of variables, we have
a complete representation of the joint distribution, on which vari-
ous inference algorithms (e.g., variable elimination and junction
tree propagation [1, 4, 10, 22]) can be used to perform probabilistic1291

prediction. To provide real-time response, it is imperative to op-
eratein main memory. Since joint distributions can get extremely
large, even for relatively small BNs, we introduce a memory-aware
materializationtechnique in which entire distributions or their se-
lect portions can be materialized to leverage the available mem-
ory. To guide the materialization choices, we describe a cost model
with which computation and memory requirements of each candi-
date plan are estimated using simple statistics. We then propose a
Dynamic Programming (DP) algorithm to find the minimum cost
query plan that can be executed with the available memory.
- Temporal CPQs using DBNs: Dynamic BNs are a class of BNs
specialized for modeling time-varying variable sequences and can
compactly represent point- and range-based CPQs (e.g., predict the
CPU usage for the next 10 secs). Since DBNs can be represented
as constrained BNs, the optimization techniques we developed for
BNs are immediately applicable to DBNs. Moreover, supporting
range-based prediction queries over DBNs require a form of itera-
tive inference, which we speed up significantly using a novelshar-
ing and incremental evaluationtechnique.
- Integrated database-style and model-specific optimizations:
In addition, we introduce a number of (D)BN-specific optimization
techniques for queries computing high probability events and for
top-k queries predicting the most likely sequences of future events.
- CPQ Engine Prototype on a main-memory DBMS and eval-
uation using real-world data and applications: We prototyped
a CPQ system that implements a BN-based CPQ execution engine
and our cost-based optimization framework by modifying H2, an
open-source embedded DBMS [21]. We evaluate our system using
a real-world network intrusion data set and a software performance
monitoring system that we deployed on our local cluster.

In the rest of the paper, we first describe CPQs with examples
in §2.1 and CPQ execution in§2.2. Then, we present the dynamic
programming that guides our CPQ plan selection in§2.3. We dis-
cuss a collection of optimization extensions in§2.4. Experimental
results are in§3. The related work and conclusion are in§4 and
§5. The appendix contains background information on BNs and on
inference with BNs using database operations based on [2, 8].

2. CONTINUOUS PREDICTION QUERIES
OVER DATA STREAMS

2.1 Overview and Running Examples
We describe the CPQs and the overall functionality of our sys-

tem via two representative use cases: (i) a network intrusion de-
tection system (NIDS) adapted from [9], and (ii) a dynamic soft-
ware performance monitoring (DyMon) application [13, 14]. NIDS
is primarily used to illustrate the BN-based prediction techniques,
whereas DyMon is used to discuss the temporal CPQs supported
by DBNs.
The NIDS Application: In the 1999 KDD Intrusion Detection
Contest [9], each network connection is described with a set of 42
variables e.g., ’protocol type’ and ’number of failed logins’. Given
these 42 variables for each connection, we would like to predict
their types, represented with the additional variable ’accesstype’
beingone of ’normal’ or ’attack’.1

We use the BN given in Figure 1 for predicting the access type
for each connection. The given BN provides highly accurate pre-
diction results despite using only 6 of the given 42 variables. It
is essential to produce such simple networks with high accuracy
properties for efficient inference. We used a similar method to that
described in [3] for forming the BN structure. Structure and param-
eter learning for BNs are discussed in appendix§A.3.

The generic probabilistic inference query we would like to run

1The KDD99 contest also involves identifying the attack type for
bad connections, which we do not consider in this paper.

Figure 1: Network Intrusion Detection System BN. Variable A is
the access type and others are the observable variables. The
BN corresponds to the factorization: P (A, B, C, D, E, F, G) =

P (B)P (C|B)P (A|B, C)P (G|A, B)P (D|A)P (E|A)P (F |A, B, G).

on this network isP (access type|evidence), where evidence is
used to represent the values of the six observed variables. This is
a continuous query in the sense that every time a new connection
information is received, it produces a prediction.
The DyMon Application: The Dynamic Software Performance
Monitoring (DyMon) application attaches profiling agents to local
and remote Java processes and monitors runtime performance met-
rics such as number of threads, number of I/O calls, CPU use and
memory use. We monitor the performance of a web server [20]
under a load of web requests replayed from the 1998 FIFA web
logs [18]2. The setup for the system is described in appendix§B.
We will discuss both point and range prediction queries using the
DyMon application. We will use the DBN shown in Figure 3 for
illustrating our query optimization techniques in§2.2.2.

2.2 CPQ Execution
2.2.1 Query Execution with Bayesian Networks

We describe the CPQ execution for BN-based inference using
the network intrusion detection query example given in Section 2.1.
Recall that we would like to calculateP (access type|evidence).
Usingthe Bayesian rule, we have:

P (access type|evidence) = P (access type,evidence)

P (evidence)

whichis proportional toP (access type, evidence) asP (evidence)
is constant. Hence, we only need to calculateP (access type, evidence)
andnormalize it to produce the query result. Substituting in the
variable names used in Figure 1 and using lowercase letters for ob-
served variables, we need to calculateP (A, b, c, d, e, f, g). We use
the example query evaluation tree given in Figure 2. The query

tree contains product-join(
∗

⊲⊳) and selection (σ) operations. The
product-join together with marginalization operation [2] are used
for BN inference in databases (see§A.2). At a high level, the
product-join operation is used for computing the joint distribution

of input distributions (e.g.,P (X, Y) = P (X)
∗

⊲⊳ P (Y |X)), whereas
the marginalization operation (combination of projection and group-
by operations) is used for eliminating variables from distributions.

Figure 2: An example query execution tree forP (A, b, c, d, e, f, g) .

Selection constraints are used for propagating the evidence (i.e.,
observed values) in the query tree. They are pushed down to the
probability distributions. In continuous query execution, every time
a new tuple is received, theσ-constraints are going to be modified
with the new observed values. This approach is similar to parame-
terized query execution withprepared statements [15].
2Only the number of requests per time unit was used from the FIFA
web logs. The accessed pages were created by the authors.1292

Materialization Options: Considerthe continuous evaluation of
the product-join operation betweenσb(P (B)), denoted withP (b)
andσb,c(P (C|B)), denoted withP (c|b), as newb andc values are
received. We have the following options:

• recompute: computeP (b)
∗

⊲⊳ P (c|b) every time b and c
values are received.

• materializeP (B)
∗

⊲⊳ P (C|B): precomputeP (B)
∗

⊲⊳ P (C|B)

and store it in memory asP (B, C). Then, to computeP (b)
∗

⊲⊳
P (c|b) we need to execute a selection constraint,σb,c, on
P (B, C). Observe that, we no longer needP (B) andP (C|B).
Hence, in some cases materialization may help us reduce
both memory usage and computation at the same time.

• partially materialize P (B)
∗

⊲⊳ P (C|B): precomputeP (B)
∗

⊲⊳
P (C|B) and store anα-factor of it in memory asPα(B, C).
Here,α is a probability value andPα(B, C) is the subset of
P (B, C) consisting of a minimal number of highest proba-
bility tuples whose cumulative probability is greater than or

equal toα. In this case, to computeP (b)
∗

⊲⊳ P (c|b), we will
first checkPα(B, C), and we will only do the product-join
if the answer is not found. Observe that the answer will be
found inPα(B, C) with probabilityα.

Hence, in constructing query plans for each product-join opera-
tor, we have alternatives we can use to trade-off computation and
memory requirements. Note that whenα is 0, partial materializa-
tion is equivalent to recomputation, and whenα is1, it is equivalent
to full materialization. Therefore, differentα values enable us ex-
plore the space between these two extreme options.

The base conditional probability distributions, materialized and
partially materialized distributions are all either stored in sorted or-
der of the observed variables or there is an index defined on the
observed variables of the distribution. Hence, selection on the dis-
tributions can be implemented as a fast-lookup operation in mem-
ory. For instance,P (D|A) could be sorted onD andσd can then
be implemented as an in-memory binary search operation.
CPQ Execution Flow: Consider CPQ execution with the query
tree given in Figure 2. The execution starts with the product-join
at the top level. If the product-join result is materialized, then the
whole query execution becomes a simple selection on the joint dis-
tribution. However, this is unlikely to be the case even with a mod-
erate number of variables, since the joint distribution may become
quite large easily. For instance, if we haven variables each with a
small domain size of10, then the joint distribution could have as
many as10n tuples. If the product-join at the top level is partially
materialized, we first look for our answer, with a selection oper-
ation, in the materialized part of the product-join. Depending on
the answer, we may or may not need to execute the lower levels
of the query tree. In the worst-case scenario, we need to traverse
down to all the leaves of the query tree, in which case the execu-
tion is equivalent to full recomputation over all the tree. In the best
case, however, a small fraction of a distribution will have signifi-
cant probability mass which will enable our system to materialize
a very small but most frequently accessed part of the distribution.
Marginalization: We do not need to eliminate any variables (i.e.,
marginalization) to calculateP (A, b, c, d, e, f, g). Hence, there are
no group-by or projection operations, which are used to implement
the marginalization operation in a database as discussed in§A.2, in
the query tree of Figure 2. However, we might have to eliminate
variables in many other cases. This issue is more significant for
inference in DBNs and is therefore revisited in§2.2.2.

2.2.2 Query Execution with Dynamic Bayesian Net-
works

We use the DBN shown in Figure 3 to illustrate the execution of
both point- and range-based prediction queries. Point-based CPQs

return a probability distribution on the values of a given set of at-
tributes at some time point in the future, given information about
their current and past values. On the other hand, range-based CPQs
return a set of point-based prediction results for a given time inter-
val. At a high level, the execution of both types of queries proceed
similar to the execution of CPQs on BNs in the sense that (i) ma-
terialized results are utilized whenever possible to avoid recompu-
tation, and (ii) selection constraints are used to propagate evidence
throughout the variables. However, with CPQs on DBNs there is
more opportunity for sharing computation and materialized results
due to the structure and assumptions of a DBN, especially for the
range-based queries. Below, we discuss query plans and their exe-
cution for both types of DBN-based CPQs.
Point-based CPQs:For the DBN shown in Figure 3, we consider
point-based prediction queries of the formP (cpu[t+k]|cpu[t], cpu[t−
1]) for k > 0. Whenk = 1, query execution is similar to that with
BNs. However, whenk > 1, we need tounroll the DBN as shown
in the figure, until it includes the variablecpu[t + k].

Figure 3: A thr ee time-slice DBN for the CPU variable is unrolled to
include future time points. Newly added nodes share the same distri-
bution with the variable cpu[t+1].

An execution tree for the point-based prediction query withk =
3 is obtained through repeated multiplication of the distributions in
sequential order. This process is shown in Figure 4. The projection
nodes in the figure correspond to the marginalization operation, and
therefore are preceded by “group by” nodes.

We can construct execution trees for prediction queries defined
with arbitrary values ofk in a similar way: starting from the query
execution tree given for the query wherek = 3, we repeatedly
“append” the query tree shown on the right side of the figure for
increasing values ofj (j = 4, 5, . . . , k) to the end of the tree.

Figure 4: An execution tree for calculating the probability P (cpu[t +

3]|cpu[t], cpu[t − 1]) is given on the left (C is used to denote CPU). On
the right is a template query tree for the described iterative operation
in generating plans for arbitrary point-based prediction queries.

Range-based CPQs:According to our definition, range-based queries
return a set of independent point-based prediction results for a set
of variables within a given time interval. For the DBN in Fig-
ure 3, the result of the range query at timet would beP (cpu[t +
k]|cpu[t], cpu[t − 1]), ∀k ∈ {1, . . . , m} wherem is the length
of the range. The alternative would be to return a joint distribu-
tion instead of the point-based results. That is, we would return
P (cpu[t+1], cpu[t+2], . . . , cpu[t+m]|cpu[t], cpu[t−1]). How-
ever, asm increases the size of this distribution would become very
large, making its computation and storage impractical. In addition,1293

the individual probabilities for each configuration of the distribu-
tion would diminish with increasingm. Hence, while our system
can compute the joint distributions for relatively small ranges, we
focus on supporting the first definition of the range query in the rest
of this section. Later in Section 2.4, we discuss how to efficiently
compute only the top-k most likely events of the joint distribution.

Observe that, according to our definition, range-based queries
can also be considered as multiple queries. If we take this naive
viewpoint, we can actually execute multiple point-based queries in-
dependently to compute the result of the range-based query. How-
ever, we use execution plans utilizing multi-query execution tech-
niques to share the computation and storage across these seemingly
independent (but in fact causally dependent) queries.

We first note that the execution tree for the point-based query
P (cpu[t + k]|cpu[t], cpu[t − 1]) is actually built on the execution
tree of the queryP (cpu[t + k − 1]|cpu[t], cpu[t− 1]). Hence, the
most basic optimization is to share the computation across these
queries by using a combined execution plan as shown in Figure 5.

P(C[t]|C[t-1]) P(C[t-1])

*P(C[t+1]|C[t,t-1])

σC[t,t-1] σC[t-1]

*

σC[t,t-1]

P(C[t+2]|C[t+1,t])

*
σC[t]

P(C[t+3]|C[t+2,t+1])

*

∏(C[t+3,t+2])

∏(C[t+1])

∏(C[t+2])

∏(C[t+3])

P(C[t+4]|C[t+3,t+2])

*

. . .

∏(C[t+4])

Materialize
P(C[t+4,t,t-1])

σC[t,t-1]

Materialize
P(C[t+1,t,t-1])

Figure 5: An execution tree for the range-based query computing
P (cpu[t + k]|cpu[t], cpu[t − 1]) for a range of k values is given for
the first 4 time points (C is used to denote CPU). The marginalization
operations containing only the observed variables are not shown.

The query execution tree in Figure 5 shows the shared computa-
tion of the first four time points of the range-based query. It can be
extended in a similar way to include all the time points in the query
range. There are multiple output points in the query tree, one for
each projection node without a parent. Each such node corresponds
to a single time point in the range of the query.

Similar to the sharing of computation, any materialized results
(except for the materialization at the output nodes) can also be
shared across the time points. In Figure 5, the second product-
join node and the output node fork = 4 have been materialized.
Observe that the schema of the materialized relation for the output
node contains the CPU variables from timest andt − 1, whereas
its counterpart in the query tree does not have these variables. This
is because we cannot push the selections down, eliminate the ob-
served variables and then do the materialization as the parameters
of the selection operations are not fixed. However, during the com-
putation of the range query for the given values of the CPU attribute
at timest andt−1, the selections can be pushed down and the com-
putation cost can therefore be reduced.

2.3 Plan Selection

2.3.1 Cost Modeling for CPQs
We estimate the computation and storage requirements of each

execution plan using simple statistics with a cost model. In our sys-
tem, the processing on each accessed tuple is light-weight. As such,
we base our computational cost model on the number of memory

accesses incurred during query execution. This is consistent with
the cost models used by main-memory systems [23]. For storage
costs, which we need for estimating the memory requirements of
an execution plan, we assume uniform space requirements for all
tuples. The details of our cost model are described in appendix§C.

2.3.2 Generating CPQ Execution Plans
Next, we first modify the Selinger-style Dynamic Programming

(DP) algorithm given for query optimization in [2, 11, 12], to find
the query execution plan with the minimum computation cost that
satisfies a given memory constraint for the case of BN-based CPQs.
Then, we modify the proposed DP algorithm to generate plans for
DBN-based CPQs and demonstrate additional optimization tech-
niques for range-based queries.
Plan generation for BN-based queries:
The DP algorithm used with BN-based CPQs to find the query exe-
cution plans is given in Algorithm 1. At a high level, the algorithm
constructs plans for growing subsets of base relations in succes-
sive iterations. At each iteration, the plans from the lower levels
are used for forming the new plans. As presented, the algorithm
considers only linear execution plans. However, it can be modified
in a straightforward manner to consider nonlinear plans as well.
The value ofk on line 6 determines the granularity ofα values we
consider. For instance, ifk is 2 thenα ∈ {.5} and if k is 4, then
α ∈ {.25, .5, .75}. The notationp ≺ q is used to denote that planp
dominatesplanq by yielding lower computation and storage costs.

Algorithm 1 DPplan selection algorithm for BN-based CPQs.
1. S: the set of all base relations
2. for all l ∈ 1 . . . |S| do
3. for all Sj : Sj ⊆ S ∧ |Sj | = l do
4. pSj

.add(materialize(Sj))
5. pSj

.add(materialize(GroupBy(Sj))
6. for all i ∈ 1, . . . , k − 1 do
7. α = i/k
8. pSj

.add(partmaterialize(α, optplans(Sj)))
9. pSj

= {q ∈ pSj
: ∄q′ ∈ pSj

such thatq′ 6= q ∧ q′ ≺ q}
10. for all rj , Sj : rj ∈ S \ Sj , Sj ⊆ S ∧ |Sj | = l do
11. Q′ = Sj ∪ rj

12. pQ′ .add(product join(optplans(Sj), rj))
13. pQ′ .add(product join(GroupBy(optplans(Sj)), rj))

The “GroupBy” used in the DP algorithm refers to marginaliza-
tion. The “optplans(x)” returns all the non-dominated plans gener-
ated for computing the argumentx. Hence, in lines 8, 12 and 13,
the algorithm creates multiple plans. In addition, in line 8 where the
partial materialization plans are considered, the non-materialized
part ofSj may be computed using any non-dominated plan gener-
ated this far forSj . A separate plan is created for each such option.
The size of the plan space is discussed in appendix§D.
Plan generation for DBN-based CPQs:

For thepoint-based querieson DBNs, the DP algorithm dis-
cussed for the BN case can be used with minor changes. First, the
DBN has to be unrolled as shown in Figure 3, until the target time
point has been reached. Also, as the distributions of a variable are
identical across time points in a DBN, we only need to store a dis-
tribution once and share it between the relevant variables. Note that
this idea can be applied to more general situations involving oper-
ations over identical distributions as well. Consider a product-join
betweenX[t + k] andY [t + k]. The result of this operation is the
same for allk values where the variablesX andY are not observed
at timet + k. Hence, we only need to compute it once. Observe
that, in this case we save both computation and storage.

For therange-based queries, we need to produce outputs at all
the time points in the given range. Hence, we cannot simply ap-1294

ply the described DP algorithm. In addition, as the range given in
thequery specification increases, the number of variables in the un-
rolled DBN increases as well. In such a case, the DP algorithm will
quickly become impractical as its complexity is exponential in the
number of the variables.

Figure 6: A two-slice DBN consisting of the variables CPU and REQS.
CPU represents the CPU usage and REQS is the number of requests
received by the web server in the DyMon application.

As described in Section 2.2.2, we use an alternative method that
creates a template plan that can be iteratively applied to produce
execution plans for the range queries. Consider the DBN given
in Figure 6 which has two variables, CPU and REQS, in each
time slice. We build an execution plan for the range-based query
P (cpu[t + k]|cpu[t], reqs[t]), ∀k ∈ {1, . . . , m} for an arbitrary
range valuem in successive steps starting from the first time step.
For all the initial time slices, which have at least one variable that
directly depends on an observed variable, we call the described DP
algorithm to incrementally generate the execution plan using the
plans from the previous time slice. An example execution plan for
this range query is given in Figure 7. In this example, the first call
to the DP algorithm, for time stept + 1, creates plans for the por-
tion of the plan until the first project node. The second call, for
time stept + 2, then creates plans for the part of the plan till the
second project node using the results of the previous run. Next, for
time t + 3, there is no variable that is either observed or depends
on an observed variable, hence, in this step, we create the template
plan that will be used to create the rest of the plan for this query.

P(C[t+1]|C[t],R[t]) P(C[t])

*

σC[t],R[t] σC[t]

∏(C[t+2],R[t+1])

P(R[t])

*∏(C[t+1])

σR[t]
P(C[t+2]|C[t+1],R[t+1]) P(R[t+1]|R[t])

*

*∏(C[t+2])

σR[t]

P(C[t+3]|C[t+2],R[t+2]) P(R[t+2]|R[t+1])

*

*∏(C[t+3])

. . .

Figure 7: A query execution plan for the range-based query predicting
the CPU value based on the DBN shown in Figure 6. C is used to denote
the CPU variable and R is used for the REQS variable. Finally, the
highlighted area is the instantiation of the template plan for time 3.

The template plan is created using the DP algorithm as well.
However, the computation and storage costs in the cost model are
adjusted according to the number of times each operation needs to
be executed for the rest of the time points in the query range. The
part of the plan highlighted with the dashed rectangle in Figure 7 is
an instantiation of the template plan for timet + 3. The template
plan has the same structure with the plan shown in the highlighted
area, but represents the time values of the variables as adjustable

parameters. Hence, we can similarly create the rest of the query
plan by instantiating the template plan for increasing time values.

Observe that, within the template plan, if an operator depends
on the results of a previous plan, the operator will have to be re-
computed for each time point in the query range. For instance,
the top-level product-join and both of the projection operations in
the highlighted area will be computed (or materialized) separately
for each time point. In such cases, the DP algorithm may choose
to materialize the result for some of the time points and compute
it for the rest of the time points. On the other hand, if an oper-
ation only depends on the relations introduced in this slice, then
it can be computed or materialized only once and used in all the
time points in the query range. For example, the product-join of
P (C[t + 3]|C[t + 2], R[t + 2]) andP (R[t + 2]|R[t + 1]) needs
only be computed (or materialized) once and then can be shared
across multiple time points in the query range.

2.4 Model-Specific Optimizations
Prefiltering low probability events: In many cases, users are only
interested in high probability events. For instance, a user could
specify a probability thresholdΘ, and then only ask for the events
with probability values greater thanΘ. In such cases, we can speed
up the query execution by pushing down the probability constraints
and eliminating low probability events early in query execution.

Consider the product-joinP (X, Y) = P (X)
∗

⊲⊳ P (Y |X) and the
constraintP (X, Y) ≥ Θ. Here, the constraint can be pushed down

as(P (X) ≥ Θ)
∗

⊲⊳ (P (Y |X) ≥ Θ).
In some cases, it is not easy or it just does not make sense to de-

fine such arbitrary thresholds but the user is still interested in high
probability results. Consider the NIDS application where the task
is to find the most likely type for a given network connection. If the
connection is an ’attack’, in many cases its probability value in the
joint distribution is really low, but still higher than the probability
of the connection being ’normal’. Hence, one cannot simply set
a general probability threshold to eliminate all the low probability
events. However, we can still find simple event elimination con-
straints for each of the operators. Consider the result,P (A, b, c),
of the second product-join operation in Figure 2, the product-join
with P (A|B, C). For any given values of b and c, there are at most
two possible events:A1 = {A =’normal’ } andA2 = {A = ’at-
tack’ }. For this scenario, the result of the inference query depends
on the ratio:

r = P (A1,b,c)P (g|A1,b)P (d|A1)P (e|A1)P (f |A1,b,g)

P (A2,b,c)P (g|A2,b)P (d|A2)P (e|A2)P (f |A2,b,g)

Observe that forr we have the following bound:
r ≤

P (A1,b,c)

P (A2,b,c)
maxP (G|A1,B)P (D|A1)P (E|A1)P (F |A1,B,G)

P (G|A2,B)P (D|A2)P (E|A2)P (F |A2,B,G)

≤
P (A1,b,c)

P (A2,b,c)
maxP (G|A1,B)

P (G|A2,B)
maxP (D|A1)

P (D|A2)
maxP (E|A1)

P (E|A2)

maxP (F |A1,B,G)

P (F |A2,B,G)

= P (A1,b,c)

P (A2,b,c)
pmax

A1/A2

As a result if P (A2,b,c)

P (A1,b,c)
≥ pmax

A1/A2
then we can eliminate the

’normal’ event with b and c values (i.e., tupleA1) from P (A, b, c).
Likewise, if P (A1,b,c)

P (A2,b,c)
≥ pmax

A2/A1
then we can eliminate the tuple

A2. We can derive bounds for all the product-join operators in Fig-
ure 2 using the same technique and reduce computation without in-
troducing errors in the query results. Alternatively, we can multiply
the bound with a constant1/σ, whereσ ∈ [0, 1], to avoid elimi-
nating theA1 tuples with probability values greater thanσP (A2).
This method can be used to produce the set of most likely events
in which each event has a probability that is at leastσ times the
probability of the most likely event.
Top-k maximum probability events: In probabilistic databases,
top-k queries are generally used to produce thek most likely re-
sults of a query [24, 25]. For instance, in the DyMon application
one could specify a top-k query to generate only the top-k predic-1295

tions of the number of web requestsn time units in the future. A
naive way to execute this query would be to produce the target dis-
tribution on the number of requests and then to output the top-k re-
sults. However, top-k queries are most useful when it is intractable
to produce the target distribution. Consider the case when the user
is interested in the most likely sequences of the number of requests
in an interval of 10 time units. We mentioned before that it is im-
practical to produce the joint distribution of variables even for rela-
tively small time intervals. Hence, the previous execution strategy
is not viable in this case. However, a much more efficient approach
that depends on the distributive properties of the top-k operator on
the product-join operator exists. The top-k operator can be pushed
down to eliminate the redundant events early in execution:

top-k
x,y,z

(P (X, Y)
∗

⊲⊳ P (Y, Z))

= top-k
x,y,z

(top-k
x

(P (X, Y))
∗

⊲⊳ top-k
z

(P (Y, Z))).

Here, the top-k operator works on a list of free variables and
an argument distribution. For instance, top-kx(P (X, Y)) would
return the top-k events for each value of Y.

3. EXPERIMENTS

3.1 Experiment Setup
Prototype Implementation: We implemented the described al-
gorithms for continuous prediction queries in Java by modifying
H2 [21], an open-source, embedded in-memory database engine.
The database was used for storing the data in memory in an orga-
nized way and also enabled us to run regular SQL queries. In ad-
dition, we used the tree-based indexing functionality provided by
the database for creating indices over the base and the materialized
relations. The query optimizer and parts of the query executor were
removed and replaced by our implementation. Our implementation
follows the basic data-driven stream processing model, the queries
are evaluated continuously as new inputs arrive.
Experimental Environment: Our experiments were done on stan-
dard desktop machines with AMD Athlon(tm) 64 X2 Dual Core
3800+ processors and 2GB of memory running Linux 2.6.26.
Experimental Metrics: Our primary performance metric is the
average processing time per tuple. We report average processing
latency of a tuple for various algorithms with different levels of
available memory. As end-to-end processing latency of a tuple is
our main metric, in our experiments each tuple was processed and
consumed entirely before the next tuple. Thus, the data sets are
replayed at a rate roughly inverse of average processing latency.

The NIDS experiments are in§3.2 and the DyMon experiments
are in§3.3. In§3.4 we provide a comparison of our system with tra-
ditional non-DB inference methods. Further experimental results
are given in appendix§E.

3.2 Network Intrusion Detection Results
The NIDS dataset was obtained from the 1999 KDD Intrusion

Detection Contest [9]. Our dataset consisted of 500K tuples, 5K of
which were used in testing the system and the rest for training (to
learn the distributions and the network structure).

The resulting network structure used in the experiments consist-
ing of seven variables is shown in Figure 1. While accuracy was
not our immediate goal in this study, it is a useful metric to know,
in order to have a sense of the eventual applicability of predictive
queries using BNs. Thus we report as a small side note that, for
the NIDS experiment, we had approximately 99% accuracy in cor-
rectly identifying the type of connections in the test data.
Query Execution Time vs. Memory Usage:The average execu-
tion time versus memory usage (i.e. the #tuples stored in memory)
results for the DP algorithm using the no materialization, full and
partial materialization options are shown in Figure 8. The tradeoff

between materialization (memory usage) and computation time, as
discussed in§2.2.1, is clearly observed.

The results for DP with partial materialization option reflect the
fact that only a fraction of the top-level joint distribution (≈3%)
have most of the probability mass (>90%). The reason is that
most of the data actually consists of “normal” connections, as ex-
pected in all similar scenarios, and hence exhibit similar connection
properties. As a result, if we only materialize this high probability
portion of the distribution together with the base relations, we ob-
tain a 3.50 ms query execution time with a memory use of136
tuples. Moreover, if we materialize more than312 tuples, then we
actually get an execution performance better than materializing all
the joint distribution represented by the BN, which is870 tuples.
The result is not suprising since selection on the full joint distribu-
tion takes longer than selection on the smaller high probability set
even when using an index on the selection attributes.

In our cost model (appendix§C), we made a uniform distribution
assumption for estimating the fraction of a distribution to materi-
alize in the case of partial materialization. However, because the
distributions in the NIDS dataset are actually highly skewed, our es-
timations for the plan costs and storage sizes are all overestimates.
Hence, the DP with the partial materialization option chooses to
materialize the whole distribution when there is sufficient memory.
A better estimate would most likely produce better overall results
as well as avoid the materialization of the joint distribution.

Figure 8: Memory Usage (#tuples) vs Computation tradeoff for the
NIDS scenario. The #tuples∗ column shows the memory use after elim-
ination of the low probability events for the full materialization case.

Number of Variables vs. Query Execution Time: In Figure 9,
we present the query execution times as we increase the number of
variables in the NIDS BN. The No Materialization option uses just
enough memory to store the base relations. 2X and 4X Memory
options are allowed memory usages up to 2 times and 4 times the
size of the base relations respectively. Finally, the No Limit option
is not given a memory constraint and therefore finds the minimum
computation cost plans. When the number of variables is low, we
can reduce the query execution time even with low memory bud-
gets. However, as the number of variables increases, the size of the
joint distributions quickly increases as well. At the same time, we
observe a decrease in the relative performance gains with respect
to the materialized size.

The results in Figure 9 are obtained using the DP algorithm with
the full materialization option. We do not show the results for the
partial materialization case, as they are similar to the results in Fig-
ure 8. Finally, it should be noted that the linear plan space is more
favorable for the partial materialization option as it can partially
materialize all the distributions and utilize all the available mem-
ory. However, with full materialization, there will be only a single
materialized distribution (i.e. the highest level joint distribution that
fits in available memory) for the BN-based CPQs (for DBN-based
CPQs there can be multiple). When nonlinear plans are considered,
we expect the full materialization strategy to perform better.
Eliminating Low Probability Events: We applied the techniques
described in§2.4 for eliminating the low probability events from1296

Figure 9: The avg. query execution time vs the number of variables
in the NIDS BN presented for different levels of available memory.

the materialized distributions. The results are shown in Figure 8, in
the column labeled ’#tuples*’, for the full materialization option.
As the sizes of the materialized distributions increase, generally we
can eliminate more events. For instance, we have 20.92% mem-
ory savings (i.e. 182 tuples), from 870 to 688 tuples, when the
whole joint distribution is materialized. In the NIDS application,
the accesstype attribute takes on two separate values, at most one
of which we can eliminate for each configuration of other variables.
Hence, greater savings would be possible with a larger domain size.

3.3 Software Performance Monitoring Results
Experiments on the DyMon application were performed using

the setup described in§2.1. We collected 60,000 tuples using the
described monitoring facilities from the monitored web server for
training purposes. During the data collection, the web requests ob-
tained from the FIFA web logs were replayed on the web server.
We used the first web logs of the50th day of the FIFA Cup. We
also scaled down the number of requests per second in the logs by
a factor of two to avoid overloading our web server. Each collected
data tuple is a summary of the performance of the process in a pe-
riod of length approximately 500ms.
Partial Materialization vs. Full Materialization: For the range-
based prediction queries,P (cpu[t+k]|cpu[t], cpu[t−1]), given in
§2.2.2, we compare the average execution times of the query execu-
tion plans obtained using the partial and full materialization options
of the DP algorithm with a query rangek = 5. Results are shown
in Figure 10. For the partial materialization option, we only show
the results forα = 0, .5 and1. A finer-grained range ofα values
produce similar results, albeit more options for materialization.

Figure 10: Memory Usage vs Computation tradeoff for the DyMon
scenario using the DP algorithm with different materialization options.

The distributions obtained in the DyMon application are much
less skewed compared to the NIDS dataset. There is no small sub-
set of the overall joint distribution that has significantly high prob-
ability. Hence, partial materialization plans perform similarly to
the full materialization plans. The benefit of partial materialization
in this case is its ability to offer an increased range of plans using
different levels of memory.
Query Range and Memory Budget:In this experiment, we show
results using the DP algorithm on the described range query for

different range values and memory budgets. The average execution
time increases linearly with the query range for the case of DP with
no materialization option. When we use 2X or 3X the memory re-
quired by the base relations for materialization of the intermediate
relations, we can reduce the computation time for different range
values. Note that the size of memory required by the base relations
is independent of the query range. Finally, if we do not place

Figure 11: Average query execution time for increasing query ranges
and under different memory budgets.

a limit on the memory available for materialization, we see that
query execution times increase very slowly with increasing query
ranges. The memory use with the ’No Limit’ option is at most 5
times the size of the base relations in all cases.
Top-k Queries: We now consider top-k queries (§2.4) using an
example query that predicts the k-most likely CPU sequences in a
future time interval based on the 2 most recent observations. In Fig-
ure 12, we show the average execution times for varying prediction
ranges andk values. The exponential trendline labeled ’Full Joint’
represents the execution time of the naive method that calculates
the full joint distribution of CPU sequences to compute the top-k
values. The other results reveal the linear behavior of the query ex-
ecution times with the discussed optimization for top-k queries. All
the results are based on the DP algorithm without materialization
option to focus only on the effects of the top-k optimization.

For query ranges greater than 5, the joint distribution is larger
than the 1.5GB memory available in our JVM so there are no Full
Joint results for those cases. For the query range of 5 time units,
the Full Joint method is 20 times slower than the top-k optimization
method. While the size of the joint distribution grows exponentially
with the query range, the size of memory required for the top-k
optimization method is a constant factor ofk.

Figure 12: Average execution times for the top-k queries predicting
the k most likely CPU sequences for different range and k values.

3.4 Black-box vs. White-box Inference
A key premise of this work is that an in-database (white-box)

approach for inference can offer substantial benefits over the off-
database (black-box) approaches, which we quantitatively demon-
strate in this section. As a representative black-box system, we use
the open-source “Weka” software (ver. 3.6.1) [19], which contains
a collection of common machine learning algorithms for data min-
ing. We also developed specialized, isolated Java implementations1297

for specific queries to serve as a point of comparison.
For the access type prediction query of the NIDS application

(§3.2), we obtained 4.5 ms execution time (per incoming tuple)
with Weka’s BayesNet classifier. Recall from Figure 8 that our
system has execution times of 6.52 ms (no materialization) and
2.66 ms (materialization) for the same task. Thus, our system is
competitive or better (with optimization) than Weka software for
this relatively simple task. Given that our system is not mature
and relatively under-optimized leads us to believe we can improve
upon these numbers substantially. Our specialized Java implemen-
tation of the VE algorithm achieved 0.11 ms execution time for
this task, revealing that both our system and Weka suffer from vari-
ous overheads (e.g., function calls, copying of intermediate results)
that seem to dominate the cost of inference for this task in which
the query is straightforward (e.g., no marginalization) and the total
size of the base distributions is small.

We now consider the range-based CPU prediction query from
the DyMon application (§3.3). As Weka does not support DBNs,
there was no straightforward way to use it for this task. Our initial
custom Java implementation performed so poorly that we had to
augment it with index support to get practical numbers. With the
indexed Java implementation, we obtained execution times of 1.50
ms, 2.45 ms, 29.44 ms and 119.46 ms for query ranges of 1, 2, 3
and 5, respectively. These results demonstrate that indexing, which
comes with the database approach, is crucial due to the size of the
base distributions. For the same task, our system achieved (§3.3)
6.01 ms, 15.42 ms, 48.35 ms and 146.99 ms (no materialization)
and 1.15 ms, 1.82 ms, 3.44 ms and 40.884 ms (materialization). In
this case, the advantage of materialization is more than enough to
compensate for the overhead of the database, achieving improve-
ments of 30%-290% over the Java implementation. In summary,
the database approach is not only more general than a specialized
“roll-your-own” implementation but is also the clear performance
winner with increasing data size and query complexity.

4. RELATED WORK
Probabilistic inference on BNs is discussed in [1, 4]. There are

two main classes of inference algorithms: exact and approximate.
Variable elimination (VE) is an example of exact inference algo-
rithms. In this paper, we have exclusively focused on exact proba-
bilistic inference. While some approximate methods may be more
efficient and better suited for certain applications, it is well-known
that both exact and approximate inference are NP-hard.

Wong et al. [7, 8] discussed how to implement the probabilistic
inference methods within the database using an extended relational
model. The product-join operator was also introduced in the same
study. More recent work discussed how to support and optimize
inference queries inside a traditional database [2]. In [6], access
methods for probabilistic data streams are presented. One of the
techniques, called the Markov Chain Index, is based on an idea
similar to our materialization approach (albeit considered for on-
disk materialization), as it provides efficient access to precomputed
joint distributions. Our techniques borrow the core relational BN
representation and inference model and extends them to address
continuous predictions over data streams. Our memory-aware ma-
terialization and sharing-based optimization techniques and sup-
port for DBNs are not considered by prior work.

Forecasting queries have been discussed in the context of the Fa
system [3]. Fa considers a collection of forecasting models such
as Bayesian Networks (BNs), Support Vector Machines (SVMs),
and Multivariate Linear Regression (MLR). Authors consider an
incremental approach to building models in which more variables
are added to the model in successive iterations. There is also an
extension to processing continuous foreasting queries in the study.
However, Fa’s approach is less tightly integrated to the database
system and does not consider the optimizations we describe.

Other recent studies (e.g., [5]) used BNs in conjunction with
databases for inference on streaming data. However, these are black-
box approaches, as the probabilistic models are usually handled
outside the DB. On the other hand, our work follows the white-box
approach by providing low-level support for probabilistic inference
and CPQs at the core database level.

5. CONCLUSIONS
In this paper, we discussed how real-time predictive analytics

over data streams can benefit from database support. Our system
seamlessly integrates a Bayesian Network-based predictive model
into its relational continuous query execution and cost-based op-
timization framework. Our prototype-based results on real-world
data and applications verify and quantify the benefits of our sys-
tem, and, in particular, the various optimizations we proposed.

6. REFERENCES
[1] Jensen, F. V. Bayesian Networks and Decision Graphs.

Springer-Verlag, 2001.
[2] Bravo, H. C. and Ramakrishnan, R. Optimizing mpf queries:

decision support and probabilistic inference. SIGMOD 2007.
[3] Duan, S. and Babu, S. Processing forecasting queries. VLDB

2007.
[4] Pearl, J. Probabilistic Reasoning in intelligent systems:

networks of plausible inference. Morgan Kaufmann, 1988.
[5] Kanagal B., Deshpande A. Online Filtering, Smoothing and

Probabilistic Modeling of Streaming data. ICDE 2008.
[6] Letchner J. et al. Access Methods for Markovian Streams.

ICDE 2009.
[7] Wu D., Wong M.: Global Propagation in Bayesian Networks

Vs Semijoin Programs in Relational Databases. International
Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 13(5), 2005.

[8] Wong S.K.M., Butz C.J., and Xiang Y. A method for
implementing a probabilistic model as a relational database.
UAI, 556-564, Montreal, 1995.

[9] Hettich, S. and Bay, S. D. The UCI KDD Archive
[http://kdd.ics.uci.edu]. Irvine, CA: University of California,
Department of Information and Computer Science 1999.

[10] Zhang N.L. and Poole D. Exploiting causal independence in
Bayesian networks inference, JAIR 5, 1996.

[11] Chaudhuri S. and Shim K. Including Group-By in Query
Optimization. VLDB’94.

[12] Chaudhuri S. and Shim K. Optimizing queries with
aggregate views. In EDBT’96.

[13] Reiss, S. P. Dynamic detection and visualization of software
phases. WODA ’05.

[14] Reiss, S. P. Visual representations of executing programs.
Journal of Visual Languages and Computing 18, 2, 2007.

[15] MySQL Prepared Statements. http://dev.mysql.com/tech-
resources/articles/4.1/prepared-statements.html

[16] Murphy K. ”Dynamic Bayesian Networks: Representation,
Inference and Learning”. PhD Thesis. UC Berkeley, 2002.

[17] Ghahramani Z. Learning Dynamic Bayesian Networks.
Adaptive Processing of Sequences and Data Structures.
Lecture Notes in Artificial Intelligence, 1387, 168-197, 1998.

[18] Arlitt M. and Jin T., ”1998 World Cup Web Site Access
Logs”, August 1998. www.acm.org/sigcomm/ITA.

[19] Witten I.H., Frank E. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufman, 2005.

[20] Jetty, open source web server. http://www.mortbay.org/jetty/
[21] H2 Database Engine. www.h2database.com
[22] Zhang N. L. and Poole D. A simple approach to Bayesian

network computations. Tenth Canadian Conference on
Artificial Intelligence, 171-178, 1994.

[23] Boncz P., et al. Database architecture optimized for the new
bottleneck: Memory access. VLDB 1999.

[24] Guo, L., et al. Efficient top-k processing over
query-dependent functions. PVLDB 2008.

[25] Soliman M. A. and Ilyas I.F. Top-k query processing in
uncertain databases. ICDE 2007.1298

APPENDIX

A. BACKGROUND

A.1 Bayesian Networks
Bayesian Networks (BNs) [1, 4] are compact representations

of joint distributions over sets of variables. The compactness is
achieved by utilizing the conditional independences among the vari-
ables. A BN consists of a directed acyclic graph (DAG) that in-
cludes a node and a conditional probability distribution (CPD) for
each variable. The CPD of a variable encodes its distribution given
its parents in the graph. Thus, for a graphG with N nodesx =
{x1, x2, .., xN}, the joint distribution is given by

p(x) =
N

Y

i=1

p(xi|pa(xi))

wherepa(xi) denotes the parents ofxi.
Previous work used functional relations to represent the condi-

tional probabilities of a BN in a relational database [2, 7, 8]. A
functional relationR has the schema{A1, A2, .., An, f} where
f is called the measure attribute and the functional dependency
A1, A2, ..., An → f holds. In this case, the measure attribute cor-
responds to the conditional probability for the configuration rep-
resented by a tuple. An example BN consisting of the binary at-
tributesX, Y,Z andT is shown in Figure 13 together with the func-
tional relations for each CPD.

Figure 13: An example Bayesian Network, defined over the bi-
nary attributes X, Y, Z and T , representing the joint distribution
P (X, Y, Z, T) = P (X) P (Y |X) P (Z|X) P (T |Y, Z).

Dynamic Bayesian Networks(DBNs) [16, 17] are a natural ex-
tension of the Bayesian Networks (BNs) for modeling dynamic sys-
tems, i.e., those that evolve with time. Some basic continuous infer-
ence queries that the users would like to pose in such systems could
include both point-based and range-based temporal predictions:
Query 1: The expected CPU usage of processp in the next minute
(i.e., forecasting at a future time point)
Query 2: The expected CPU usage of processp for the next 10
minutes (i.e., forecasting at a future time interval).

To answer query1, a BN can be constructed such that the value
of the attribute CPU at different time steps is represented with dif-
ferent variables. In this case, the BN does not consider the temporal
causality between the variables and does not utilize the fact that it
is a single variable observed at different time steps. A similar ap-
proach can be taken to answer the query2. However, in this case
we will need to introduce 10 variables, a separate CPU variable for
each time step. This approach is not practical since both represent-
ing the BN and executing inference will quickly become infeasible
as the number of variables grows large. Moreover, if we would like
to predict a different range of CPU values, say the next 15 minutes
instead of 10 minutes, we would have to extend the BN structure

by adding additional nodes.
DBNs represent a similar approach except that there are certain

restrictions which help reduce the network size and thereby make
inference more efficient. The restrictions can be briefly stated as
follows:

1. Forward linking: No backward links in time,

2. Temporal consistency:If there is a link fromx[i], the node
representing variablex at time pointi, to x[j], then there is a
link from x[i + k] to x[j + k] for all k, and

3. Identical distributions:Conditional probability distributions
for the same attribute at different time steps are the same.

The DBN shown in Figure 14 can be used to answer both queries
1 and2 (inference with BNs and DBNs is discussed in Section A.2).
This is a simple DBN in which the current CPU value depends only
on the previous value. The actual representation of the DBN inside
the database consists of two time slices as shown in the figure.

Figure 14: An example DBN consisting of two time slices in which the
current CPU value depends only on the previous value.

A.2 Inference with Bayesian Networks
The inference problem in BNs is the problem of computing the

posterior distribution of a set of variables given a set of observed
variables. There are a variety of inference algorithms for BNs [1],
most of which try to exploit the BN structure, which encodes the
conditional independences, to efficiently compute the posterior dis-
tributions. In our work, we use variable elimination (VE) [10, 22],
one of the most popular inference algorithms.

The VE algorithm, like many other inference algorithms, is based
on a set of operations for manipulating probability distributions.
These basic operations on probability distributions have been incor-
porated into the relational systems by means of extended relational
algebras [2, 8]. Such extended relational algebras generally contain
two main operations:marginalization andproduct-join,
which we describe below using the BN shown in Figure 13.

• The product-join operation (
∗

⊲⊳) is defined on two func-
tional relationss andr as follows:

s
∗

⊲⊳ r = πs.a∪r.a,s.f∗r.f (s ⊲⊳s.a∩r.a r)

where s.a and r.a represent the non-measure attributes of
relationss and r. For instance, in Figure 15 we apply the
product-join operation on the variablesX, Y andZ of the BN
given in Figure 13 to get the joint distributionP (X, Y, Z).

Figure 15: Calculating P (X, Y, Z) with the product-join operation.

1299

• The marginalization operation is defined over a joint distri-
bution. For instance, letr represent the distribution encoded
by the BN in Figure 13 over all variablesX, Y , Z andT , i.e.,

r = PX
∗

⊲⊳ PY
∗

⊲⊳ PZ
∗

⊲⊳ PT

where we refer to the relations of the variablesX, Y , Z andT
with PX, PY , PZ andPT respectively. First, note that the
product-join operation is both associative and commutative.
Now, to marginalize over a subsetA of the joint distribution
variables, we eliminate all variables not inA by applying:

πA,sum(r.f)(GroupByA(r))

In Figure 16, we calculate the marginal distributionP (Y, Z)
by eliminating the variable X from the joint distributionP (X, Y, Z)
in Figure 15. Observe that in this case, we did not need to
construct the full joint distributionr as the variableT does
not contribute to the probability ofY andZ. Identifying such
redundant variables has been discussed in literature before [1]
and helps reduce the required computation.

Figure 16: Calculating P (Y, Z) using marginalization onP (X, Y, Z).

We can now express the variable elimination algorithm simply as
a series of product-join and marginalization operations on the base
relations. The problem of efficiently ordering these operators was
recently addressed and the algorithm was integrated into the query
optimizer in the database core [2]. However, there is further oppor-
tunity for optimization of inference queries using domain specific
information as discussed in this paper.

While inference in BNs can be implemented based on the men-
tioned variable elimination algorithm, in the case of DBNs we may
have tounroll the DBN before we apply the variable elimination
algorithm. Consider query2 described in Section A.1 using the
DBN given in Figure 14. To predict the next 10 CPU values, we
would have to unroll the network by adding new time slices con-
sisting of the nodescpu[t+2], . . . , cpu[t+10]. Inference can then
be executed similar to the BN case.

A.3 Learning Bayesian Networks
While the learning of network parameters (i.e., the conditional

distributions) and structure is beyond the scope of this paper, we
briefly outline how this process is performed, in general and in our
study, for completeness and repeatability.
Learning the BN Structure: The structure learning problem is
to find a BN structure that closely matches a given dataset. It is
known that the space of all BN structures grows more than expo-
nentially with the number of nodes [1]. Therefore, enumerating all
BN structures is not a viable solution. In addition, one has to avoid
overfitting and find relatively simple structures describing the data
accurately.

The most common approaches to structure learning are the score-
based methods, which are generally based on score functions that
measure the goodness of fit of a BN to the data. Score-based meth-
ods often perform a hill-climbing search: they start out with an
initial network structure and iteratively modify it until no further
improvements are possible. At each iteration, the model is mod-
ified either by adding, deleting or reversing a link. Score-based
methods differ in the score functions they use. In our work, we use
the popular Bayesian Information Criterion (BIC) score [1].

Structure learning for BNs is a fundamental issue for predictive
applications. However, this issue is orthogonal to our contributions
in this paper: any solution for finding BN structures can be utilized
in our system and all of our optimizations would still be valid.
Learning the CPDs: Given a BN structure and a complete train-
ing dataset (i.e., without missing values), the maximum likelihood
principle states that the model parameters should be chosen as to
maximize the likelihood of the model given the data. In this case,
finding the parameters corresponds to frequency calculations on the
data. For instance, forP (T = t|Y = y, Z = z) we need to calcu-
late #(T=t,Y =y,Z=z)

#(Y =y,Z=z)
where#(·) refers to the number of instances

satisfying the argument in the data. If the dataset is incomplete, the
EM algorithm [1] can be used to find the parameter values. In this
study, we do not consider incomplete datasets.

B. THE DYMON APPLICATION
The high-level setup for the dynamic software performance mon-

itoring application (DyMon) is shown in Figure 17. The system is
also augmented with additional monitoring software to continually
acquire additional performance metrics not monitored by the Dy-
Mon agents (e.g., the number of received requests and the average
time of processing a request).

Figure 17: The setup for the DyMon application. The web server is
under a load of web requests replayed from the FIFA 1998 web logs.
The CPQ Processing system receives its information both from DyMon
and a custom monitoring software.

C. COST MODELING FOR CPQS
In this section, we discuss the computation and storage costs for

selection, product-join, and marginalization operations.
Consider an intermediate relationX consisting of the observed

variablesOX and the unobserved (hidden) variablesUX . The typ-
ical selection operation used for evaluating the prediction queries
is to find the tuples with the given valuesoX for the observed vari-
ablesOX . We assume that there is either an index on the observed
variables or the tuples of X are sorted on the observed variables.
Then, the cost of the selection operation,σoX

, on relationX is the
sum of the costs for finding the location of the tuples satisfying the
selection constraint and retrieving the tuples:

comp cost(σoX
(X)) = log(|πOX

(X)|) + |X|

|πOX
(X)|

Now consider another relationY that consists of the observed
variablesOY and the unobserved variablesUY . The computation

and storage costs for the product-join ofX andY , X
∗

⊲⊳ Y , are
given in Table 1. We denote the selection factor betweenX andY
with σxy, which is calculated based on the attribute independence
assumption. Recall thatα is the probability factor used in partial
materialization. Finally,θ is the ratio of the relation that gets mate-
rialized with the partial materialization method.θ depends on both1300

α and the joint distribution represented by the observed variables of
therelation, particularly its entropy. For a fixed value ofα, the best
case is where the entropy of the distribution is low, since then most
of the probability mass will be concentrated on a few tuples andθ
will be small. As the entropy increases,θ will generally get larger
for a fixedα value. The worst-case scenario is where we have a
uniform distribution, since in this case the entropy is maximized.
As a result,α is an upper bound forθ. We will assume this worst-
case scenario in our experiments; ifθ can be better estimated, better
results can be obtained.

method storage cost computation cost
recompute 0 comp cost(σoX

(X))+
comp cost(σoY

(Y))
materialize |X||Y |σxy comp cost(σoX∪oY

(|X||Y |σxy))
partially θ|X||Y |σxy comp cost(σoX∪oY

(θ|X||Y |σxy))
materialize +(1 − α)((comp cost(σoX

(X))+
comp cost(σoY

(Y))))

Table 1: Computation and storage costs for the product-join opera-

tion: X
∗

⊲⊳ Y .

The computation and storage costs for the marginalization oper-
ation are simpler to derive than for the product-join operation. The
reason is that marginalization works on a single input and elim-
inates one or more variables from the input distribution. Hence,
dividing by the size of the eliminated variables will give an esti-
mate of the storage cost. Moreover, the computation cost, which is
linear in the input size in the case of recomputation, can be derived
similarly to the product-join case. We do not provide it here for the
interest of space and instead discuss an alternative technique below.

This method is based on the fact that the result of both product-
join and the marginalization operations are distributions over a set
of variablesV . Given a BN for a variable setU ⊇ V , we can uti-
lize the BN to estimate the size of a distribution overV with less
independence assumptions. Moreover, due to the BN information
the independence assumptions used in this estimation correspond
to conditional independences in the data and as such are more ac-
curate than arbitrary independence assumptions. If the variables in
V are found in a single distribution in the BN, then we can find
the true size of the distribution overV with a simple count op-
eration. This technique relies on the fact that any type of distri-
bution over a given set of variables will have the same size, e.g.,
|P (X, Y)| = |P (X|Y)| = |P (Y |X)|. If the variables inV are
not found in a single distribution, then we can use counts from mul-
tiple distributions that together formV to obtain a size estimate.

D. SIZE OF THE QUERY PLAN SPACE
Given a set of base relationsS, there are|S|! linear plans for

computing their product-join. In addition, there arek + 1 possi-
ble options of materialization for each of the product joins: par-
tially materialize into one ofk − 1 fractions, fully materialize or
no materialization. Hence, there areO(|S|!k|S|) different plans for
computing the product-join involving the materialization options.
Finally, after each one of the product-join operations, there can be
a marginalization operation for eliminating variables. Therefore,
the total number of plans together with the group by operations is
O(2|S||S|!k|S|). Observe that, to construct the plans for a set of
relations of sizel, we only need the plans for the relations of size
l−1. Hence, in the worst case, we would have approximately twice
the number of plans for relations of size|S| in memory.

E. ADDITIONAL EXPERIMENTAL RESULTS
Size Estimation for Intermediate Relations: Accurate size es-
timation for the intermediate relations is important when making

materialization decisions. For the NIDS experiment, when we as-
sumed attribute independence during size estimation, our estima-
tion results were off up to a factor of 5.46 and 3.2 times the true
value on average. When we used the counts obtained from the BN
as discussed in appendix§C, however, our estimation results were
always within a factor of 2.6 and within 1.73 times the true value on
average. While neither method provides high accuracy, we believe
this is an intrinsic problem with this domain, as one of the main
reasons for using a BN is the infeasibility of computing/storing the
complete joint distribution. Also observe that generally the size
estimate for an intermediate relation will be worse if it has a large
number of variables. However, this problem is somewhat alleviated
by the fact that we do not need to have good estimates for the large
joint distributions if it is already not feasible to fully materialize
them due to their large size.
Computation Sharing for Range-based CPQs:For the range-
based prediction queries,P (cpu[t + k]|cpu[t], cpu[t − 1]), given
in Section 2.2.2, we compared the average execution times of inde-
pendent point-wise execution of the range query and the incremen-
tal execution based on the DP algorithm without materialization.
The results are given in Figure 18 for different range values.

Figure 18: Average query execution times of range queries for inde-
pendent execution and shared execution.

When the range of the query is short, the required computa-
tion for query execution is little hence sharing does not have much
effect. However, as the range value of the query increases, the
quadratic behavior of the average query execution time for inde-
pendent execution is revealed. On the other hand, when the com-
putation is shared across time points in the query range, the av-
erage query execution time increases only linearly. In the experi-
ments presented in this paper, we always use shared computation
for range queries.

1301

