
Fragments and Loose Associations:
Respecting Privacy in Data Publishing

Sabrina De Capitani di Vimercati
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ABSTRACT
We propose a modeling of the problem of privacy-compliant
data publishing that captures confidentiality constraints on
one side and visibility requirements on the other side. Confi-
dentiality constraints express the fact that some attributes,
or associations among them, are sensitive and cannot be re-
leased. Visibility requirements express requests for views
over data that should be provided. We propose a solution
based on data fragmentation to split sensitive associations
while ensuring visibility. In addition, we show how sensi-
tive associations broken by fragmentation can be released
in a sanitized form as loose associations formed in a way to
guarantee a specified degree of privacy.

1. INTRODUCTION
In recent years, considerable attention has been devoted

to the problem of guaranteeing privacy of sensitive data in
databases that have to undergo public or semi-public re-
lease or be made available to third parties [5]. On one hand,
today’s society relies on the dissemination and sharing of
information. On the other hand, there is a recognized and
strong need to guarantee proper privacy protection of sensi-
tive information.

Much research has focused on the data protection prob-
lem, investigating techniques providing different forms of
protection and computing a “sanitized” version of the data
for publication. Recently, most of this line of work has fo-
cused on k-anonymity and its variations (e.g., ℓ-diversity)
for protecting respondents’ identities and their sensitive in-
formation when releasing microdata (e.g., [4, 7, 8, 9]). Al-
though some approaches have addressed the problem of safe-
guarding the utility of sanitized data, the problem of con-
sidering visibility requirements has not – to our knowledge
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– been investigated. Also, the modeling of the privacy prob-
lem, in the line of research mentioned above, typically as-
sumes a setting where data to be protected are either quasi-
identifiers or sensitive information associated with them,
and provides protection by generalizing the values of quasi-
identifying attributes. While important, k-anonymity and
its variations capture only part of the problem.

In this paper, we propose a novel modeling of the problem
of protecting privacy when publishing data that explicitly
takes into consideration both privacy needs and visibility
requirements. Our setting of the privacy problem is generic
and does not assume, like typical k-anonymity solutions, a
preliminary definition of identifying, quasi-identifying, and
sensitive data. Rather, it supports the specification of con-
fidentiality constraints, generically capturing privacy needs
as sensitive attributes, or sensitive associations among them,
that need to be protected. Visibility requirements provide
an explicit means for data publishers and/or recipients to
express the fact that certain data need to be published. Vis-
ibility requirements may come, for instance, from the need
of third parties (e.g., research institutions) to which the data
are released. Also, visibility requirements nicely permit cap-
turing the fact that certain data are already available (e.g.,
from other external sources), avoiding publication of data
whose combination with those already available might com-
promise privacy. Our solution is based on fragmenting data
to break associations among them, guaranteeing respect of
both confidentiality constraints and visibility requirements.
We also put forward the idea of complementing fragments
with loose associations. Intuitively, loose associations parti-
tion tuples within fragments in different groups and release
association information at the group level, as opposed to
releasing the actual tuple-to-tuple association. Our loose
association problem is characterized by a privacy degree k
defining the size of the association groups into which each
actual association protected by a confidentiality constraint
must be confused. We also define properties that the group-
ing of tuples has to satisfy to guarantee a given privacy de-
gree k of the associations while maximizing the information
released (i.e., minimizing the size of the association groups)
and respecting all the given confidentiality constraints.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the definition of confidentiality constraints
and fragmentation. Section 3 formally defines visibility re-
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quirements. Section 4 introduces the definition of correct
and minimal fragmentation. Section 5 introduces the con-
cept of k -loose associations. Section 6 discusses how infor-
mation exposure is influenced by the publication of k -loose
associations. Section 7 discusses related work. Finally, Sec-
tion 8 presents concluding remarks. The paper also includes
three appendixes reporting respectively: an analysis of the
fragment minimization problem and a SAT solver approach
to its solution (Appendix A), experimental results showing
the precision of the queries executed on k-loose associations
(Appendix B), and the proofs of the theorems stated in the
paper (Appendix C).

2. CONSTRAINTS AND SAFE FRAGMEN-
TATION

We consider a scenario where the data to be protected
are represented with a single relation s over a relation
schema S (a1, . . . , an). We use standard notations of rela-
tional database theory. Also, when clear from the context,
we will use S to denote either the relation schema S or the
set of attributes in S .

Privacy, or confidentiality, constraints express restrictions
on the visibility, or on the joint visibility (association), of
attributes in the relation. They are formally defined as fol-
lows [1, 2].

Definition 2.1 (Confidentiality constraint).
Given a relation schema S (a1, . . . , an), a confidentiality
constraint c over S is a subset of the attributes in S .

The semantics of confidentiality constraints is as follows.
A singleton constraint states that an attribute is sensitive
and therefore its values should not be visible; a non-singleton
constraint states that an association among different at-
tributes is sensitive and therefore the values of their at-
tributes should not be visible in combination. Association
constraints can reflect the sensitivity of the association it-
self or the fact that the association can cause inference of
other sensitive information. Note how confidentiality con-
straints, while simple, capture different privacy requirements
that may need to be expressed.

Example 2.1. Figures 1(a)-(b) illustrate relation Hospi-
tal and the confidentiality constraints over it. Here, c0 is a
singleton constraint stating that the list of SSNs of patients
is sensitive; c1 and c2 state that the associations between
Patient and Illness, and between Patient and Doctor,
respectively, are sensitive; c3 and c4 state that the associa-
tions among Birth, ZIP, and Illness, and among Birth,
ZIP, and Doctor are sensitive (the rationale is that pair
〈Birth,ZIP〉 is a quasi-identifier [9] for patients and there-
fore constraints on the association of Patient with other
attributes apply also to it).

It is easy to see that the satisfaction of a confidentiality
constraint ci also implies the satisfaction of any other con-
fidentiality constraint cj such that ci⊆cj . Since constraints
subsumed by others are redundant, we ignore them in the
following and assume the set C of constraints to be well de-
fined , that is, ∀ci,cj∈C, i 6= j: ci 6⊆cj .

Confidentiality constraints can be enforced by properly
fragmenting data, that is, by not including sensitive at-
tributes in fragments and splitting sensitive associations

Hospital
SSN Patient Birth ZIP Illness Doctor

123-45-6789 Page 56/12/9 94142 hypertension David
987-65-4321 Patrick 53/3/19 94141 gastritis Daisy
246-81-3579 Patty 58/5/18 94139 flu Damian
135-79-2468 Paul 53/12/9 94139 asthma Daniel
975-31-8642 Pearl 56/12/9 94142 gastritis Dorothy
864-29-7531 Philip 57/6/25 94141 obesity Drew
246-89-7531 Phoebe 60/7/25 94142 measles Dennis
135-79-8642 Piers 53/12/1 94140 hypertension Daisy

(a)

c0 = {SSN}
c1 = {Patient,Illness}
c2 = {Patient,Doctor}
c3 = {Birth,ZIP,Illness}
c4 = {Birth,ZIP,Doctor}

(b)

v1 = Patient ∨ ZIP

v2 = (Birth ∧ ZIP)∨ SSN

v3 = Illness ∧ Doctor

(c)
F l

Birth ZIP

l1 56/12/9 94142
l2 53/3/19 94141
l3 58/5/18 94139
l4 53/12/9 94139
l5 56/12/9 94142
l6 57/6/25 94141
l7 60/7/25 94142
l8 53/12/1 94140

Fr

Illness Doctor

hypertension David r1

gastritis Daisy r2

flu Damian r3

asthma Daniel r4

gastritis Dorothy r5

obesity Drew r6

measles Dennis r7

hypertension Daisy r8

(d)

Figure 1: A plaintext relation (a), confidentiality
constraints (b), visibility requirements (c), and frag-
mentation (d)

among different fragments. We are then interested in frag-
mentations of the original relation. A fragmentation is a
set of fragments, where each fragment is a subset of the
attributes of the original relation. In other words, a frag-
ment represents a (projection) view on the relation, and a
fragmentation is a set of such views.

Definition 2.2 (Fragmentation). Given a relation
schema S , a fragmentation F of S is a set of fragments
F={F 1, . . . ,Fm} such that ∀F∈F, F⊆S .

Note that, according to our definition, a fragmentation
does not need to be complete, that is, it does not need to
include all the attributes of the original relation (our frag-
ments are therefore different from fragments in [1, 2]). A
fragment instance, denoted f , of a fragment F of S is the set
of tuples of relation s over S projected on the attributes in
F . We assume possible duplicates to be maintained in frag-
ment instances, that is, fragment instances have the same
cardinality as the original relation. The reason for this is to
frame our problem in the most general setting which, from
a protection point of view, exposes more information (the
cardinality of occurrences of the values of attributes par-
ticipating in a confidentiality constraint is exposed). For
simplicity, in the following, when clear from the context, we
refer to fragment instances simply using the term fragments.

A fragmentation is safe if the information it releases does
not violate the constraints. In other words, a safe fragmen-
tation should not allow visibility of sensitive attributes or
sensitive associations, neither directly (in a single fragment)
nor indirectly (by joining fragments). This is formally stated
by the following definition.

1371



Definition 2.3 (Safe fragmentation). Given a
fragmentation F over a relation schema S and a set C of
confidentiality constraints over S , we say that F is safe
with respect to C iff both the following conditions hold:

1. ∀F∈F, ∀c∈C: c 6⊆F ;

2. ∀F i,F j∈F, i 6= j: F i∩F j=∅.

Condition 1 ensures direct obedience of all the con-
fidentiality constraints (no explicit visibility of sensitive
attributes or associations), and condition 2 ensures in-
direct obedience (the absence of attributes in common
between fragments prevents joins on fragments to re-
trieve associations). Figure 1(d) illustrates fragmentation
F={{Birth,ZIP}, {Illness,Doctor}} over the relation in
Figure 1(a), which is safe with respect to the constraints in
Figure 1(b). Note that, for the sake of readability, the semi-
tuples (l1, . . . , l8 and r1, . . . , r8) in the two fragments have
been reported following the same order of the tuples in the
original relation hospital.

3. VISIBILITY REQUIREMENTS
Visibility requirements express views over data that the

fragmentation should satisfy. Views can express that cer-
tain attributes should be visible or that certain attributes
should be released in conjunction, meaning that their asso-
ciation, not only their individual values, should be released.
Views can also specify alternative visibility options over the
data, giving different choices on the attributes, or sets of
attributes, that can be released (provided that at least one
of the options is satisfied).

With a very general setting, we assume that a visibility
requirement can be any monotonic boolean formula over at-
tributes of the original relation schema.

Definition 3.1 (Visibility requirement). Given a
relation schema S (a1, . . . , an), a visibility requirement v
over S is a monotonic boolean formula over {a1, . . . , an}.

The reason for considering only monotonic formulas is
that negations over attributes correspond to requests for
non-visibility over some attributes, and are therefore cap-
tured by confidentiality constraints. Note that, besides en-
suring clarity of the specifications, the clear separation be-
tween visibility requirements and confidentiality constraints
is a desirable design feature. In fact, in many real-world
scenarios, the specification of confidentiality constraints on
one side, and the specification of desired views of data to be
published on the other side, belong to different authorities.

Intuitively, visibility requirements impose the inclusion, or
joint inclusion, of attributes in fragments of a fragmentation.
The semantics of a visibility requirement is therefore easily
explained with reference to fragments. Let v be a visibility
requirement and F be a fragmentation:

• v=a is satisfied if attribute a belongs to a fragment
(i.e., ∃F∈F : a∈F );

• v=v i∧v j is satisfied iff v i and v j are satisfied by the
same fragment (e.g., v=a1∧a2 is satisfied iff ∃F∈F :
a1,a2∈F );

• v=v i∨v j is satisfied if at least one of v i or v j is sat-
isfied by a fragment (e.g., v=a1∨a2 is satisfied iff
∃F∈F : a1∈F or a2∈F ).

Example 3.1. Figure 1(c) reports possible visibility re-
quirements over relation Hospital in Figure 1(a). Here,
v1 states that either Names of patients or their ZIP codes
should be released; v2 states that either Birth dates and ZIP

codes of patients in association should be released or the SSN

of patients should be released; v3 states that Illnesses and
Doctors, as well as their association, should be released.

The semantics of a set of visibility requirements is that
all the requirements should be satisfied, not necessarily by a
single fragment. Note the difference between stating two vis-
ibility requirements v i,v j as: 1) two separate requirements
v i,v j , meaning that both v i and v j should be satisfied by
the same or by a different fragment; 2) a single (and-ed)
requirement vz=v i∧v j , meaning that both v i and v j should
be satisfied by the same fragment; and 3) a single (or-ed)
requirement vz=v i∨v j , meaning that at least one of v i or
v j should be satisfied by a fragment.

By interpreting a fragment F as a conjunction over the at-
tributes composing the fragment (interpreting attributes as
boolean variables), satisfiability of a visibility requirement
can be expressed in terms of the usual implication (→) be-
tween logic formulas and can be formally defined as follows.

Definition 3.2 (Satisfies). Given a relation schema
S (a1, . . . , an) and a set V of visibility requirements over S ,
a fragmentation F of S satisfies V, denoted F→V, iff ∀v∈V,
∃F∈F : F→v .

The fragmentation in Figure 1(d) satisfies the visibility
requirements in Figure 1(c), since F l→v1, F l→v2, and
F r→v3.

4. CORRECT AND MINIMAL FRAGMEN-
TATION

Given a relation, a set of confidentiality constraints, and a
set of visibility requirements, our problem is to determine a
correct fragmentation, that is, a fragmentation that is safe
with respect to the constraints and satisfies the visibility
requirements. Correctness is formally defined as follows.

Definition 4.1 (Correctness). Given a relation
schema S (a1, . . . , an), a set C of confidentiality constraints
over S , and a set V of visibility requirements over S , a
fragmentation F of S is correct wrt C and V iff: F is
safe with respect to C (Definition 2.3), and F satisfies V

(Definition 3.2).

Also, we aim at a minimal fragmentation, that is, a frag-
mentation that minimizes the number of fragments. Indeed,
avoiding splitting attributes when not needed for satisfying
the constraints is convenient, as it maximizes the visibility
over the data. In fact, maintaining attributes together in a
fragment releases not only their values but their association,
which, if not protected (directly or indirectly) by confiden-
tiality constraints, can be safely released. Our problem is
then formally defined as follows.

Problem 4.1 (Min-CF). Given a relation schema
S (a1, . . . , an), a set C of confidentiality constraints over S ,
and a set V of visibility requirements over S , determine (if
it exists) a fragmentation F such that:

1. F is a correct fragmentation (Definition 4.1);
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2. ∄F ′ s.t. F ′ is correct and the number of fragments of
F ′ is less than the number of fragments of F.

Theorem 4.1. The Min-CF problem is NP-hard.

Our approach to solve the Min-CF problem, identifying
the optimum solution, is based on the public availability of
SAT solvers (see Appendix A), which support the efficient
resolution of SAT problems even with millions of variables.

Since we are clearly interested only in fragmentations that
are correct and minimal , in the following we simply use the
term fragmentation to refer to a fragmentation that satisfies
both properties.

5. PUBLISHING LOOSE ASSOCIATIONS
While fragments, by definition, cannot be joined (as this

would imply a violation of confidentiality constraints), in
this section we put forward the idea of publishing a loose
association among their tuples (sub-tuples of the original
relation) to release some information on the association ex-
isting in the original relation, provided a given privacy de-
gree of the association is respected. Intuitively, our loose
associations hide tuples participating in the associations in
groups and provide information on the associations only at
the group level. Loose associations, while not impacting
privacy (as dictated by the privacy degree) provide enriched
utility of the published data, supporting, for example, aggre-
gate queries and data mining. In the following, we focus on
the problem of publishing a loose association between a pair
of fragments, denoted F l and F r (left and right fragment,
respectively), in F .

In this paper, we assume the absence of “external knowl-
edge”, that is, of additional information describing the rela-
tionship between values in the two fragments and that could
be exploited for the reconstruction of some of the original
associations. We explicit this requirement by assuming that
attributes in the two fragments are independent (i.e., their
relationship is not known by the adversary, in a statistical
sense, apart from what can be known by the observation of
the published data).

5.1 k-grouping
We start by defining grouping over fragment instances.

Since the size of the groups into which tuples in fragments
are clustered impacts our problem, we characterize a group-
ing with an index denoting the lower bound on the size that
groups may have.

Definition 5.1 (k-Grouping). Given a fragment in-
stance f i and a set GIDi of group identifiers, a k -grouping
over f i is a surjective function Gi:f i→GIDi such that ∀gi ∈

GIDi :| G−1
i (gi) |≥ k.

A k -grouping function associates with each tuple in a frag-
ment a group identifier in such a way that each group has
at least k tuples mapping to it. A k -grouping is minimal if
it minimizes the size of the groups, provided that k is re-
spected, or, equivalently, it maximizes the number of groups
into which tuples are mapped. Formally, a k -grouping over
a fragment f i is minimal iff the cardinality of the image
of Gi over f i is equal to the floor of the ratio between the

cardinality of f i and k , that is, |GIDi| =
j

|f i|

k

k

.

In the following, we consider the problem of grouping two
fragments f l and f r and we will refer to a (k l,kr)-grouping

l2 53/3/19 94141

l4 53/12/9 94139

ff

l1 56/12/9 94142

l6 57/6/25 94141

ff

l3 58/5/18 94139

l5 56/12/9 94142

ff

l8 53/12/1 94140

l7 60/7/25 94142

ff

• •

•
VVVVVVVVV •

•

hhhhhhhhh •

•
VVVVVVVVV •

•

hhhhhhhhh •

•
VVVVVVVVV •

•

hhhhhhhhh •

• •

ff

gastritis Daisy r2

hypertension David r1
ff

asthma Daniel r4

flu Damian r3
ff

obesity Drew r6

measles Dennis r7
ff

gastritis Dorothy r5

hypertension Daisy r8

Figure 2: An example of (2,2)-grouping

to denote with a single term the two components: a k l-
grouping over f l and a kr-grouping over f r. A (k l,kr)-
grouping is said to be minimal iff both its grouping com-
ponents are minimal. Figure 2 illustrates an example of
minimal (2,2)-grouping over the fragments in Figure 1(d),
where each group contains two tuples. For simplicity, given
a tuple ti in relation s over S , we denote with l i the sub-
tuple ti[F l] in fragment f l and with r i the sub-tuple ti[F r]
in fragment f r. The grouping of two fragments, together
with the original relation specifying associations among the
tuples in fragments, induces an association among groups,
formally defined as follows.

Definition 5.2 (Group association). Given a frag-
mentation F of S , a relation s over S , and two grouping
functions Gl, Gr defined for f l and f r over F l, F r in F, a
group association A⊆GIDl×GIDr over f l and f r is a set of
pairs such that:

• |s |=|A|;

• it is possible to define a bijective mapping between
s and A that associates each t∈s with a pair
(Gl(l ),Gr(r ))∈A.

Figure 2 graphically illustrates the group association in-
duced by the (2,2)-grouping by means of edges connecting
black dots that correspond to tuples in the groups. Intu-
itively, each edge represents the association between a tuple
in a group of the left fragment with a tuple in a group of
the right fragment.

Note that Definition 5.2 assumes a one-to-one correspon-
dence between tuples in the original relation and correspond-
ing semi-tuples in each fragment. This is consistent with the
fact that possible duplicates in fragments are maintained
and fragments therefore have the same cardinality as the
original relation.

The protection offered by a group association can be com-
promised by the presence, within a group, of tuples that
have the same values over attributes whose association with
some attributes in the other fragment is sensitive. It is not
sufficient to guarantee that groups do not contain duplicate
tuples. Indeed, there can be tuples that, although different,
have the same values for the attributes involved in a confi-
dentiality constraint. The following definition captures the
relationship among tuples carrying the same values for at-
tributes that, together with the other fragment, would cover
a confidentiality constraint.

Definition 5.3 (Alike). Given a set C of confiden-
tiality constraints, two fragments F l and F r, and their
instances f l and f r, two tuples l i,l j∈f l (r i,r j∈f r, resp.)
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F l

Birth ZIP G

l1 56/12/9 94142 bz2
l2 53/3/19 94141 bz1
l3 58/5/18 94139 bz3
l4 53/12/9 94139 bz1
l5 56/12/9 94142 bz3
l6 57/6/25 94141 bz2
l7 60/7/25 94142 bz4
l8 53/12/1 94140 bz4

(a)

A

Gl Gr

bz1 id1
bz1 id2
bz2 id1
bz2 id3
bz3 id2
bz3 id4
bz4 id3
bz4 id4

(b)

Fr

Illness Doctor G

hypertension David id1 r1

gastritis Daisy id1 r2

flu Damian id2 r3

asthma Daniel id2 r4

gastritis Dorothy id4 r5

obesity Drew id3 r6

measles Dennis id3 r7

hypertension Daisy id4 r8

(c)

Figure 3: An example of 4-loose association

are said to be alike wrt a constraint c∈C, with c⊆F l∪F r,
denoted l i≃c l j (r i≃c rj , resp.), iff l i[c∩F l]=l j[c∩F l]
(r i[c∩F r ]=rj [c∩F r], resp.). Two tuples are said to be alike
wrt a set C of constraints, denoted ti≃Ctj , if they are alike
wrt at least one constraint c∈C.

According to Definition 5.3, two tuples in fragment f l (f r,
resp.) are alike wrt a constraint c covered by the two frag-
ments, if they have the same values for the attributes of F l

(F r, resp.) appearing in c. For instance, with respect to
the fragments in Figure 2, l1≃c3

l5. Note that the reason for
considering only confidentiality constraints completely cov-
ered by the two fragments is that, by definition, all the other
confidentiality constraints cannot be violated by merging the
two fragments (as at least one attribute would be missing).
Since the set C of confidentiality constraints is given, in the
following we omit C as a subscript of the alike relationship
between tuples (i.e., we write ti≃tj instead of ti≃Ctj).

5.2 k-loose associations
We are now ready to define our concept of loose asso-

ciation, characterized by a degree k of protection, over an
association induced by a grouping.

Definition 5.4 (k-Looseness). Given a set C of con-
fidentiality constraints and a group association A over f l

and f r, A is said to be k-loose iff:

• ∀gl ∈ GIDl : T =
S

z{G
−1
r (gz) | (gl, gz) ∈ A} =⇒

|T |≥ k , and ∀r i, rj ∈ T, i 6= j : r i 6≃ rj;

• ∀gr ∈ GIDr : T =
S

z{G
−1
l (gz) | (gz, gr) ∈ A} =⇒

|T |≥ k, and ∀l i, lj ∈ T, i 6= j : l i 6≃ lj .

According to Definition 5.4, an association is k -loose iff
for each group gl in the left (group gr in the right, resp.)
fragment, the union of the tuples in all groups gz with which
gl (gr, resp.) is associated is a set that has cardinality at
least k and that does not contain any two tuples that are
alike. Intuitively, an association is k -loose iff for each real
association existing in the original relation it releases at least
k possible distinct associations.

Figure 3 illustrates the 4-loose association induced by the
(2,2)-grouping in Figure 2. The k-loose association is pub-
lished as a relation A(Gl,Gr) whose tuples correspond to
pairs (gli ,grj

) in A. Also, fragments are enriched with an
attribute G, reporting, for each tuple l∈f l (r∈f r, resp.), the
group to which the tuple belongs.

Clearly, a k -loose association is also k ′-loose for any k ′≤k .
For lower privacy requirements (i.e., smaller k), however, a

more precise information on the associations, that is, work-
ing on smaller groups, would suffice. Since the main reason
for publishing loose associations is to provide information on
the original relation, provided that a degree of protection k
is guaranteed, smaller groups, which imply more precise in-
formation, should then be preferred. Our goal is therefore to
determine a minimal k-loose association. Since the associa-
tion is induced by the groupings over the two involved frag-
ments, minimality of the association means requiring min-
imality of the corresponding groupings, as formally stated
by the following problem.

Problem 5.1 (Min k -loose). Given a set C of confiden-
tiality constraints, a fragmentation F of S , a relation s over
S , two fragments F l, F r in F, their instances f l and f r, and
a privacy degree k, determine a minimal (k l,kr)-grouping
such that:

• the induced group association A is k-loose;

• ∄ a (k ′

l,k
′

r)-grouping over f l and f r, with k ′

l·k
′

r<k l·kr,
such that the induced group association A′ is k-loose.

Theorem 5.1. The Min k -loose problem is NP-hard.

Note that the Min k -loose problem may not always have a
solution. This happens, for example, when there are sensi-

tive values appearing with more than |s |

k
occurrences. If few

sensitive values cause the problem, the corresponding tuples
can be suppressed, like in k -anonymity approaches [3, 7, 9].

5.3 (kl, kr)-grouping and k-looseness
As it is clear from Definition 5.4, there is a correspon-

dence between the degree of the groupings and the degree
of k -looseness that the induced group association can pro-
vide. Trivially, a (k l,kr)-grouping cannot certainly provide
k -looseness for a k>k l·kr . Whether it provides k -looseness
for lower values of k depends on how the groups are defined.
In the following, we introduce three properties of grouping
whose satisfaction ensures satisfaction of k -looseness with a
minimal grouping.

The first property we introduce is heterogeneity within
each group.

Property 5.1 (Group heterogeneity). Given a
set C of confidentiality constraints, two fragments F l and
F r in F, and their instances f l and f r, grouping functions
Gl over f l and Gr over f r satisfy group heterogeneity iff
∀f i∈{f l,f r}, ∀tz,tw∈f i: tz≃tw =⇒ Gi(tz)6=Gi(tw).

Group heterogeneity ensures diversity of the tuples ap-
pearing in the groups with respect to the attributes involved
in the confidentiality constraints covered by the fragments.
For instance, the (2,2)-grouping in Figure 2 satisfies Prop-
erty 5.1, since all the groups of the left fragment, as well
as all the groups of the right fragment, have different val-
ues for the attributes appearing in constraints c3 and c4

in Figure 1(b). The cardinality of a heterogeneous group
provides a measure of diversity of the group, that is, of the
number of different values for attributes participating in a
confidentiality constraint.

The second property we introduce is heterogeneity of the
groups with which each group is associated (in the induced
association).
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Property 5.2 (Association heterogeneity). A
group association A satisfies association heterogeneity iff
∀(gi,gz),(gj,gw)∈A:

• i = j =⇒ z 6= w;

• z = w =⇒ i 6= j.

Intuitively, association heterogeneity guarantees that the
group association does not contain duplicates. Association
heterogeneity of a (k l,kr)-grouping ensures that for each real
tuple in the original relation there are at least k l·kr pairs in
the group association that may correspond to it. The group
association in Figure 2 satisfies Property 5.2, since there is
at most one edge between each pair of groups.

Association heterogeneity provides only a superficial in-
equality among associations. As a matter of fact, if the
different groups associated with a given group have tuples
which are alike (Definition 5.3), the k l·kr associated tuples
do not correspond to k l·kr different values for the attributes
involved in a constraint covered by the fragments.

Our third property captures the need for heterogeneity of
the groups associated with the same group.

Property 5.3 (Deep heterogeneity). Given a set
C of confidentiality constraints, a group association A over
f l and f r satisfies deep heterogeneity iff ∀(gi,gz),(gj,gw)∈A:

• i = j =⇒ ∄rz,rw: rz∈G
−1
r (gz),rw∈G

−1
r (gw), rz≃rw;

• z = w =⇒ ∄l i,l j : l i∈G
−1
l (gi),l j∈G

−1
l (gj), l i≃l j.

Deep heterogeneity requires that the association induced
by the grouping be such that no group is associated with
two groups that contain alike tuples. The (2,2)-grouping
in Figure 2 satisfies Property 5.3, since each group of the
left (right, resp.) fragment is associated with two groups
of the right (left, resp.) fragment that contain tuples with
different values for attributes Illness and Doctor (for the
pair 〈Birth,ZIP〉, resp.).

If a (k l,kr)-grouping and its induced association satisfy
the three properties above, the induced association is guar-
anteed to be k -loose with k≤k l·kr. If the (k l,kr)-grouping
is minimal, the association is a minimal k -loose association
for k=k l·kr . This is captured by the following theorem.

Theorem 5.2. Given a set C of confidentiality con-
straints, a fragmentation F of S , a relation s over S , two
fragments F l and F r in F, their instances f l and f r, and a
minimal (k l,kr)-grouping that satisfies Properties 5.1, 5.2,
and 5.3, then the group association A induced by the (k l,kr)-
grouping is k-loose (Definition 5.4) for each k≤k l·kr , and is
a minimal k-loose for k=k l·kr.

Theorem 5.2 provides us with the nice property that, to
satisfy a given degree of k -looseness, any (k l,kr)-grouping
satisfying the three properties above and such that k≤k l·kr

would work. For instance, k -looseness of 12 could be pro-
vided, among other choices, with a (4,3)-grouping or with a
(6,2)-grouping; clearly even a (12,1)-grouping would work.

The case where either k l or kr is equal to 1 deserves a sep-
arate mention. We make the note for the case where kr=1
(the case for k l=1 is analogous). Since in a (k ,1)-grouping
the right fragment is split into singleton groups, by defini-
tion, the group association is such that no two groups of

l2 53/3/19 94141

l4 53/12/9 94139

l1 56/12/9 94142

l3 58/5/18 94139

9

>

>

=

>

>

;

8

>

>

<

>

>

:

• •

• •

• •

• •

gastritis Daisy r2

asthma Daniel r4

hypertension David r1

flu Damian r3

l8 53/12/1 94140

l5 56/12/9 94142

l6 57/6/25 94141

l7 60/7/25 94142

9

>

>

=

>

>

;

8

>

>

<

>

>

:

• •

• •

• •

• •

hypertension Daisy r8

gastritis Dorothy r5

obesity Drew r6

measles Dennis r7

Figure 4: An example of (4,1)-grouping

the left fragment are associated with the same group of the
right fragment. Given this property, we refer to a group-
ing where either k l or kr is equal to 1 as a flat grouping.
Figure 4 illustrates an example of flat grouping with k l=4.
Intuitively, a flat grouping corresponds to slicing the original
relation into sets of tuples of size at least k and publishing,
for what concerns the associations, instead of the exact val-
ues for the attributes in the left fragment, the groups into
which they are mapped (exact values do remain available in
the fragments). Note that since our approach protects the
association, the k -looseness applies to the association as a
whole (i.e., also to the right fragment). In fact, in the as-
sociation induced by a (k ,1)-grouping respecting the three
properties above, each tuple in the right fragment will also
be associated with at least k tuples in the left fragment. It
is nice to see how a (k ,1)-grouping resembles the approach
of k -anonymity [9] (slicing the original relation in different
clusters and generalizing part of it) but, working on asso-
ciations and thanks to the heterogeneity properties it also
captures at the same time the concept of ℓ-diversity [8] (with
ℓ=k). Apart from the analogy for this particular case, we
note that our problem and solution are fundamentally dif-
ferent from the k -anonymity problem: in our approach, the
values appearing in the original relation are published at
the detailed level in the fragments, while it is the associa-
tion that is obfuscated.

When neither k l nor kr is equal to one, our loose associ-
ations result sparse (see Figure 2). Maintaining the size of
groups small, sparse grouping guarantees larger applicabil-
ity, while granting the same level of protection as flat group-
ing. Intuitively, being the alike relationship non-transitive
when at least two constraints are involved, a sparse group-
ing might find a solution even when a flat grouping does
not. When only one constraint is involved, and therefore
the alike relationship is transitive, sparse grouping and flat
grouping are equally applicable (i.e., if there is a solution
for one there is also a solution for the other and viceversa).
The following theorem formalizes this relationship among
the flat and sparse groupings.

Theorem 5.3. Given two fragments F l and F r in F,
their instances f l and f r, a privacy degree k, and a number
n of constraints c such that c⊆F l∪F r, then

1. if n = 1: ∃ a flat grouping providing k-looseness ⇐⇒

∃ a sparse grouping providing k-looseness;

2. if n > 1:

(a) ∃ a flat grouping providing k-looseness =⇒
∃ a sparse grouping providing k-looseness;

(b) ∃ a sparse grouping providing k-looseness 6=⇒
∃ a flat grouping providing k-looseness.
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6. DISCUSSION
The publication of loose associations, in addition to frag-

ments, increases the utility of data publication, at the same
time clearly bringing some exposure of sensitive associations
and therefore decreasing privacy. As a matter of fact, pub-
lishing loose associations provides some information on the
possible combinations of tuples in the different fragments, as
it restricts the possible combinations to those allowed by the
loose associations. In this section, we discuss the probability
that an observer can establish on the fact that an association
between values exists in the original relation, depending on
whether she has knowledge of the fragments only or also of
the loose associations.

We first introduce some notations and describe how to
model the exposure of sensitive associations in terms of
probabilities. For each α=(l i,rj) expressing the associa-
tion of tuple l i in f l with a tuple rj in f r, we denote with
P(α ∈ s |f l, f r) the probability of association α to be present
in the original relation s , given the knowledge of fragments
f l and f r. We denote with P(α ∈ s |f l, f r, A) the probabil-
ity of association α to be present in the original relation
s , given the knowledge of fragments f l and f r and of the
loose association A. Since our discussion focuses on given
s , f l, and f r, to simplify notation, in the following we will
write P(α) as a shorthand for P(α ∈ s |f l, f r) and PA(α) as
a shorthand for P(α ∈ s |f l, f r, A).

Our goal is to protect sensitive associations as defined
in the confidentiality constraints and therefore we need to
worry about the probability of the associations among tu-
ples and especially of their sensitive values. For instance, if
two tuples l i, l j in the left fragment are alike wrt a given
constraint c , the probability of exposing an association of
their sensitive values wrt c is, for all r in f r, the composition
of the probability that: 1) l i is associated with tuple r , and
2) l j is associated with tuple r . By exploiting the indepen-
dence assumption, such a probability is P(l i, r ) + P(lj , r )
− (P(li, r ) · P(lj , r )). We then model the probability of
exposing values that are sensitive wrt a given constraint c
as a probability among sets of tuples that are alike wrt c .
Analogous reasoning applies to PA(), that is, to the expo-
sure of sensitive values of alike tuples if a loose association A
is published. Given a constraint c , we extend the notion of
probabilities over equivalence classes of tuples that are alike
wrt the constraint. In the following, we denote with P(L, R)
and PA(L, R) the composite probability (for P() and PA())
of the independent event (l ,r ) for each l∈L, r∈R, where
L and R are equivalence classes of tuples that are alike, in
their corresponding fragment, wrt c .

We can now evaluate the exposure of associations among
tuples and values without or with a k-loose association. If no
association is published, but only the fragments are, every
tuple in a fragment is equally likely to be associated with any
other tuple in the other fragment, that is, P(l i, rj)= 1/|s |,
for each l i∈f l, rj∈f r. For instance, with respect to the
fragments in Figure 1(d), P(l1, r1) = 1/8. The probability
of associating values appearing in a fragment with values
appearing in the other fragment (and together covering a
constraint c), depends on whether the fragments contain
tuples that are alike wrt c . Basically, tuples that are alike
wrt c have to be considered together, since the exposure
of the sensitive values in them is the composite probability
over the set of such tuples, as discussed above. Figure 5
illustrates the exposure of the association, that is, the prob-
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Figure 5: Probabilities of associations between tu-
ples (a) and values alike wrt c3 (b) if no association
is published
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Figure 6: Probabilities of associations between tu-
ples (a) and values alike wrt c3 (b) if the 4-loose
association of Figure 3 is published

ability of the association actually holding in the original re-
lation for tuples (Figure 5(a)) and for sensitive values wrt c3

(Figure 5(b)), respectively. Each row (column, resp.) cor-
responds to a tuple (Figure 5(a)) or to a set of tuples alike
wrt c3 (Figure 5(b)) in the left (right, resp.) fragment. Each
entry reports the probability that the association between
the tuple (or set of tuples) in the row with the tuple (or set
of tuples) in the column exists in the original relation.

The publication of a k -loose association reduces the uncer-
tainty over the associations actually belonging to the original
relation, as it allows discarding associations not possible ac-
cording to the released k -loose association. The probability
of associating a tuple in a fragment with a tuple in another
fragment, given the publication of a k -loose association, is at
most 1/k . For instance, Figure 6 illustrates the probability
of the association actually holding in the original relation for
tuples (Figure 6(a)) and for sensitive values wrt constraint
c3 (Figure 6(b)), respectively, when the 4-loose association
in Figure 3 is released. Symbol ‘-’ is used for cells whose val-
ues are equal to 0. Note that, in the case of sparse grouping,
the distribution of the probabilities of associating tuples in
the two fragments results sparse. However, each row and
each column of the table reporting such probabilities (e.g.,
Figure 6(a)) has k occurrences of a 1/k probability.

The utility of publishing a loose association can then be
estimated by computing the average over the variation of
probability, that is, |PA(Li, Rj) − P(Li, Rj)| for each as-
sociation. In this way, a threshold δmax regulating the
maximum increase of exposure allowed can be specified
and k -loose association A could be safely published only
if δmax ≥ (PA(Li, Rj)−P(Li, Rj)), for all tuples, or sets of
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alike tuples Li, Rj in the left and right fragments, respec-
tively.

We evaluated the utility of loose associations in terms of
the precision in responding to queries. We performed several
experiments with a varying degree of k looseness and differ-
ent query workloads (see Appendix B). As expected, the
experiments show that the level of precision progressively
decreases as k increases and that the critical parameter in
the configuration is the overall k, rather than k l and kr.

We close this section with a note on the extension of our
approach to loose associations among an arbitrary number
of fragments. To build a loose association over fragments
{F 1, . . . ,Fn}, a ki-grouping is defined on each fragment
F i and the n-ary association is the table A with tuples
{g1, . . . , gn} derived from the tuples in the original rela-
tion. The definitions of group association, alikeness, as-
sociation heterogeneity, and deep heterogeneity have to be
extended to take into consideration the fact that the as-
sociation puts values of different fragments in relationship
and that constraints may involve different sets of fragments.
With respect to the protection degree, the loose associa-
tion is guaranteed to be k-loose with any k ≤ min(k i · k j)
∀i, j = 1, . . . , n, i 6= j. Also, any binary association ob-
tained projecting the n-ary association over the groupings
of two fragments F l and F r will be guaranteed to be k-loose
with any k ≤ k l · kr. Since experiments show that utility is
correlated with the value of k, any query involving pairs of
fragments will continue to enjoy the same utility as in the
case of individual binary k-loose associations.

7. RELATED WORK
Several research efforts have addressed the problem of pro-

tecting privacy in data publication [4, 7, 8, 9, 10], also con-
sidering data utility (e.g., [6]). Among them, Anatomy [10]
presents some similarities with our proposal. The tuples of
the original relation are clustered in groups of ℓ tuples and
a fragmentation is produced by splitting attributes between
the quasi-identifier (on one side) and the sensitive attribute
(on the other side) and reporting the group identifier in
both fragments. While our proposal and Anatomy share
the idea of fragmenting data and publishing associations
at the group level, Anatomy considers only confidentiality
constraints protecting the association of a single sensitive
attribute with the respondents’ quasi-identifier. Our work
supports the presence of multiple of such attributes and, in
general, it addresses a more complex scenario, accommodat-
ing generic confidentiality constraints and visibility require-
ments that capture the needs for data publication. Also, the
use of two parameters instead of a single k or ℓ, grants us
more flexibility in grouping. In scenarios where Anatomy
is applicable, loose associations provide the same protection
and utility guarantees as Anatomy (see Appendix B), which
can then be considered a specific instance of our approach.

The use of data fragmentation to solve confidentiality con-
straints has been first proposed, in conjunction with encryp-
tion, in the context of data outsourcing [1, 2]. Our proposal,
besides departing from the use of encryption, addresses a
completely different problem, also introducing visibility re-
quirements and loose associations.

The idea of considering associations among groups of tu-
ples, in contrast to associations among tuples, has been first
introduced in [4], where the authors aim at protecting many-
to-many associations between two relations. Although our

work and the proposal in [4] share the same high-level goal of
protecting the sensitive associations, the two approaches are
considerably different. First, we frame and solve a more gen-
eral problem of data publishing where both confidentiality
constraints and visibility requirements need to be respected.
Also, in [4] duplicate values were not considered, thus leav-
ing all the associations involving non-key attributes with
multiple occurrences potentially exposed. Our approach
considers the case of duplicate values and provides a general
formalization of the problem, defining different heterogene-
ity properties which enjoy different levels of protection.

8. CONCLUSIONS
We presented an approach that opens a new direction for

managing the problem of publishing data while respecting
the privacy of sensitive information. Our approach enjoys
large applicability, with the consideration of generic confi-
dentiality constraints as well as visibility requirements ex-
pressing demands for data publication. We believe that frag-
mentation and loose associations can become an important
modeling for the exploitation of the huge potential deriving
from privacy-compliant access to large collections of data.
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APPENDIX

A. COMPUTING A CORRECT AND MINI-
MAL FRAGMENTATION

The translation of Problem 4.1 into an instance of the SAT
problem exploits the interpretation of the inputs to Prob-
lem 4.1 as boolean formulas. Visibility requirements are al-
ready represented as boolean formulas. Each confidentiality
constraint can be represented with a boolean formula as a
conjunction of the attributes appearing in the constraint. A
possible fragmentation representing a solution to the prob-
lem can be interpreted as a truth assignment over boolean
variables of the problem. Since a fragmentation corresponds
to a set of fragments, each of which is a set of attributes, we
need to distinguish the different fragments within the frag-
mentation (as we need different truth assignments for the
different fragments). For each attribute of the original rela-
tion we therefore need to specify a different variable for each
fragment in the fragmentation. More precisely, when consid-
ering m fragments, each attribute a∈S will have m instances
a1, . . . , am characterizing its truth value in the different frag-
ments. Confidentiality constraints, visibility requirements,
and heterogeneity properties to be satisfied need to take into
account these different instantiations. Given a confidential-
ity constraint c , or a visibility requirement v , we define the
instantiation of c (v , resp.) with respect to F i, denoted ci

(v i, resp.), as the boolean formula c (v , resp.) where all
the variables in c (v , resp.) are substituted by their i-th
instantiation.

Theorem A.1. Given a relation schema S (a1, . . . , an),
a set C of confidentiality constraints over S , and a set
V of visibility requirements over S , a correct fragmenta-
tion F composed of m fragments is a truth assignment for
variables ai

j , j = 1, . . . , n, i = 1, . . . , m, of the formula
ϕm = ϕm

C(1)
∧ ϕm

C(2)
∧ ϕm

V ∧ ϕm
min where:

• ϕm
C(1)

=

|C|
^

j=1

`

m
^

i=1

¬ci
j

´

• ϕm
C(2)

=

|S |
^

j=1

`

m
^

i,l=1
i6=l

¬(ai
j ∧ al

j)
´

• ϕm
V =

|V|
^

j=1

`

m
_

i=1

v i
j

´

• ϕm
min =

m
^

i=1

¬a i
j s.t. ∄v ∈ V, aj in v

Proof. Omitted for space reasons.

A truth assignment (if it exists) for variables appearing in
ϕm corresponds to a correct fragmentation composed of m
fragments. Each component of conjunctive formula ϕm ex-
presses conditions imposed by the input (confidentiality con-
straints and visibility requirements) and consequent proper-
ties to be guaranteed by the solution (fragmentation). Their
semantics is as follows:

• ϕm
C(1)

: every constraint must evaluate to false for every

fragment (condition 1 of Definition 2.3);

• ϕm
C(2)

: fragments should not have attributes in common,

that is, every attribute must have at most one instance

ϕ1
C(1)

=¬s1∧¬(p1∧i1)∧¬(p1∧d1)∧¬(b1∧z1∧i1)∧¬(b1∧z1∧d1)

ϕ1
C(2)

=∅

ϕ1
V

=(p1∨z1) ∧((b1∧z1)∨s1) ∧(i1∧d1)

ϕ1
min =∅

ϕ2
C(1)

=¬s1∧¬s2∧¬(p1∧i1)∧¬(p2∧i2)∧¬(p1∧d1)∧¬(p2∧d2)∧

¬(b1∧z1∧i1)∧¬(b2∧z2∧i2)∧¬(b1∧z1∧d1)∧¬(b2∧z2∧d2)

ϕ2
C(2)

=¬(p1∧p2)∧¬(b1∧b2)∧¬(z1∧z2)∧¬(i1∧i2)∧¬(d1∧d2)

ϕ2
V

=((p1∨z1)∨(p2∨z2))∧(((b1∧z1)∨s1)∨((b2∧z2)∨s2)) ∧
((i1∧d1)∨(i2∧d2))

ϕ2
min =∅

Figure 7: Computation of a fragmentation

assuming a true value in the solution (condition 2 of
Definition 2.3);

• ϕm
V : every visibility requirement must be satisfied by

some fragment (Definition 3.2);

• ϕm
min: attributes not appearing in visibility require-

ments should remain false in the solution, that is,
should not belong to any fragment. Note that this
component of the formula is not needed for the cor-
rectness of the solution. It can be used to specify that
attributes not explicitly mentioned in visibility require-
ments should not be released.

Theorem A.1 provides an instantiation of a SAT formula
for finding a correct fragmentation (if it exists) composed
of m fragments. Our approach for solving Problem 4.1 is
to iterate the evaluation of a SAT solver, starting with one
fragment (m = 1) and increasing fragments by one at each
iteration, until either a solution is found or m reaches the
minimum among: the cardinality of the constraints, the car-
dinality of the visibility requirements, and the number of
attributes appearing in visibility requirements. Such an ap-
proach retrieves a solution that has the minimum number
of fragments. This approach has been implemented and
showed significant performance (Appendix B).

Example A.1. Consider relation Hospital, the confi-
dentiality constraints, and the visibility requirements in Fig-
ure 1. Figure 7 illustrates the corresponding SAT formula-
tion for m = 1 and m = 2 fragments (attributes are de-
noted by their initials). The SAT instance for one frag-
ment is not satisfiable, while the SAT instance for two
fragments is satisfied either by assigning true to b

1, z
1,

i
2, and d

2 and false to all other variables, or by as-
signing true to p

1, b
1, z

1, i
2, and d

2 and false to all
other variables. The two corresponding fragmentations
are F1={{Birth,ZIP},{Illness,Doctor}} (Figure1(d)) and
F2={{Patient,Birth,ZIP},{Illness,Doctor}}.

If a fragmentation is minimal, merging any two of its frag-
ments would violate at least one confidentiality constraint,
as stated by the following theorem.

Theorem A.2. Given a set C and V of confidentiality
constraints and visibility requirements over S , respectively,
and a correct minimal fragmentation F, ∀F l,F r∈F, F l 6=F r,
∃c∈C:c⊆F l∪F r.
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Proof. The proof is by contradiction. Suppose that
∄c∈C:c⊆F l∪F r and that F ′=F\{F l,F r}∪{F z}, with
F z=F l∪F r. We prove that F ′ is a correct fragmentation.

• Since F is a safe fragmentation, ∀F∈F , ∀c∈C, c 6⊆F .
Also, by assumption, ∄c∈C:c⊆F z . Therefore F ′ satis-
fies the first condition in Definition 2.3.

• Since F is a safe fragmentation, ∀F i,F j∈F , i 6= j :
F i∩F j=∅. Therefore, ∀F i∈F

′, i 6= z : F i∩F z=∅, since
both F i∩F l=∅ and F i∩F r=∅. Then, F ′ satisfies the
second condition in Definition 2.3.

• Since F satisfies all visibility requirements, ∀v∈V,
∃F∈F :F→v . Since F z→F l and F z→F r, ∀v∈V:
F l→v ∨ F r→v , we have that F z→v . Therefore F ′

satisfies all visibility requirements (Definition 3.2).

We can then conclude that F ′ is a correct fragmentation
such that |F ′|=|F|−1. This implies that F is not a minimal
fragmentation of S , contradicting the initial hypothesis.

B. IMPLEMENTATION AND EXPERI-
MENTS

We implemented a prototype for the evaluation of the
behavior of the techniques presented in the paper. The pro-
totype is composed of two tools written in C/C++, im-
plementing the two algorithms that solve Problem 4.1 and
Problem 5.1, respectively. Experiments have been run on
a PC with two Intel Xeon Quad 2.0GHz L3-4MB, 12GB
RAM, four 1-Tbyte disks, and a Linux Ubuntu 9.04 oper-
ating system. The first tool solves Problem 4.1. It receives
as input a relational schema, a set of confidentiality con-
straints, and a set of visibility requirements. It produces
a solution to Problem 4.1 according to the translation into
SAT instances illustrated in Appendix A and passes it to
the Yices SAT solver (http://yices.csl.sri.com). We tested
our tool with randomly generated configurations, observing
significant performance. For instance, in less than 2 seconds
the system was able to generate and solve the fragmentation
for a configuration with 40 attributes and 16 among con-
straints and visibility requirements; the production of the
25,792 assertions to be passed as input to the SAT solver
required 1980 ms, whereas the SAT solver identified a so-
lution in 2 ms. Even considering much larger (probably
unreal) configurations, the time taken by the SAT solver
remained negligible. As an example, a configuration with
2500 attributes and 2000 among constraints and visibility
requirements required 16 ms to be solved. The scalability of
the tool provides confidence on the ability of the approach
to manage large database schemas and complex privacy and
visibility requirements.

The second tool solves Problem 5.1. It implements a
greedy algorithm to determine a (k l,kr)-grouping, inducing
a k -loose association, with k=k l·kr. The algorithm first de-
termines the maximum number of groups necessary for each
fragment (i.e., ⌊|s |/k l⌋ for F l and ⌊|s |/kr⌋ for F r). It then
scans all the tuples in the original relation s . For each tu-
ple t∈s , the algorithm tries to place the corresponding right
(left, resp.) sub-tuple r (l ) in a group of the right (left) frag-
ment that guarantees the satisfaction of Properties 5.1, 5.2,
and 5.3, and that contains less than kr (k l) sub-tuples. We
tested the precision of the queries executed on the fragments
when a k-loose association is published. The experiments
have been executed on both synthetic data sets and on the
CENSUS data set (IPUMS-USA, http://www.ipums.org);

we only report the results on the CENSUS data set since
those performed on synthetic data sets show similar behav-
iors. We ran two sets of experiments: the first set compared
our approach with Anatomy [10], to show how it exhibits
the same behavior in the scenarios supported by Anatomy;
the second set evaluated our approach with different values
of k. The results illustrated in the following were computed
as the average over 3 runs of the experiments, where each
run considered 1000 different queries. The queries are se-
lect from where SQL queries, returning the result of the
count aggregation function over a subset of the tuples in the
table. The where clause is characterized by a condition of
the form

Vn

i=1(
Wm

j=1 ai = vij
), where ai, i = 1, . . . , n, is an

attribute in F l∪F r and vij
, i = 1, . . . , n and j = 1, . . . , m,

is a value in the domain of attribute ai. The attributes and
values populating the conditions in the where clause of the
queries have been randomly chosen.

The first set of experiments aimed at a direct comparison
between the behavior of Anatomy and the use of a k-loose as-
sociation induced by a (1,k)-grouping (in these experiments,
k corresponds to parameter ℓ used in [10]). We retrieved
from the Web site of the authors of Anatomy the program
that was used to produce the experiments described in [10].
Our experiments, consistently with the code we retrieved,
started from the CENSUS data set by choosing a subset of
around 100,000 tuples (among the 500,000 in the data set),
and then analyzed the behavior of Anatomy with k = 10 and
k = 12. We considered a configuration with two fragments:
one fragment contained the quasi-identifier attributes, and
the other fragment contained the sensitive attribute. The er-
ror in the evaluation of the considered count queries showed
a difference of less than 0.1% between the configurations ob-
tained by [10] and those obtained by the use of our algorithm
for loose associations. This difference can be explained as
produced by the random generation of tuple groups, con-
firming the observation that Anatomy can be considered a
specific instance of loose associations.

The second set of experiments aimed at evaluating how
the error in the evaluation of queries evolves with the in-
crease in the value of k in our approach. We were also
interested in analyzing, for each k , the behavior of the tech-
nique for configurations with varying values of k l and kr

(always having k l · k r = k ). The set of constraints we used
in these experiments is more extensive than that used for
the previous set of experiments, to better solicit the hetero-
geneity properties. These configurations are not supported
by Anatomy. Figure 8 shows the results of the experiments
for configurations with k varying from 10 to 20, with the
following configurations: (1,10), (2,5); (1,12), (2,6), (3,4);
(1,14), (2,7); (1,16), (2,8), (4,4); (1,18), (2,9), (3,6); (1,20),
(2,10), (4,5). The experiments confirm two important as-
pects of our technique. First, the level of precision progres-
sively decreases as k increases. The point associated with
each value k represents the average of the experiments for
the different configurations; the error presents a regular in-
crease. Second, the critical parameter in the configuration
is the overall privacy degree k , rather than the values of
terms k l and kr. We can observe that the estimates for con-
figurations with the same k value typically lie close to each
other. Across all values of k, the precision of the queries
on the fragments mostly depends on the product of k l and
kr, rather than on the relative sizes of k l and kr. Hence,
configurations with both k l and kr greater than 1 produce
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Figure 8: Error obtained varying (k l,kr)

utility similar to that of (1,k) configurations, while offering
greater flexibility in their computation (Theorem 5.3).

C. PROOFS

Theorem 4.1. The Min-CF problem is NP-hard.

Proof. The proof is a reduction from the NP-hard prob-
lem of minimum hypergraph coloring, formulated as follows:
given a hypergraph H(N, E), determine a minimum coloring
of H, that is, assign to each vertex in N a color such that
adjacent vertices have different colors, and the number of
colors is minimized .

Given a relation schema S , a set C of confidentiality con-
straints, and a set V of visibility requirements, the cor-
respondence between the Min-CF problem and the hyper-
graph coloring problem can be defined as follows. Any
vertex ni of hypergraph H translates to an attribute a∈S
and to a visibility requirement v=a∈V. Any edge ei in
H, which connects ni1 , . . . , nic , translates to a (non sin-
gleton) constraint ci={a i1 , . . . , aic} in C. A fragmentation
F={F 1(a11

, . . . , a1k
), . . . , Fm(am1

, . . . , aml
)} of S satisfy-

ing all constraints in C and all visibility requirements in V

corresponds to a solution Sol for the corresponding hyper-
graph coloring problem. Specifically, Sol uses m colors and
all nodes nji1

, . . . , njin
, corresponding to the attributes in

F j , j = 1, . . . , m, are colored using the j-th color. Hence,
the Min-CF problem is NP-hard.

Theorem 5.1. The Min k -loose problem is NP-hard.

Proof. The proof is a reduction from the NP-hard prob-
lem of maximum 3-dimensional matching, formulated as fol-
lows: given a set T ⊆ X×Y ×Z, where X, Y , Z are disjoint
sets, determine a matching M ⊆ T of maximum cardinality,
such that no elements in M agree in any coordinate.

We prove that a (k l,kr)-grouping of an instance s of re-
lation S corresponding to T and inducing a k -loose as-
sociation, with k≤k l·kr , is a matching of size k−1 for
T . Consider relation schema S (id ,ax,ay ,az,a

d
1 ,. . .,a

d
n), with

n=k(m − k) and m = |T |; a set C of confidentiality con-
straints, where ∀a∈S , with a 6=id , c={id ,a}∈C; a frag-
mentation F composed of two fragments: F l={id} and
F r={ax,ay ,az,a

d
1 ,. . .,a

d
n}; and an instance s of relation S

defined as follows:

• Real tuples: t1,. . . ,tm, with m = |T |.
∀i=1,. . .,m, ti[ax], ti[ay ], ti[az ] represent the content
of the considered set T , that is, 〈ti[ax],ti[ay ],ti[az]〉∈T ;
ti[id ]=i ; and ti[a

d
j ]=−i , ∀j=1, . . . , n. Then,

∀ti,tj∈s , with i6=j, ti≃tj iff either ti[ax]=tj [ax], or
ti[ay ]=tj [ay ], or ti[az]=tj [az].

• Dummy tuples: td
1 ,. . .,t

d
n, with n=k(m − k).

∀i=1,. . .,n, td
i [ax]=max(X)+i ; td

i [ay ]=max(Y )+i ;
td
i [az]=max(Z)+i , where max(X) (max(Y ) and

max(Z), resp.) represents the maximum value for X
(Y and Z, resp.) in T ; td

i [id ]=m+i ; and td
i [ad

j ]=i ,

∀j=1, . . . , n. Then, ∀td
i ,t

d
j∈s with i6=j, td

i 6≃td
j , since

td
i and td

j have different values on all attributes. Also,

∀ti,t
d
j∈s , ti 6≃td

j , since ti and td
j have different values

on all attributes.
• Star tuple: t∗.

t∗[ax]=max(X)+n+1, t∗[ay ]=max(Y )+n+1,
t∗[az]=max(Z)+n+1; t∗[id ]=m+n+1; and t∗[ad

j ]=j ,

∀j=1, . . . , n. Then, ∀td
i ∈s , t∗≃td

i , since they have the
same value for an attribute t∗[ad

i ]=td
i [ad

i ]=i appearing
in a confidentiality constraint c = {id, ad

i }; ∀ti∈s ,
t∗ 6≃ti, since t∗ and ti have different values on all
attributes.

Let Gl and Gr be a (k l,kr)-grouping of s inducing a k -
loose association A. The set of tuples T ∗=

S

j
{G−1

r (grj
):

(gl,grj
)∈A, gl=Gl(l

∗)}, where l∗ = t∗[Fl], must be a subset
of the set {r∗,r1,. . .,rm} of tuples corresponding to the pro-
jection of the real tuples {t∗, t1, . . . , tm} on the attributes
in Fr and must contain at least k items, since otherwise A
would not be k -loose (Definition 5.1). Also, ∀ti,tj∈T ∗, with
i6=j, ti 6≃tj and therefore all the tuples in T ∗ have differ-
ent values on attributes ax, ay, and az. Therefore, the set
T ∗\{r∗} of real tuples projected on ax, ay, and az repre-
sents a matching of size k−1 for T . Note that if a k -loose
association does not exist for s , then there does not exist a
matching of size k−1 for T . To compute maximal match-
ing for T , it is necessary to compute a k-loose association,
if it exists, iteratively decreasing k from m + 1 to 2, until
a k -loose association is found. As a consequence, the Min

k -loose problem is NP-hard.

Theorem 5.2. Given a set C of confidentiality con-
straints, a fragmentation F of S , relation s over S , two
fragments F l and F r in F, their instances f l and f r, and a
minimal (k l,kr)-grouping that satisfies Properties 5.1, 5.2,
and 5.3, then the group association A induced by the (k l,kr)-
grouping is k-loose (Definition 5.4) for each k≤k l·kr, and is
minimal k-loose for k=k l·kr.

Proof. By Definition 5.1, each group gi∈GIDl contains
at least k l tuples and each group gj∈GIDr contains at
least kr tuples. Hence, Property 5.2 implies that: 1)
each group gi∈GIDl is associated with at least k l differ-
ent groups in GIDr, denoted groups rhsi, and 2) each group
gj∈GIDr is associated with at least kr different groups in
GIDl, denoted groups lhsj . Properties 5.1 and 5.3 guar-
antee that groups rhsi and groups lhsj do not contain tu-
ples that are alike. As a consequence, each gi∈GIDl is
associated with a total number of tuples in f r greater
than or equal to |groups rhsi |·kr≥k l·kr , none of which are
alike. Analogously, each group gj∈ GIDr is associated with
a total number of tuples in f l greater than or equal to
k l·|groups lhsj |≥k l·kr, none of which are alike. Then, the
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(k l,kr)-grouping satisfying Properties 5.1, 5.2, and 5.3 in-
duces a group association that is k-loose for each k≤k l·kr .
Suppose that k=k l·kr and that the (k l,kr)-grouping does
not induce a minimal k-loose association. Hence, there ex-
ists a (k ′

l,k
′

r)-grouping such that k≤k ′

l·k
′

r<k l·kr=k, which
is a contradiction. Therefore, the (k l,kr)-grouping induces
a minimal k l·kr-loose association.

Theorem 5.3. Given two fragments F l and F r in F,
their instances f l and f r, a privacy degree k, and a number
n of constraints c such that c⊆F l∪F r, then

1. if n = 1: ∃ a flat grouping providing k-looseness ⇐⇒

∃ a sparse grouping providing k-looseness;

2. if n > 1:

(a) ∃ a flat grouping providing k-looseness =⇒
∃ a sparse grouping providing k-looseness;

(b) ∃ a sparse grouping providing k-looseness 6=⇒
∃ a flat grouping providing k-looseness.

Proof. (Sketch) Due to space constraints, we provide
only a sketch of the proof, which is organized in three steps.
Step 1: if n≥1: ∃ a flat grouping providing k-looseness =⇒
∃ a sparse grouping providing k-looseness. Consider a flat
(1,k)-grouping Gl, Gr (the case of (k ,1)-grouping is sym-
metric), with k l·kr=k that provides k -looseness. We show
that this grouping can be transformed in a minimal (k l,kr)-
grouping providing k -looseness. For simplicity and without
loss of generality, we suppose that |s | mod k=0, where s is
the original relation. The basic idea is that the tuples in
G−1

r (gr), which are exactly k , can be partitioned into k l dif-
ferent groups, containing exactly kr tuples. The kr-grouping
of f r induces a k l-grouping of f l, where each group contains
k l non-alike tuples. By construction, the (k l,kr)-grouping
satisfies Properties 5.1, 5.2, and 5.3.
Step 2: if n=1: ∃ a sparse grouping providing k-looseness
=⇒ ∃ a flat grouping providing k-looseness. The proof con-
siders two cases.

a) We prove that if ∃l∈f l:|{l i|l i∈f l, l≃l i}| > |s |

k
or

if ∃r∈f r:|{r i|r i∈f r, r≃r i}| > |s |

k
, than ∄ either a flat

or a sparse grouping providing k -looseness. Suppose that

∃l∈f l:|{l i|l i∈f l, l≃l i}| > |s |

k
(the case of r∈f r is symmet-

ric). It is easy to see that a (k ,1)-grouping violates Prop-
erty 5.1 and that a (1,k)-grouping violates Property 5.3. If
there exists a (k l,kr)-grouping providing k -looseness, then

|GIDr|≥ ( |s |

k
+ 1) · k l and |s |=( |s |

k
+ 1) · k l · kr, thus bringing

to a contradiction.
b) We prove that if ∀t∈f l: |{ti|ti∈f l, t≃ti}| ≤

|s |

k
and

∀t∈f r: |{ti|ti∈f r, t≃ti}| ≤
|s |

k
, then ∃ both a flat and (by

Step 1) a sparse grouping providing k -looseness. For sim-
plicity, suppose F l[c ]=al and F r[c ]=ar . Consider a (k ,1)-
grouping Gl, Gr, with GIDl={gl1 , . . . ,glh }, satisfying Proper-
ties 5.1, 5.2, and 5.3. Let |G−1

l (gli)| = k , i = 1, . . . , (h − 1),
and |G−1

l (glh )| = k − 1. Tuple t is the unique tuple such
that Gl(t [F l])=Gr(t [F r])=null, where t [al]=l and t [ar ]=r .

Both l and r appear |s |

k
times in f l and f r, respectively. We

need to prove that it is always possible to define Gl(t [F l])
and Gr(t [F r]) guaranteing k -looseness. Note that there ex-
ists gli∈GIDl such that by assigning Gl(t [F l])=gli Prop-
erty 5.1 is satisfied, and there exists glj∈GIDl such that
by assigning Gl(t [F l])=glj Property 5.3 is satisfied. Four
different cases may occur:

S
a1 a2 a3

t1 v1 v5 v9

t2 v2 v7 v11

t3 v3 v6 v10

t4 v4 v8 v11

t5 v1 v7 v12

t6 v2 v6 v9

t7 v3 v8 v12

t8 v4 v5 v10

(a)

v1

v2

ff

v3

v4

ff

v3

v4

ff

v1

v2

ff

• •

•
TTTTTTT •

•

jjjjjjj •

•
TTTTTTT •

•

jjjjjjj •

•
TTTTTTT •

•

jjjjjjj •

• •

ff

v5 v9

v6 v10
ff

v7 v11

v8 v12
ff

v8 v11

v7 v12
ff

v5 v10

v6 v9

(b)

Figure 9: A relation s (a) and a (2,2)-grouping pro-
viding 4-looseness (b)

• gli=glj=glh . By assigning Gl(t [F l])=glh , k -looseness is
satisfied.

• gli=glj 6=glh . By assigning Gl(t [F l])=gli , if ∃ti∈f l:
ti[al]=l and Gl(ti)=gli , Property 5.1 is violated and
the group association obtained does not satisfy k -
looseness. However, there are always at least two tuples
tx,ty∈G

−1
l (gli) such that, by setting Gl(tx) and Gl(ty)

to glh , Property 5.1 is not violated. Analogously, there
are always at least two tuples tw,tz∈G

−1
l (gli) such that,

by setting Gl(tw) and Gl(tz) to glh , Property 5.3 is not
violated. If w is equal to x (y , resp.) or z is equal to
x (y , resp.), it is sufficient to set Gl(tx) (Gl(ty), resp.)
to glh to satisfy k -looseness. Otherwise, it is neces-
sary to iteratively swap tuples between G−1

l (gli) and
G−1

l (glh ), starting from one among tx, ty , tw , and tz.
At each step, the tuple inserted in a group might violate
Property 5.1 or Property 5.3 and is therefore moved to
another group. Since initially Gl and Gr satisfy Proper-
ties 5.1 and 5.3, at each insertion of a tuple in a group,
at most another tuple needs to be moved. Since each
tuple is moved to the same group no more than once,
the process terminates, guaranteeing k -looseness.

• gli=glh 6=glj (glj =glh 6=gli is symmetric). There is al-

ready a tuple ti in G−1
l (glh ) such that ti[ar]=r . There-

fore, we apply the swapping process of tuples described
above between G−1

l (glh ) and G−1
l (glj ), starting from

ti. Since G−1
l (glj ) contains k tuples while G−1

l (glh )
contains k−1 tuples, the process terminates. Also,
the tuple ti such that ti[al]=l cannot be moved to
G−1

l (glh ) with this process. Therefore, by assigning
Gl(t [F l])=glh , k -looseness is satisfied.

• gli 6=glj 6=glh . This situation can be reduced to the pre-
vious case, by first applying the swapping process of
tuples between G−1

l (glh ) and G−1
l (glj ), starting from

the tuple ti in G−1
l (glh ) with ti[ar]=r , and then by ap-

plying the same process between G−1
l (glh ) and G−1

l (gli),
starting from the tuple ti in G−1

l (glh ) with ti[al]=l . By
assigning Gl(t [F l])=glh , k -looseness is satisfied.

Step 3: if n>1: ∃ a sparse grouping providing k-looseness
6=⇒ ∃ a flat grouping providing k-looseness. We provide
a counterexample. Consider relation s in Figure 9(a) and
suppose that F r={a1} and F l={a2,a3}, and c1={a1,a2},
c2={a1,a3} are two confidentiality constraints. Figure 9(b)
illustrates a (2,2)-grouping providing 4-looseness. Any min-
imal (4,1)-grouping defined over F r and F l violates Prop-
erty 5.3, hence the implication does not hold.
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