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ABSTRACT
Entity Resolution (ER) is the process of identifying groups
of records that refer to the same real-world entity. Vari-
ous measures (e.g., pairwise F1, cluster F1) have been used
for evaluating ER results. However, ER measures tend to
be chosen in an ad-hoc fashion without careful thought as
to what defines a good result for the specific application at
hand. In this paper, our contributions are twofold. First, we
conduct an analysis on existing ER measures, showing that
they can often conflict with each other by ranking the results
of ER algorithms differently. Second, we explore a new dis-
tance measure for ER (called “generalized merge distance”
or GMD) inspired by the edit distance of strings, using clus-
ter splits and merges as its basic operations. A significant
advantage of GMD is that the cost functions for splits and
merges can be configured, enabling us to clearly understand
the characteristics of a defined GMD measure. Surpris-
ingly, a state-of-the-art clustering measure called Variation
of Information is a special case of our configurable GMD
measure, and the widely used pairwise F1 measure can be di-
rectly computed using GMD. We present an efficient linear-
time algorithm that correctly computes the GMD measure
for a large class of cost functions that satisfy reasonable
properties.

1. INTRODUCTION
Entity Resolution (ER) is the problem of identifying groups

of records that represent the same real-world entity and then
merging the matching records. For example, two companies
that merge may want to combine their customer records:
for a given customer that dealt with both companies, they
create a composite record that combines the known informa-
tion. In this paper, we will consider the task of evaluating
the results of an entity resolution process.

Usually when we compare entity resolution algorithms, we
run them on a data set and compare the results to a “gold
standard”. The gold standard is an entity resolution result
that we assume to be correct. In many cases, the gold stan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

Set ER Result

Gold Standard {〈a, b〉, 〈c, d〉, 〈e, f, g, h, i, j〉}
R1 {〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e, f, g, h, i, j〉}
R2 {〈a, b〉, 〈c, d〉, 〈e, f, g〉, 〈h, i, j〉}
R3 {〈a, b, c, d〉, 〈e, f, g, h, i, j〉}

Table 1: Comparing two ER results

dard is generated by a group of human experts. On large
data sets where the task is too large to be handled by a
human, it is not uncommon to run an exhaustive algorithm
to generate a result, and treat that result as the gold stan-
dard. Then we can compare the results of other approximate
or heuristic-based algorithms to this standard in the same
manner we would compare them to a human-generated gold
standard.

A key component of this type of evaluation is a method of
assigning a number to express how close a given ER result
is to the gold standard. Many ER measures (e.g., pairwise
F1, cluster F1) have been proposed for comparing the results
of ER algorithms [1, 2, 3], but there is currently no agreed
standard measure for evaluating ER results. Most works
tend to use one ER measure over another without a clear
explanation of why that ER measure is most appropriate.
The pitfall of using an arbitrary measure is that different
measures may disagree on which ER results are the best.

Let us consider a brief example. Using letters to represent
records, consider an entity resolution problem with an input
set of records I = {a, b, c, d, e, f, g, h, i}. Three possible ER
results are shown in Table 1, along with the gold standard.
We have used angle brackets to denote groups of records that
have been determined to refer to the same real-world entity
in a result. For example, the algorithm that generated result
R1 decided that records a, b, c, and d all refer to distinct
entities, while records e, f , g, h, i, and j all refer to the
same entity.

Suppose we are evaluating two ER results R1 and R2,
against the gold standard G. Using an ER measure that
evaluates a result based on the number of record pairs that
match, R1 could be a better solution because it found 15
correct pairs (i.e., all record pairs in 〈e, f, g, h, i, j〉) while
R2 only found 8 correct pairs. On the other hand, if we
use a measure that evaluates results based on correctly re-
solved entities in the gold standard, R2 could be considered
better than R1 because R2 contains two correctly resolved
entities 〈a, b〉 and 〈c, d〉 while R1 only has one correct en-
tity 〈e, f, g, h, i, j〉. As another example, suppose that we
compare R2 and R3. One measure could be more focused
on high precision and prefer R2 over R3 because R2 has
only found correctly matching records while R3 has found
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some non-matching records (e.g., a and c do not match). On
the other hand, another measure might consider recall to be
more important and prefer R3 over R2 because R2 has not
found all the matching record pairs (unlike R3).

Surprisingly, such conflicts between ER measures can oc-
cur frequently. Section 6.1 thoroughly discusses conflicts
and empirically demonstrates the frequency of conflicts. It
is tempting to suggest that when conflicts arise, one of mea-
sures involved must be faulty in some way. However, since
different applications may have different criteria that define
the “goodness” of a result, we cannot simply claim one mea-
sure to be better than another.

The main contributions of this paper are twofold. We
provide a survey of ER measures that have been used to
date, experimentally demonstrate the frequency of conflicts
between these measures, and provide an analysis of how the
measures differ. In studying these measures, we noticed a
missing component in the space of existing measures. So
the second main contribution of this paper is a new measure
for evaluating ER and an exploration of its relationships to
other measures.

Our new measure is inspired by the edit distance of strings
[4]. Rather than the insertions, deletions and swaps of char-
acters used in edit distance, our measure is based upon the
elementary operations of merging and splitting clusters. We
therefore call this measure “merge distance”. A basic merge
distance that simply counts the number of splits and merges
may be a good choice for certain applications, but as we
have mentioned, no single ER measure is better than all the
others. However, if we generalize merge distance by letting
the costs of merge and split operations be determined by
functions, we arrive at an intuitive, configurable measure
that can support the needs of a wide variety of applications.
While differently configured merge distance measures may
still conflict, we now have a better understanding of what
quality each configured measure is evaluating. Surprisingly,
at least two state-of-the-art measures are closely related to
generalized merge distance: the Variation of Information
(V I) [5] clustering measure is a special case of generalized
merge distance while the pairwise F1 [3] measure can be
directly computed using generalized merge distance.

We further propose a linear-time algorithm (called Slice)
that efficiently computes generalized merge distance for a
large class of cost functions that satisfy reasonable proper-
ties. As we argue in this paper (Section 5) gold standards
can be very large, so computing measures can be expensive,
especially with the quadratic algorithms used for many mea-
sures. To the best of our knowledge, the Slice algorithm is
the first provably scalable algorithm for ER measures. A
non-trivial result is that the pairwise F1 and V I distances
can be computed using our Slice algorithm in linear time.

In summary, our contributions are as follows:

• We define our models for ER and ER measures, and con-
duct an extensive survey on ER measures (Sections 2∼3).

• We propose generalized merge distance (GMD), a new
measure that uses the elementary operations of clus-
ter splits and merges to measure the distance from one
ER result to another. We propose an efficient linear-
time algorithm (called the Slice algorithm) that com-
putes GMD for a large class of cost functions that satisfy
reasonable properties (Sections 4∼5).

• We conduct various experiments on ER measures. Al-

though most papers use a single measure to evaluate al-
gorithms, we show that ER measure conflicts can occur
frequently in practice where ER algorithms are ranked
differently depending on the ER measure. Next, we show
how various configurations of GMD can help capture dif-
ferent qualities of ER results. Finally, we demonstrate
the scalability of the Slice algorithm (Section 6).

2. FRAMEWORK
An ER algorithm takes as input a set of records I and

groups together records that represent the same real world
entity. We represent the output of the ER process as a
partition of the input. Given an input set of records I =
{a, b, c, d, e}, an output can be {〈a, b, c〉, 〈d, e〉}, where the
angle brackets denote the clusters in the partition. For
shorthand, we may in some cases represent a clusters as
a simple string of records, i.e., the partition {〈a, b, c〉, 〈d, e〉}
can be written as simply {abc, de}. In this example, two real
world entities were identified, with a, b, c representing the
first, and d, e representing the second.

To evaluate an ER algorithm, we must compare its result
R to a gold standard S, which is also a partition of the input
records I. We would like to define a measure D(R,S) that
computes the distance between R and S. We assume D to
satisfy the following two conditions: D(R,R) = 0 for any
partition R of I and D(R,S) ≥ 0 for any two partitions R
and S of I.

3. EXISTING MEASURES
There are many measures used in the Information Re-

trieval (IR) and AI communities that measure the quality
of clustering. Evaluating clusters is a broader topic than
evaluating ER results because ER is a special case of clus-
tering, in which the clusters tend to be small and items in
each cluster are typically quite distinct from items in other
clusters [6]. Hence, the ER literature has historically only
adopted a small subset of IR clustering measures. We con-
sider the most popular measures used in practice: pF1, cF1,
K, ccF1, and V I. The definitions of the measures can be
found in Appendix A. In this section, we provide a brief
description for each measure:

• pF1 [3]: Combines the pairwise precision (fraction of
record pairs from R that are also in S) and pairwise
recall (fraction of S pairs found in R).

• cF1 [7]: Combines the fraction of clusters from R that
are also in S and the fraction of clusters from S in R.

• K [8]: Combines the average similarity of clusters in R
with respect to those in S and the average similarity of
clusters in S with respect to those in R.

• ccF1 [9]: Similar to cF1, but the clusters are now com-
pared by their similarities instead of whether or not they
are identical.

• V I [5]: Measures the “information” lost and gained while
converting R to S.

4. GENERALIZED MERGE DISTANCE
Although the measures above are widely used, they tend

to be used without a clear understanding of what defines a
good result for a specific application at hand. In this sec-
tion, we propose a configurable ER measure that returns the
distance between R and S based on two fundamental cluster
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editing operations: split and merge [10]. Edit distance is a
common measure in other domains such as string-to-string
matching [4] where the basic operations are inserts, deletes,
updates, and swaps. Compared to the other measures, we
believe an edit distance approach is a natural way of eval-
uating an ER result because the splits and merges needed
to convert R to S can reflect the amount of work needed to
correct R.

A measure based on splits and merges was first proposed
by Al-Kamha et al. [11], which we call basic merge distance.
The basic merge distance (BMD) measure is defined as the
minimum number of cluster splits and merges (where all
splits precede any merges) required to modify an ER result
R into another result S. In the example from Table 1, only
one merge is required to get from R2 to the gold standard
(i.e., BMD = 1). Result R1 is comparatively further away
from the gold standard, as BMD = 2.

The definition of basic merge distance immediately raises
some questions on how we can generalize it. In some cases,
we may want to penalize splits more than merges, or vice
versa. Further, the “badness” of a split or merge may de-
pend on the sizes of the clusters that are being merged or
split. In this section, we define a generalized merge distance
(GMD) that creates a larger space of possible measures.
We also relax the restriction that all splits must precede
any merges. In Section 4.2 we show that the space of con-
figured GMD measures includes distance measures closely
related to the pairwise precision and recall measures of Ap-
pendix A.1, as well as the V I measure of Appendix A.3.

We first formalize the notions of cluster splits, cluster
merges, and legal paths.

Definition 4.1. A split is an operation c→ c1, c2 where
c1 ∩ c2 = ∅, c1 ∪ c2 = c, and c1, c2 6= ∅. The result of
applying a split to a partition P is (P − {c}) ∪ {c1, c2}. A
split is a valid operation on P if and only if c ∈ P .

Definition 4.2. A merge is an operation c1, c2 → c where
c = c1 ∪ c2. The result of applying a merge to a partition P
is (P −{c1, c2})∪ {c}. A merge is a valid operation on P if
and only if c1, c2 ∈ P .

As a matter of notation, the result of applying an opera-
tion o (which can be either a merge or split) to a partition P
can be written P : o. Note that the result of an operation on
a partition is still a partition, so we may apply operations
to a partition in sequence. The application of operations o1

and o2 to P in sequence can be written P : o1 : o2. How-
ever, we will use commas to separate operations instead:
P : o1, o2.

We require that the editing of clusters is only done based
on the given clustering information in R and S. Specifi-
cally, a merge cannot create newly clustered records that
are not in the same cluster in S. For example, consider
R = {〈a, c〉, 〈b, d〉} and S = {〈a, b〉, 〈c, d〉}. Notice that by
merging 〈a, c〉 and 〈b, d〉 into 〈a, b, c, d〉 and then splitting
〈a, b, c, d〉 into 〈a, b〉 and 〈c, d〉, we only need to do one merge
and one split, which is better than splitting 〈a, c〉 and 〈b, d〉
into the records a, b, c, d, and then merging a, b into 〈a, b〉
and c, d into 〈c, d〉 (i.e., two splits and two merges). How-
ever, the first approach creates new clusterings in 〈a, b, c, d〉
(i.e., a clusters with d, and b clusters with c) that do not ap-
pear in the clusters of S, violating our condition. Intuitively,
editing R to S requires removing the clustering information

found in R only and adding the new information in S. The
definition of a legal path captures this idea:

Definition 4.3. A path from partition R to partition S
is a sequence of operations o1, o2, . . . , on where S = R :
o1, o2, . . . , on and oi is a valid operation on R : o1, o2, . . . , oi−1

for all oi. We say that a path is a legal path from R to S if
for any operation that is a merge o1 = c1, c2 → c, then there
exists a cluster p ∈ S where c ⊆ p.

Notice that, compared to the BMD measure, we no longer
restrict all splits to precede merges, but use a more relaxed
condition for legal paths.

We now formalize our GMD measure.

Definition 4.4. The fm, fs generalized merge distance
GMDfm,fs(R,S) from a partition R to another partition
S is the minimum cost of a legal path from R to S, where:

• the cost of a merge operation c1, c2 → c is fm(|c1|, |c2|).

• the cost of a split operation c→ c1, c2 is fs(|c1|, |c2|).

We assume some reasonable properties of the functions
fm and fs:

1. Operations cannot have negative costs: fm(x, y) ≥ 0
and fs(x, y) ≥ 0.

2. The cost functions are symmetric: fm(x, y) = fm(y, x)
and fs(x, y) = fs(y, x).

3. The cost functions monotonically increase with their pa-
rameters: fm(x, y) ≤ fm(x + j, y + k) and fs(x, y) ≤
fs(x+ j, y + k) for non-negative j, k.

Given the above three properties, we can prove there ex-
ists a minimum cost legal path from a partition R to a par-
tition S where all of the split operations precede the merge
operations. This result vastly reduces the search space for a
minimum cost path and thus leads to an efficient algorithm
for computing GMD.

Theorem 4.1. For any partitions R and S, there exists
a minimum cost legal path from R to S where all split oper-
ations precede all merge operations.

Proof. The proof is available in the extended version of
this paper [12]. Here we only informally sketch the key idea.
We start with a minimum cost legal path p, and transform
it a step at a time by moving split operations towards the
start of p and merge operations towards the end, until we
get the desired path p′.

o1

o3

o5

o4

o2
<a,b,c>

<d,e>

<f>

<g>

<a,b,c,d,e>

<f,g>

<b,c,d>

<b,c,d,f,g>

<a,e>
<a,b,c,d,e,f,g>

o’1

o3

o’5

o’4

o’2

<a,b,c>

<d,e>

<f>

<g>

<a,b>

<f,g>

<c>

<c,d,e,f,g>

<a,b,c,d,e,f,g>

<c,d,e>

Figure 1: A precedence graph.

To perform the transformations, we view the path as a
graph, as illustrated in Figure 1. For instance, operation o2

is a split that yields clusters 〈a, e〉 and 〈b, c, d〉. When we
swap merge o1 with split o2 (to have splits ahead of merges),
we obtain the graph of Figure 2.

Note that the merge (o1) followed by the split (o2) has
different results from the split (o′1) followed by the merge
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o1

o3

o5

o4

o2
<a,b,c>

<d,e>

<f>

<g>

<a,b,c,d,e>

<f,g>

<b,c,d>

<b,c,d,f,g>

<a,e>
<a,b,c,d,e,f,g>

o’1

o3

o’5

o’4

o’2

<a,b,c>

<d,e>

<f>

<g>

<a,b>

<f,g>

<c>

<c,d,e,f,g>

<a,b,c,d,e,f,g>

<c,d,e>

Figure 2: Precedence graph for the transformed
path.

(o′2) (the former yields 〈a, e〉, 〈b, c, d〉 while the latter yields
〈a, b〉, 〈c, d, e〉). However, the resulting cluster sizes are the
same (i.e., 2 and 3, respectively), which keeps the cost of sub-
sequent operations the same. Because the results are differ-
ent, the operations downstream need to be adjusted, again
keeping the sizes of all clusters unchanged. The fact that
all clusters are subsets of the final cluster 〈a, b, c, d, e, f, g〉
(path p is legal) ensures that the resulting path p′ gives the
same result as p. 1

We will use the term “splits-first path” to refer to a path
with all split operations preceding all merge operations. We
note that any splits-first path from R to S is also a legal
path, because if there was an operation that merged two
clusters that are not merged in S, then subsequent opera-
tions cannot be splits, and thus the result of the path could
not be S.

4.1 Operation Order Independence
If functions fs and fm have a property we call operation

order independence, then it turns out there is an efficient
way to compute the GMD between two partitions. This
property makes GMD intuitive in a sense that a series of
splits (merges) on a given set of records costs the same re-
gardless of the ordering of operations. We first define order
independence and then discuss how it helps.

Definition 4.5. We say that a function f is operation
order independent if it satisfies f(x, y)+f(x+y, z) = f(x, z)+
f(x+ z, y) for all x, y, z.

We call this property operation order independence be-
cause it implies that the order in which certain operations
are performed is unimportant. Suppose that we wish to
merge three clusters cx, cy, and cz (with sizes x, y, and z,
respectively) all together into a single cluster. If we merge
cx and cy together first, and then merge the resulting clus-
ter with cz, observe that the resulting cost would be given
by the left-hand side of the equation in Definition 4.5. The
cost of merging cx and cz together first, and then merg-
ing cy with the result is given by the right-hand side of the
equation, and therefore with operation order independence,
these two paths would have the same cost.

The class of operation order independent functions has
been studied in [13], which shows there is a vast number of
such functions. We believe that three classes of such func-
tions are sufficient for our needs: f(x, y) = k, f(x, y) = kxy,
and f(x, y) = k1 +k2xy. (One can easily verify the property
holds for these classes by plugging them into the equation in
Definition 4.5.) The first class can be used to model merges
or splits with cost independent of the cluster size, and can be
used to emulate the BMD measure. The second class can

1If o5 were removed from p, then the swap would give us a
path with a different result from p. This is because without
o5, path p would not be a legal path, since o1 would be an
illegal merge.

be used when we want to penalize operations on large clus-
ters, e.g., when failing to merge two large clusters is worse
that failing to merge two small clusters. The second class of
measures can be used to directly compute (see Section 4.2)
the pairwise precision and recall measures of Appendix A.1.
The third class of function is a blend of the first two.

When fs and fm are operation order independent, we can
easily construct a splits-first legal path that has minimum
cost. We call this path a “bare necessities” path because it
first breaks down the initial set R into the bare “fragments”
that are needed for building up S. For example, say that
R = {〈a, b, c〉, 〈d, e, f〉} and S = {〈a, b, d〉, 〈c, e, f〉}. In this
case, the bare necessities path from R to S would first split
the R clusters into 〈a, b〉, 〈c〉, 〈d〉, 〈e, f〉, i.e., into the frag-
ments that are needed for then putting together the clusters
in S. Actually, there are multiple bare necessities paths,
corresponding to the different ways one can split R into the
bare fragments and then merge them into S.

Theorem 4.2. If both fm and fs are operation order in-
dependent, then any bare necessities path from R to S is a
minimum cost legal path from R to S.

Proof. Due to space constraints, the proof is available
only in the extended version of this paper [12].

Our Slice algorithm (see Section 5) computes GMD by
computing the cost of a bare necessities path. Because such
a path has a simple structure, the computation of its cost
turns out to be efficient.

4.2 Relationship to Other Measures
Several other measures are closely related to GMD. First,

the BMD measure in [11] is identical to the GMD measure
when fm(x, y) = fs(x, y) = 1. Second, the V I measure
(Appendix A.3) is a special case of GMD where fm and fs

are chosen as follows:
Theorem 4.3. V I(R,S) = GMD(R,S) when fm(x, y)

= fs(x, y) = h(x + y) − h(x) − h(y), with h(x) = x
N

log x
N

where N is the total number of records in I.

Proof. Due to space constraints, the proof is available
only in the extended version of this paper [12].

Third, the pF1 distance can be computed directly using
GMD. The theorem below shows how to compute pairwise
precision and pairwise recall using GMD. The pF1 distance
is then the harmonic mean of the two values. We use the
symbol ⊥ to refer to a partition with each record alone in
its own cluster.

Theorem 4.4. PairPrecision(R,S)=1−GMD(R,S)
GMD(R,⊥)

when

fm(x, y) = 0 and fs(x, y) = xy. PairRecall(R,S) = 1 −
GMD(R,S)
GMD(⊥,S)

when fm(x, y) = xy and fs(x, y) = 0.

Proof. The full proof has been removed due to space
constraints and is available in the extended version of this
paper [12]. The intuition behind the proof is that when a
cost function is set to xy, the cost of a split or merge is equal
to the number of pairs that are removed or added.

The various relationships are possible because of the con-
figurability of GMD. Since the fm and fs functions used in
this section are all operation order independent, we can use
the linear time Slice algorithm described in the next section
to compute all the measures above. This is exciting, es-
pecially because the straightforward implementation of pF1

and V I would be quadratic in the worst case.
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4.3 Configuring the Cost Functions
We have argued that a configurable cost metric is desirable

because it lets an application specialist describe the types
of ER results that are desirable. For instance, is it worse to
have a result where a group of records representing the same
entity is split into several clusters, or is it worse to have a
cluster that mixes several real entities? We have also argued
that three simple classes of functions (f(x, y) = k, kxy or
k1 + k2xy) are sufficient to describe the desirability of most
ER results.

But do even these limited choices provide too much flexi-
bility, so it becomes difficult to properly configure a metric?
First, we believe that it is good to “force” the specialist to
think about what is desired, since the configurable metric
can guide the ER process, leading to better results. Second,
there are relatively simple ways to configure the metric. One
strategy, for instance, is to have the specialist provide a set
of sample resolutions for a set of records. These examples
can show a variety of ways resolution went wrong in the
past (e.g., missing a critical merge, or adding an incorrect
record to a cluster). Then the specialist can rank these ex-
amples, indicating which outcomes are worse than others.
Then based on the examples, we can use machine learning
to select the class of functions and its parameters that yield
the same ordering.

The GMD measure can also be configured in an ad hoc
fashion, penalizing merges or splits based on what errors
are less desirable, and using the function f(x, y) = xy if the
size of the erroneous clusters is important. In Appendix B
we discuss several scenarios, and illustrate how a specialist
might make choices. Although the process is not fool-proof,
it can easily be tuned as ER results are produced.

5. COMPUTING MEASURES
Computing measures efficiently is important because the

number of entities to resolve can be huge. Although human-
generated gold standards will rarely exceed thousands of
records, other gold standards are automatically generated
and could result in larger numbers of records. For exam-
ple, blocking techniques [14] are commonly used to make
ER scalable by dividing the data into (possibly overlap-
ping) blocks and only comparing records within the same
block, assuming that records in different blocks are unlikely
to match. Since blocking techniques may miss matching
records, their results are compared with an “exhaustive”
ER solution without blocking, which is considered as the
gold standard [15]. While large exhaustive ER results may
be very expensive to generate, it need only be generated
once, whereas the computation of the distance measure will
be performed multiple times for a diverse set of blocking
algorithms and parameters. The distance computation can
therefore take a great deal of time, and a more efficient al-
gorithm provides practitioners more time to tune their algo-
rithms (e.g., experiment with different matching thresholds)
over a wide range of options.

Many measures take (or appear to take) quadratic time
for computation, which could be prohibitive. For example, a
straightforward implementation of the pF1 measure requires
a quadratic number of record pairs to be compared against
the actual matching pairs. Similarly, the K measure sums
the similarities of all pairs of clusters need to be computed,
requiring quadratic time computation. The ccF1 measure

finds the the closest clusters for all clusters and requires
a quadratic number of cluster comparisons because finding
each closest cluster requires a linear scan of the other ER
result in the worst case.

To the best of our knowledge, the topic of efficiency of
measure computation is not discussed in any ER paper (there
are many works that focus on the efficiency of ER algo-
rithms). Fortunately in this paper, we propose an efficient
algorithm (called Slice) that computes GMD in linear time
when fm and fs are operation order independent functions.
The full code can be found in Appendix C. We also show
that the pF1 and V I measures can be computed in linear
time using our algorithm. It is an open question if there are
linear algorithms for the ccF1 and K measures.

6. EXPERIMENTS
As mentioned in Section 1, there are two aspects to our

paper: a general analysis of ER measures, and the proposal
of a generalized merge distance measure. Accordingly, our
evaluation mirrors these two aspects. The first part of the
experiments show that measure conflicts can easily occur
among different ER measures. Hence, simply choosing any
ER measure for comparing the accuracy of ER algorithms
could be problematic. The second part demonstrates how
various configurations of the GMD measure can help cap-
ture different qualities of ER results. We then demonstrate
the runtime performance of the Slice algorithm.

To study the ER measures, we need an ER result R and
gold standard G. We use both synthetic and real data. To
get real data, we ran two ER algorithms – Swoosh [9] and
Monge Elkan (ME) [16] – on a comparison shopping dataset
provided by Yahoo! Shopping and a hotel dataset provided
by Yahoo! Hotel. Further details on our data and ER algo-
rithms can be found in Appendix D.1.

6.1 Measure Conflicts
Most of the papers surveyed in Section 3 use a single mea-

sure (or two closely related measures, e.g., pairwise precision
and pairwise recall) to evaluate algorithms. In this section
we show that such a unilateral evaluation can be problem-
atic, since different measures can lead to different rankings
of algorithms. That is, measures can “conflict.” For each
measure M , we define a function isBetter(M,R1, R2) that
is true if R1 is significantly better than R2 according to M .
For GMD, this function can be defined as GMD(R1) <
GMD(R2) − ε. For any other measure M that returns
an accuracy value instead of a distance, isBetter can be
M(R1) > M(R2) + ε. The constant ε is chosen such that
isBetter returns true only if the measure difference is non
trivial. In our experiments, we set ε = 0.01 for all measures.
We now define a measure conflict:

Definition 6.1. Two measures M1 and M2 conflict when,
given two algorithms A1 and A2 that produce the ER results
R1 and R2, respectively, isBetter(M1, R1, R2) = true and
isBetter(M2, R2, R1) = true.

Measure conflicts occur because different measures eval-
uate different aspects of ER results. For example, pairwise
precision only measures the portion of correctly matching
record pairs among the result while pairwise recall measures
the portion of all correctly matching pairs found in the re-
sult. Similarly, the ER measures we implement have differ-
ent sensitivities to the various aspects of ER results.
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Figure 3: Sensitivity comparison for single error types
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(c) Broken and glued entity errors

Figure 4: Conflict frequencies

To see how frequently conflicts could occur, we first mea-
sure how “sensitive” the ER measures are for each error type
in Figure 3 (the definitions for each error type can be found
in Appendix D.1). We used E = 10,000 entities and the de-
fault Zipfian exponent e = 1.5 to generate the gold standard
G. For each error type, we generated 10 ER results with in-
creasing numbers of errors. We evaluated each ER result
with pF1, cF1, K, ccF1, and a normalized version of BMD
(which we refer to as NBMD) that returns an accuracy
value within the range [0, 1]. The NBMD between an ER

result R and the gold standard G is defined as 1− BMD(R,G)
BMDmax

where BMDmax is the largest BMD among the ER results
against S for all the three experiments in Figure 3. As a
result, the NBMD value in one of the plots (in this case
Figure 3(c)) is 0 for the largest number of errors. For each
error type, all the accuracy values of the measures are mono-
tonically decreasing as the number of errors increases. The
number of errors (x-axis) is defined as |R|-|G| for ER results
with broken entity errors, |G|-|R| for ER results with glued
entity errors, and the number of records misplaced for ER
results with misplaced entity errors.

One can see from Figure 3 that if we confine ourselves
to a single error type, any one measure is good enough to
evaluate ER results. That is, if R2 has more errors than
R1, then isBetter(M,R1, R2) = true for all measures M .
In other words, there are no conflicts with unimodal errors.

However, by comparing the accuracy values for ER results
with different types of errors, we can identify many conflicts.
For example, say Algorithm 1 produces many broken enti-
ties, and its result R1 contains 5,450 errors (right most data

points in Figure 3(a)). While resolving the same input set,
Algorithm 2 generates many glued entities, and its result R2

contains 5,027 errors (right most data points in Figure 3(b)).
According to ccF1, isBetter(ccF1, R1, R2) = true because
ccF1(R1) = 0.72 while ccF1(R2) = 0.64. On the other hand,
for cF1, isBetter(cF1, R2, R1) = true because cF1(R2) =
0.49 while cF1(R1) = 0.36. As a result, ccF1 and cF1 con-
flict on R1 and R2, i.e., ccF1 tells us Algorithm 1 is better,
while cF1 tells us Algorithm 2 is better!

Figure 4 shows the number of conflicts that occur for each
measure pair based on the data in Figure 3, sorted in de-
creasing numbers of conflicts. Each plot compares ER re-
sults of one error type to the ER results of another error
type. Since there are 10 ER results for each error type ac-
cording to Figure 3, we compare all 10×10 ER result pairs
for each pair of ER measures. For example, between the
NBMD and pF1 measures, we found 52 conflicts among
the 100 ER result pairs (hence the 52% conflict probability
in the first plot of Figure 4). Overall, the NBMD and pF1

measures conflict more frequently than other pairs of mea-
sures. The average conflict probability of two measures was
21.6%, 9.1%, and 10.7% for the three plots, respectively.
Using these results, we can compute the average conflict
probability for all ER result pairs (i.e., including the pairs

that have the same error type) as (21.6+9.1+10.7)×100

3×100+3×(10
2 )

= 9.5%.

Hence, the chance of measure conflicts is clearly not trivial.
We show in Appendix D.2 that that conflicts can also oc-

cur in real world applications, and evaluations of ER algo-
rithms need to consider multiple measures (something that
to date is seldom done).
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Figure 5: Sensitivities of GMD measures for different error types

6.2 Configured GMD Results
We experiment on various configurations of the GMD

measure to capture different qualities of ER results. In Sec-
tion 4.3, we discussed how the cost functions of a GMD
measure can be configured based on how much their are
sensitive to cluster sizes and whether one operation (merge
or split) should be more expensive than the other operation.
Table 2 shows five different configurations of the GMD mea-
sure we will use in our experiments. The BMD measure
assumes constant costs for merges and splits. The GMDP

measure can be used to compute pairwise precision (see The-
orem 4.4). Similarly, the GMDR measure can be used to
compute pairwise recall. A harmonic mean of pairwise pre-
cision and pairwise recall computes pF1. The GMDH mea-
sure has hybrid cost functions that have high sensitivities
to record sizes as well as constant overheads for each merge
and split. Finally, the GMDV measure is equivalent to the
V I measure.

Table 2: Configured GMD measures
BMD GMDP GMDR GMDH GMDV

fm 1 0 xy xy + 1 h(x+y)-h(x)-h(y)a

fs 1 xy 0 xy + 1 h(x+y)-h(x)-h(y)

a h(z) = z
N

log z
N

where N is the total number of records.

Figure 5 compares the sensitivities of the configuredGMD
measures in Table 2. We used the same gold standard and
ER results used for Figure 3. Figures 5(a) and 5(b) demon-
strate sensitivities to broken entity errors and glued entity
errors, respectively. The plots of GMDP (using the sym-
bol +) and GMDR (using the symbol ∗) switch places be-
cause of their different sensitivities to the two types of er-
rors, while the relative ordering of the other plots remain
the same. Figure 5(c) shows that for misplaced entity er-

rors, the sensitivities of the five configured GMD measures
do not differ much because there is an even mix of broken
and glued entity errors. However, Figure 5(d) shows how the
sensitivities to record size vary among the configured GMD
measures. While adding the same 10,000 misplaced entity
errors to each ER result, we increased the minimum size
of clusters that could contain misplaced entity errors from
1 to 5. The higher the minimum size, the more “concen-
trated” the errors are in large clusters. (Notice that when
the minimum size is 1, the GMD results are identical to the
right-most points in Figure 5(c).) As a result, the GMDP ,
GMDR, GMDH measures, which have the most expensive
cost functions, show substantial increases in distances when
the errors are concentrated in large clusters. The GMDV

measure, which has logarithmic cost functions, is moder-
ately sensitive (although not clearly shown in the plot due
to its small distances) while the BMD measure is the least
sensitive.

We now show how real world algorithms can be compared
using the configured GMD measures. Using the measures
in Table 2, we were able to do a detailed comparison be-
tween the Swoosh and ME algorithms. While the Swoosh
algorithm is superior to the ME algorithm in terms of bro-
ken entity errors, the ME algorithm has fewer broken entity
errors. Also, the Swoosh algorithm does not resolve large
clusters well (more details can be found in Appendix D.3).

6.3 Runtime Performance
As discussed in Section 5, ER datasets can be huge, and

the computation times for measures can be very signifi-
cant. We compared the computation times for the BMD,
pF1,cF1,K,ccF1, and V I measures. Our results show that
any implementation using the Slice algorithm is scalable
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to large ER results, with runtime increasing linearly by
the number of entities (more details can be found in Ap-
pendix D.4).

7. CONCLUSION
We have proposed an edit distance measure for ER (called

“generalized merge distance” or GMD) that computes the
shortest edit distance from an ER result to a gold standard
using merges and splits as the basic operations on clusters.
A powerful feature is that the merge and split costs can be
configured based on record sizes. We proposed an efficient
algorithm (called Slice), which computes GMD in linear
time for a large class of merge and split cost functions. In-
terestingly, the state-of-the-art V I clustering measure is a
special case of GMD, and the dominantly used pF1 measure
for ER can be directly computed using GMD. As a result,
both V I and pF1 can be computed efficiently using our Slice
algorithm.

We have shown in our experiments that evaluating ER
algorithms based on a single ER measure is problematic
because different measures conflict with each other. Such
conflicts occur because each measure focuses on certain fea-
tures in the ER results for computing accuracy. We demon-
strated that, by using the configured GMD measures, one
could more precisely evaluate a given application. Finally,
we have demonstrated that the Slice algorithm is scalable
and can be used to evaluate very large datasets. Thus, we
believe that the GMD measure fills a hole in the space of
available ER measures, and that it clarifies the relationship
between the available ER measures.

There are interesting open issues for the GMD measure.
We have already shown that the pF1 and V I measures are
closely related to GMD. We believe that edit distance mea-
sures for ER and clustering have yet to be fully explored and
suspect that GMD could be a fundamental way of generat-
ing ER and in general clustering measures.

8. REFERENCES
[1] W. Winkler, “Overview of record linkage and current

research directions,” Statistical Research Division,
U.S. Bureau of the Census, Washington, DC, Tech.
Rep., 2006.

[2] A. H. F. Laender, M. A. Gonçalves, R. G. Cota, A. A.
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APPENDIX
A. EXISTING MEASURES

In the body of the paper, we refer to various measures
used in the literature: pF1, cF1, K, ccF1, and V I. In this
section, we briefly describe these measures.

A.1 Pairwise Comparison
The pairwise comparison approach counts the number of

pairs of records to evaluate ER results. To define pairwise
measures, we define a function Pairs(P ) that takes in a
partition P and returns the set of distinct pairs of records
that are in the same cluster in P . For example, if P =
{〈a, b, c〉, 〈d, e〉}, then Pairs(P ) = {(a, b), (b, c), (a, c), (d, e)}.
We can now define the similarity measures pairwise precision
and pairwise recall:

PairPrecision(R,S) =
|Pairs(R) ∩ Pairs(S)|

|Pairs(R)|

PairRecall(R,S) =
|Pairs(R) ∩ Pairs(S)|

|Pairs(S)|

A number of ER papers [17, 18] use pairwise precision and
pairwise recall to evaluate ER results while earlier works [19,
20] use the rate of false positives (i.e., 1-PairPrecision(R,S))
and the rate of false negatives (i.e., 1-PairRecall(R,S)) for
evaluation. A few works [21, 22] use a variant of pairwise re-
call while taking into account the reduced number of record
comparisons due to blocking techniques. Another work [23]
uses a variant of pairwise precision where precision is penal-
ized based on the difference of |R| and |S|.

pF1. The pairwise F1 measure [3, 24, 25, 6, 2] is the dom-
inant measure in the ER literature and is defined as the
harmonic mean of pairwise precision and pairwise recall:

pF1(R,S) =
2× PairPrecision(R,S)× PairRecall(R,S)

PairPrecision(R,S) + PairRecall(R,S)

For example, if R={〈a, b〉, c, d} and S={〈a, b〉, 〈c, d〉}, Pr =
1
1

and Re = 1
2
, making the pairwise F1 = 2×1×(1/2)

1+(1/2)
= 2

3
=

66.67%.

A.2 Cluster-level Comparison
The cluster-level comparison approach sums the similarity

of clusters to evaluate ER results instead of counting pairs
of records.

cF1. The cluster F1 measure [7, 2] counts clusters that ex-
actly match and is defined as the harmonic mean of the clus-
ter precision and cluster recall. The cluster precision is de-

fined as |R∩S|
|R| while the cluster recall is defined as |R∩S|

|S| . No-

tice that we are now comparing R and S at the cluster level
instead of the record level as in pF1. Returning to our pre-
vious example where R={〈a, b〉, c, d} and S={〈a, b〉, 〈c, d〉},
the precision is 1

3
while the recall is 1

2
because exactly one

cluster matches among three clusters in R and two clusters

in S. The Cluster F1 is thus 2×(1/3)×(1/2)
(1/3)+(1/2)

= 2
5

= 40%. We

denote the cluster F1 measure as cF1.

K. The K measure [8, 2] sums the similarities of all cluster
pairs and is defined as the geometric mean of the Aver-

age Cluster Purity (ACP) and the Average Author Purity
(AAP). (Here, Author can be thought of as a cluster in the

gold standard.) The ACP is defined as 1
N

Σr∈RΣs∈S
|r∩s|2
|r|

where N is the number of records. (Notice that the records
r and s are considered as sets of records.) Similarly, the

AAP is defined as 1
N

Σs∈SΣr∈R
|r∩s|2
|s| . The K measure is

then
√
ACP ×AAP . For example, the ACP value for R

and S is (22/2)+(12/2)+(12/2)
4

= 3
4

while the AAP value is
(22/2)+(12/1)+(12/1)

4
= 1, making theK value

q
3
4
× 1= 86.6%.

ccF1. The closest cluster F1 measure [9] sums the similari-
ties of all “closest” cluster pairs and is defined as the har-
monic mean of the closest cluster precision and closest clus-
ter recall values. The closest cluster precision is defined

as
Σr∈R maxs∈S(J(r,s))

|R| where J(r, s) is the Jaccard similar-

ity |r∩s|
|r∪s| . The closest cluster precision is thus the sum of

the maximum Jaccard similarity coefficients for all r’s di-
vided by |R|. Similarly, the closest cluster recall is defined

as
Σs∈S maxr∈R(J(s,r))

|S| . For example, the closest cluster pre-

cision for R against S is (2/2)+(1/2)+(1/2)
3

= 2
3

while the

closest cluster recall is (2/2)+(1/2)
2

= 3
4
, making the closest

cluster F1 = 2×(2/3)×(3/4)
(2/3)+(3/4)

= 12
17

= 70.59%. We denote clos-

est cluster F1 as ccF1. Reference [23] uses a variant of ccF1

that uses a different similarity equation and gives weights to
the coefficients when adding them.

A.3 Edit Distance
The closest related work to an edit distance measure for

clustering is a state-of-the-art measure called Variation of
Information [5] (V I) where we measure the “information”
lost and gained while converting one clustering to another
as follows:

V I(R,S) = H(R) +H(S)− 2I(R,S)

Functions H and I represent, respectively, the total entropy
of the individual clusters and the mutual information be-
tween R and S. (N is the total number of records in I.)

H(R) = −
X
r∈R

|r|
N

log
|r|
N

I(R,S) =
X
r∈R

X
s∈S

|r ∩ s|
N

log
|r ∩ s| ×N
|r| × |s|

B. CONFIGURING THE COST FUNCTIONS
In the body of the paper, we presented various configura-

tions for the GMD measure. In this section, we provide four
scenarios where certain configurations of GMD are suitable
for properly evaluating ER algorithms. Of course, most ap-
plications would favor a perfect ER result. However, given
that ER results are not always accurate, applications may be
willing to focus on certain qualities while sacrificing others.

Large clusters matter. Suppose that we are interested in
the most famous individuals on various social websites (e.g.,
Facebook, MySpace, etc.). In this case, we might be in-
terested in focusing on the people that have many profiles
and are highly active on the Web. When resolving people
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records on the various social websites, we might thus be
more interested in correctly resolving individuals with lots
of information (i.e., many records) rather than inactive indi-
viduals with only a few records. A reasonable setting could
be fm = xy and fs = xy because we want to make sure the
large clusters are resolved correctly.

All clusters matter. Suppose that we have a shopping ap-
plication that needs to resolve a large set of product items
and display them to users online. Since each item is equally
important, we might want a uniform evaluation on all clus-
ters regardless of their sizes. For example, a book that has
one record for its description is equally important as an iPod
that has ten varying descriptions. Hence, it makes sense to
give equal cost to a merge or split for any cluster sizes in-
volved. A reasonable setting then could be fm = 1 and fs

= 1 because every cluster is equally evaluated.

Minimize human effort. If a human expert needs to cor-
rect the ER results, then merging two clusters could be
easier than splitting a single cluster. While merging two
clusters does not require much work for a person, splitting
requires one to decide which records will be separated with
others. The splitting becomes more difficult as the cluster
size increases. As a result, we might want to penalize large
clusters that are incorrect and need to be split. Thus by
setting fm = 1 and fs = xy, we can favor ER results that
minimize the splitting effort of the human expert (of course,
now the human may have to do more merges).

Complete information for large clusters. Suppose that
we are analyzing how popular news spreads through the
Web. In this case, we might want to make sure we have
all the related webpages for each popular topic even if we
also end up gathering irrelevant webpages as well. At the
same time, we might not be interested in topics that are not
widely disseminated and thus only appear in few webpages.
By setting fm = xy and fs = 1, we can favor ER results
that have high recall on large clusters (i.e., popular topics).

C. THE SLICE ALGORITHM
In the body of the paper, we motivated the use of an ef-

ficient algorithm for computing GMD. In this section, we
propose the Slice algorithm, which computes GMD when
fm and fs are operation order independent functions. The
algorithm computes the cost of an arbitrarily selected bare
necessities path, and therefore produces the correct answer
only when the split and merge cost functions are order op-
eration independent.

The algorithm takes two partitions R and S, as well as
the functions fm and fs as input. The output of the al-
gorithm will be the fm, fs merge distance from R to S (as
long as fm and fs are operation order independent). The
gist of this algorithm is to find the cost to build each cluster
Si ∈ S by breaking off pieces from clusters in R and then
merging them together. We can find the cost to build each
Si independently and then compute the sum for the total
cost to move from R to S.

We now explain the details of the algorithm, and execute
it over an example input. For the purposes of the exam-
ple, let R = {〈a, c, e〉, 〈b, d, f〉} and S = {〈a, b, c〉, 〈d, e, f〉}.
We’ll refer to the individual clusters with one-based indexes:

Algorithm 1 Slice algorithm

Input: R, S: the result and gold standard.
Ri and Si refer to the ith clusters of R and S respectively
fm, fs: the cost functions for merge and split operations
Output: the fm, fs merge distance from R to S

1: MergeDistance(R, S)
2: // build a map M from record to cluster number
3: // and store sizes of each cluster in R
4: for all Ri ∈ R do
5: for all r ∈ Ri do
6: M [r]← i
7: end for
8: Rsizes[i]← |Ri|
9: end for

10: // begin computing cost
11: cost← 0
12: for all Si ∈ S do
13: // determine which clusters in R contain the records in Si

14: pMap← {}
15: for all r ∈ Si do
16: // if we haven’t seen this R cluster before, add it to the

map
17: if M [r] 6∈ keys(pMap) then
18: pMap[M [r]]← 0
19: end if
20: // increment the count for this partition
21: pMap[M [r]]← pMap[M [r]] + 1
22: end for
23: // compute cost to generate Si

24: SiCost← 0
25: totalRecs← 0
26: for all (i, count) ∈ pMap do
27: // add the cost to split Ri

28: if Rsizes[i] > count then
29: SiCost← SiCost + fs(count, Rsizes[i]− count)
30: end if
31: Rsizes[i]← Rsizes[i]− count
32: if totalRecs 6= 0 then
33: // cost to merge into Si

34: SiCost← SiCost + fm(count, totalRecs)
35: end if
36: totalRecs← totalRecs + count
37: end for
38: cost← cost + SiCost
39: end for
40: return cost

R1, R2 and S1, S2.
The algorithm begins with a loop over all clusters in R.

Lines 4-8 set up the loop, which builds up a mapping M
from each record to the cluster in R it is a member of. To
save space, we will not show the entire contents of M , but as
examples, M [a] = 1 and M [b] = 2. The loop also computes
an array Rsizes that stores the size of each cluster in R.
The Rsizes array will be updated over the course of the
algorithm as we split pieces off of each cluster in R. In our
example, the Rsizes array will have the value 3 for both
entries.

The algorithm then continues compute the cost of building
each cluster Si ∈ S. The first step is determining which
clusters in R contain the records in Si. Lines 14-21 build
a structure pMap that, for each cluster Rj in R, keeps a
count of the records in Si that are in Rj . If Rj ∩ Si = ∅,
then there will be no entry in pMap for Sj . Therefore there
is at most one entry in pMap for each record in Si. In our
example, the pMap generated for S1 will have pMap[1] =
2 and pMap[2] = 1, since the two records a, c are in R1,
whereas the one remaining record b comes from R2. When
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pMap is generated for S2, it will have pMap[1] = 1 and
pMap[2] = 2.

To build Si from the clusters in R, we must first split off
the parts of the clusters in R that have the records in Si. We
can perform this splitting with a single split operation for
each cluster that intersects Si. Once those k pieces are split
off, then we can merge them all together with k − 1 merge
operations. Lines 24-37 compute the cost for this series of
operations, consulting pMap to find out how many records
must be split off of each cluster in R. In our example, the
cost to construct S1 would be computed as follows. First,
pMap[1] is 2, so we would have to split two records off of
R1. Since R1 currently has size 3 (according to Rsizes), the
cost for this split would be fs(2, 3−2). In the next iteration,
we would consider pMap[2] = 1, and split 1 record away
from R2. This split would cost fs(1, 3− 1). Now that there
are two “fragments”, we compute the cost to merge them
together: fm(2, 1). This would end the loop and the cost
for constructing S1 would be 2× fs(2, 1) + fm(2, 1).

We note that on line 31, we update the Rsizes array to
reflect the fact that records have been split off of the clusters
in R. After computing the cost to construct S1, Rsizes
will have been updated to the sizes of the clusters in R
without records in S1. Specifically, Rsizes[1] = 3 − 2 = 1
and Rsizes[2] = 3− 1 = 2.

The final details of the algorithm are to simply sum up
the costs to construct all the Si clusters, which is the merge
distance from R to S.

D. EXPERIMENTS

D.1 Data
In the body of the paper, we use both synthetic and real

data to evaluate various measures. Synthetic data lets us
study many scenarios and understand when each measure
is advantageous. Real data, on the other hand, provides a
“sanity check” of the results found using synthetic data. In
this section, we discuss how we generated the synthetic data
and then describe the real datasets used.

Synthetic Data. We generate ER results that contain cer-
tain types of ER errors and have a given distribution of
record sizes. Notice that our generator is different from ER
benchmarks that produce inputs to ER algorithms. Instead,
our generator produces possible ER results. An ER result R
is generated in two steps. First, the gold standard G is gen-
erated using a given distribution of cluster sizes. Second,
R is generated from G by adding ER errors. The possi-
ble types of errors in the ER results are categorized below.
Notice that the errors are not necessarily distinct from each
other (i.e., having one type of error may result in also having
another type of error).

• Broken Entity: A cluster is split into two clusters of
random sizes. For example, the record in the gold stan-
dard G = {〈a, b, c, d, e〉} splits into 〈a, b〉 and 〈c, d, e〉,
resulting in R = {〈a, b〉, 〈c, d, e〉}.
• Glued Entity: Two clusters are merged into a single

cluster. For example, the two records in G = {〈a, b, c〉,
〈d, e〉} merge, resulting in R = {〈a, b, c, d, e〉}.
• Misplaced Entity: A record within a cluster is detached

and combined with another cluster. For example, the

record c in the gold standard G={〈a, b, c〉, 〈d, e〉} de-
taches from 〈a, b, c〉 and combines with 〈d, e〉, resulting
in R = {〈a, b〉, 〈c, d, e〉}.

Table 3 shows the parameters used to generate the ER
results that contain the various types of ER errors above.
We first generate a random gold standard G based on a
given number of entities E and a cluster size distribution.
We assume a Zipfian distribution with an exponent number
e for the possible cluster sizes within the range [1, C] where
C is the maximum possible cluster size. The probability of

a cluster having size k is thus 1/ke

ΣC
c=1(1/ce)

. Once the gold

standard G is generated, an ER result R is produced based
on the gold standard. To generate broken entity errors, we
split each cluster in G into two clusters of random sizes with
probability b. To generate glued entities, we glue each pair
of entities with a probability of g. We perform a transitive
closure for all glued entities at the end. Finally, to generate
misplaced entities, we remove a single record from a random
cluster in G containing more than one record and attach it
to a different random cluster. We also avoid misplacing a
record that has already been misplaced before.

Table 3: Parameters for ER Result Generation
Parameter Description Value(s)

E Number of entities [10K,160K]
e Zipfian exponent for cluster 1.5

size distribution in G
C Maximum cluster size 20
b Probability of a cluster broken [0.1,1.0]
g Probability of two clusters [1e-5,1e-4]

glued together

Real Data. We used two real datasets. We used a com-
parison shopping dataset provided by Yahoo! Shopping,
which contains millions of records that arrive on a regular
basis from different online stores and must be resolved be-
fore they are used to answer customer queries. Each record
contains various attributes including the title, price, and
category of an item. We experimented on a random subset
of 5,000 records that had the string “iPod” in their titles.
We also experimented on a hotel dataset provided by Yahoo!
Travel where tens of thousands of records arrive from differ-
ent travel sources (e.g., Orbitz.com), and must be resolved
before they are shown to users. Again, we experimented on a
random subset of size 5,000 of the hotel data. While we had
a manually resolved gold standard for the hotel dataset, we
did not have a gold standard for the shopping dataset and
thus created one by running a pairwise comparison between
all pairs of records using a strict matching criteria and then
performing a transitive closure at the end.

We ran two ER algorithms on the hotel and shopping
datasets to produce ER results. The Swoosh algorithm [9]
uses a Boolean pairwise match function to compare records
and a pairwise merge function to merge two records that
match into a composite record. Swoosh starts comparing
records in pairs and merges those that match. The merged
records are compared again with other records for new it-
erative matches. The matching and merging repeats until
no records match with each other. The match function for
the shopping data compares the title, price, and category
values of two records. For the hotel dataset, we compared
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the names and addresses of hotels. We also used an ER
algorithm by Monge and Elkan [16] (ME) where records
are sorted using an application-specific key and then clus-
tered with a sequential scan. During the scan, each record is
compared with the “representative” records of clusters and
added to its closest cluster.

D.2 Conflicts in Real Datasets
In the body of the paper, we used synthetic datasets to

show that conflicts can occur frequently among measures.
In this section, we show that conflicts can also occur in real
datasets as shown in Table 4, which shows the measure re-
sults for the two ER algorithms run on the shopping and
hotel datasets. We added the distance results for BMD
and accuracy results for the other measures. It is important
to understand that for BMD, a smaller distance indicates a
more accurate ER result. For the hotel dataset, the Swoosh
algorithm performs better than the ME algorithm according
to the BMD measure (again, the algorithm with the smaller
distance is better), but not for pF1 (higher accuracy is bet-
ter). Hence, the pF1 and BMD measures conflict. The pF1

measure also conflicts with cF1, which considers the Swoosh
result more accurate. The other K and ccF1 measures do
not conflict with other measures because of the similar ac-
curacies given to the two ER results (recall we set ε = 0.01).
For the shopping dataset, both pF1 and BMD consider the
Swoosh algorithm to be better than the ME algorithm while
the other measures give similarly high accuracy values to
both algorithms. We do not find any conflicts in this case.
The results show that conflicts can indeed occur in real world
applications, and evaluations of ER algorithms need to con-
sider multiple measures (something that to date is seldom
done).

Table 4: Measure results for real-world algorithms
and datasets

BMD pF1 cF1 K ccF1

Hotel
Swoosh 427 0.34 0.88 0.95 0.93

ME 435 0.61 0.86 0.96 0.93
Shopping

Swoosh 29 0.86 0.98 0.98 0.99
ME 34 0.73 0.98 0.97 0.99

D.3 Comparing ER Algorithms with Config-
ured Measures

In the main body of the paper, we discussed how the cost
functions can be chosen based on application-specific knowl-
edge. Table 5 shows how the Swoosh and ME algorithms
can be compared using configured GMD measures. The ER
results are identical to the ones used for Table 4. EachGMD
measure gives certain information on how the two algorithms
performed. For example, using the results of GMDP and
GMDR, we know that the Swoosh algorithm is superior to
the ME algorithm in terms of broken entity errors, but infe-
rior in terms of glued entity errors, for both of the datasets.
Comparing the results of BMD and GMDH , we suspect
that the Swoosh algorithm does a poor job in resolving large
clusters because Swoosh has much higher GMDH distances
than those of ME, but similar BMD distances. (Recall that
GMDH is more sensitive to errors in large clusters than
BMD.)

Table 5: Configured GMD results for real-world al-
gorithms and datasets

BMD GMDP GMDR GMDH GMDV

Hotel
Swoosh 427 2087 158 2672 0.177

ME 435 79 374 888 0.122
Shopping

Swoosh 29 28118 0 28147 0.084
ME 34 0 12794 12828 0.078

D.4 Runtime Performance
In the main body of the paper, we proposed an efficient

algorithm for computing GMD measures. In this section,
we compare the computation times for the BMD, pF1, cF1,
K, ccF1, and V I measures. (We omit the other configured
GMD measures because their runtimes are similar to that
of BMD.) For BMD, we used the Slice algorithm. For
pF1, we used two implementations: one uses the Slice algo-
rithm while the other is a straightforward implementation
that iterates through all record pairs of the ER result and
the gold standard. Similarly for V I, we used an implementa-
tion using Slice (i.e., GMDV ) and a straightforward imple-
mentation that iterates through all pairs of clusters between
the ER result and the gold standard. We implemented cF1,
ccF1, and K in a straightforward way (as described in Sec-
tion 5) because there are no better published algorithms. As
a result, cF1 was implemented with a linear time algorithm
while ccF1 and K were implemented with quadratic time al-
gorithms. All the algorithms were implemented in Java, and
our experiments were run in memory on a 2.4GHz Intel(R)
Core 2 processor with 4GB of RAM.

Figure 6 shows the runtime plots for the measures. We
experimented on 10K to 160K entities with the Zipfian ex-

ponent e = 1.5, and each ER result R had |R|
10

misplaced
entities. Any implementation using the Slice algorithm is
scalable to large ER results, with a runtime increasing lin-
early by the number of entities. Although the straightfor-
ward implementation of pF1 is worst-case quadratic, in this
experiment it shows linear average behavior (because clus-
ters are small — average size is 3.5 — making the number
of records to iterate over small). The straightforward im-
plementation of V I is expensive even for a small number of
entities, highlighting the runtime improvements when using
Slice. The cF1 algorithm is efficient and shows a linear in-
crease in runtime. Finally, the runtimes of the K and ccF1

algorithms grow quadratically against the number of entities
and show the worst runtimes.
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