
HighPerformance Dynamic Pattern Matching over
Disordered Streams

Badrish Chandramouli†, Jonathan Goldstein†, David Maier‡
†Microsoft Research, Redmond, Washington, USA
‡Portland State University, Portland, Oregon, USA
{badrishc, jongold}@microsoft.com, maier@cs.pdx.edu

ABSTRACT

Current pattern-detection proposals for streaming data recognize
the need to move beyond a simple regular-expression model over
strictly ordered input. We continue in this direction, relaxing re-
strictions present in some models, removing the requirement for or-
dered input, and permitting stream revisions (modification of prior
events). Further, recognizing that patterns of interest in modern
applications may change frequently over the lifetime of a query,
we support updating of a pattern specification without blocking
input or restarting the operator. Our new pattern operator (called
AFA) is a streaming adaptation of a non-deterministic finite au-
tomaton (NFA) where additional schema-based user-defined infor-
mation, called a register, is accessible to NFA transitions during
execution. AFAs support dynamic patterns, where the pattern itself
can change over time. We propose clean order-agnostic pattern-
detection semantics for AFAs, with new algorithms that allow a
very efficient implementation, while retaining significant expres-
siveness and supporting native handling of out-of-order input, stream
revisions, dynamic patterns, and several optimizations. Experi-
ments on Microsoft StreamInsight show that we achieve event rates
of more than 200K events/sec (up to 5× better than simpler schemes).
Our dynamic patterns give up to orders-of-magnitude better through-
put than solutions such as operator restart, and our other optimiza-
tions are very effective, incurring low memory and latency.

1 Introduction

The advent of the Digital Age has made large-scale data acquisition
and online processing a crucial component of modern systems. A
Data Stream Management System (DSMS) [1, 4, 22, 25] enables
applications to issue long-running continuous queries (CQs) that
efficiently monitor and process streams of data in real time. DSMSs
are used for data processing in a broad range of applications includ-
ing clickstream analysis, fraud detection, and algorithmic trading
of stocks. Recently, pattern CQs — where the user wants to detect
patterns across time — have garnered significant attention in the
research community [2, 10, 16, 17, 19, 28].

New Challenges Modern business needs pose several new chal-
lenges for pattern CQs, that must be addressed in entirety for a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 1317,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

deployable solution. The following example illustrates some of the
challenges that practical solutions for pattern CQs must confront.

Example 1 (Algorithmic Trading). An automated stock-trading

application wishes to use a DSMS to perform technical analysis

to detect interesting chart patterns [8] in real-time. Here, each

event in the stream contains stock data such as symbol, price, price

change, and volume. A simple example is the V-pattern, where we

look for consecutive stock events that consist of downticks followed

by upticks. Other examples of chart patterns include wedge, double

top, and candlestick.

A pattern CQ, call it Q1, may wish to detect a sudden large price

drop (of say δ), followed by a sequence of k consecutive V-pattern

occurrences, such that the total number of upticks is equal to the

total number of downticks (across the k V-patterns). Here, k is large

and may not be known in advance. The stopping condition could

be data-dependent — a second pattern CQ, called Q2, may wish

to report the number of consecutive V-patterns (after a large price

drop) until the price reaches the original price before the drop.

1) Execution Model Patterns over streams can involve unbounded
looping operations such as Kleene closure and are not expressible
using standard DSMS operators such as joins and windows. One
execution model for patterns CQs is a non-deterministic finite au-

tomaton (NFA) to match regular expressions [16, 19]. However,
many patterns such as the V-pattern above are not regular — we
need to associate additional information with computations, e.g., a
count of upticks and downticks encountered during matching.

Recent research [2, 10, 20] recognizes this limitation of plain
NFAs and enhances expressiveness by allowing added runtime in-
formation to be associated with NFA states — we refer to these
automata as augmented NFAs. These proposals constrain the tran-
sitions allowed in an NFA; specifically, the NFA is a linear chain of
states, with transitions from state i only going to states i and i + 1.

We continue development in this direction by allowing uncon-

strained augmented NFAs with arbitrary transitions; we will see in
Section 3 that complex patterns such as Q1 and Q2 above are easier
to describe and execute efficiently using an unconstrained model.
The challenge is to support this model efficiently, with robustness
in the face of real stream characteristics, such as high volume, out-
of-order events, and modifications to previous events.

2) Dynamic Patterns The value proposition of a DSMS to a busi-
ness is captured by the monitor-manage-mine (M3) loop in Fig-
ure 1. We monitor data in real-time to detect interesting patterns,
that are used to manage and perform business actions. The raw data
is aggregated and stored offline; we mine the historical data to de-
termine new patterns (or modifications to existing patterns) that are
fed back to the monitor phase. In the trading scenario of Example 1,
historical data mining can reveal new chart patterns or refinements

220

Figure 1: The monitor-manage-mine (M3) cycle.

of existing patterns (e.g., changed optimal value of k), which need
to be deployed in real-time to trigger automatic trading actions.

Traditionally, the mining phase to determine pattern changes has
been largely human-driven and infrequent. However, there is an
increasing need [14] to adjust quickly to fast-changing trends by
completing the M3 loop using automated and often real-time min-
ing to make frequent modifications to the monitored patterns.

The set of active patterns is usually compiled into a single com-
posite pattern for efficiency by sharing common state and compu-
tations (multi-pattern optimization [10, 11]). Further, we may be
interested in reporting trends across patterns, e.g., how many con-

secutive patterns were triggered by the same user, which require
merging the patterns into a single automaton.

A closed-loop M3 cycle introduces the new challenge of support-
ing dynamic patterns, i.e., patterns that change over time — either
individual pattern transitions or the active set of patterns itself. In
Example 1, the set of chart patterns or value k may change rapidly
over time. In an online advertising system that targets user behav-
ior [9], patterns can vary rapidly when automated mining schemes
are used to define currently “hot” behavior rules. Network moni-
toring rules (see Appendix A) may also change rapidly with time.

The obvious technique for handling dynamic patterns — termi-
nate the old CQ and create a new one — has several disadvantages:

• We lose the in-memory state built up within the operator from
events matching the unchanged portion of the pattern.

• We are unable to allow the matching of older events against the
new transitions, unless we save and replay past events.

• In the common case where the pattern operator is part of a larger
CQ with other stateful operators and possibly multiple outputs,
tearing down the entire query to modify the query may be unac-
ceptable. But, replacing a pattern operator in a running query is
difficult and potentially expensive.

The challenge is to efficiently support dynamic patterns while
avoiding the difficulties above.

3) Stream Disorder and Revisions Out-of-order input is com-
mon, particularly when data is combined from multiple sources;
for instance, when recognizing patterns in a combined feed across
stock exchanges. Disorder may also arise from unreliable or high-
latency network links, transient router failures, and expensive in-
network CQs. Pattern CQs are highly order-sensitive, and can ben-
efit from native support for out-of-order events. The naive tech-
nique of buffering events at the input until we can explicitly elim-
inate disorder (either based on punctuations [26] or using a time-
out [5]) can incur high memory usage and latency.

The current constrained augmented NFA-based proposals target
ordered streams. While out-of-order schemes have been proposed
for simple regular expressions and sequence queries [16, 17], it is
challenging to handle disorder with low memory and latency over-
head, while supporting an unconstrained augmented model with
dynamic patterns. A closely related challenge is efficiently han-
dling revisions, where earlier events are modified, e.g., due to error
compensation schemes, at the source or in upstream CQ operators.

4) Operator Semantics Clean semantics is a cornerstone of tradi-
tional databases and relational algebra, and is necessary for mean-
ingful operator composability, repeatable and well-understood be-
havior, query debuggability, and cost-based query optimization [27].
DSMS operators that correspond to database operators (e.g., joins)
have inherited the clean semantics of those operators; however, ex-
isting proposals for stream pattern detection tend to adopt more
operational definitions. There is a need for intuitive and declarative
semantics — that cleanly handle dynamic patterns, stream disorder,
and event revisions — for pattern CQs.

Contributions We make the following contributions in this work:

• We propose a new pattern execution model called an AFA, for
augmented finite automaton. An AFA is an NFA in which each
computation is augmented with a register, which has a fixed
schema and can be manipulated during transitions. AFAs can di-
rectly model complex patterns with arbitrary cycles in the tran-
sition graph (such as Q1 and Q2 in Example 1).

• We define AFA semantics that are independent of operational
aspects and physical properties such as disorder and revisions.
We propose new semantics and solutions for dynamic patterns,
and discuss operator expressiveness (Sections 2 and 3).

• We demonstrate the power of registers and our execution model,
by exhibiting AFAs for novel applications such as uncertain strea-
ms, stream cleaning, and chart patterns, without changing the
underlying model (Section 4, more details in Appendix A).

• We present algorithms to handle out-of-order events and revi-
sions efficiently, allowing fine-grained control over memory us-
age, latency, and output size, along with efficient state cleanup
using punctuations, and support for dynamic patterns (Section 5).

• We evaluate our AFA operator on Microsoft StreamInsight [3], a
commercial DSMS. Results show that we are memory-efficient
and can achieve rates of more than 200K events/sec — up to
5× better than competing schemes. Further, we handle dynamic
patterns orders-of-magnitude more efficiently than simpler so-
lutions such as operator restart (Section 6).

The appendices present novel techniques to efficiently address
several other common requirements: handling negative patterns
that look for the absence of certain information, ignorable events
that do not contribute to matches, and advanced state cleanup (Ap-
pendices D, E, and F). Note that language is not the focus of this
paper — users can directly write AFA patterns, and pattern lan-
guages such as SASE+ [2, 28], Cayuga [10], and Esper [13] can be
compiled easily into an AFA. We refer to appropriate related work
throughout the paper, with additional details in Appendix G.

2 Streaming AFA Semantics and Formalism

2.1 Preliminaries — Streams and Events

A stream is a potentially unbounded sequence e0, e1, . . . of events.
An event ei = 〈p, c〉 is a notification from the outside world (e.g.,
from a sensor) that consists of two parts: (1) a payload p = 〈p1, . . . ,

pk〉, which conforms to a pre-defined event schema Ē, and (2) a
control parameter c that provides metadata about the event.

While the exact nature of the control parameter varies across sys-
tems [6, 24, 26], two common notions in the context of pattern CQs
over streams [2, 17, 28] are: (1) an event generation time, and (2)
a time window, which indicates the period of time over which an
event can influence output (i.e., contribute to a valid pattern). We
capture these by defining c = 〈LE,RE〉, where the time interval
[LE,RE) specifies the period (or lifetime) over which the event con-
tributes to output. The left endpoint (LE) of this interval is the ap-
plication time of event generation, also called the event timestamp.

221

Figure 2: Streaming model for pattern matching.

Assuming a window of width w time units, the right endpoint of an
event is simply RE = LE + w. In case there is no windowing, RE

is set to ∞. A stream is said to be disordered if events may arrive
out-of-order with respect to their timestamps.

In order to undo the effect of previously issued events, our streams
support revision via event retraction [6, 17, 21, 23], where an event
serves to remove a previous event from the event sequence. A re-
traction has the same payload and control parameters as the original
event, with an additional bit indicating that it is a retraction.

Figure 2 (top) shows 8 events (e1, . . . e8) in arrival order. Here, e8

is an out-of-order event whose actual timestamp (LE) is 6. Figure 2
(bottom) shows the event lifetimes, assuming a window w = 7 secs.

2.2 Streaming AFA Model for Static Patterns

We start with a standard NFA, add the ability to carry additional
runtime information with a pre-defined schema, develop new se-
mantics for pattern matching over streams, and apply restrictions
to match the streaming setting. Here, we focus on static patterns;
formalisms for dynamic patterns are covered in Section 2.3.

AFA Formalism An AFA is a directed graph with labeled nodes
called states, labeled edges between states called arcs, a special
start state, and a set of special final states. In addition, an AFA uses
additional computation state, called a register, which is associated
at runtime with each active state. In order to suit the stream setting,
we refine the definition of registers as follows: A register consists
of a fixed number of fields r = 〈r1, . . . , rk〉 and is schema-based,
i.e., it conforms to a pre-defined register schema R̄.

Definition 1 (AFA). An AFA is a 7-tuple M = (Q,A, q0,F ,Z, Ē,

R̄), where Q = {q0, . . . qn−1} is the set of states, A = {a0, . . . , am−1}

is the set of arcs, q0 is the start state, F is the set of final states, Z

is the initial register, Ē is the event schema, and R̄ is the register

schema. Each arc ai is labeled with a pair of transition functions
with signatures fi(Ē, R̄) and gi(Ē, R̄), each operating over an event

and a register. We refer to these two functions as the fence function
and the transfer function respectively.

Note that an arc can be defined between any arbitrary pair of
states. The fence function fi(Ē, R̄) returns a boolean value that de-
termines if a transition along that arc can be triggered, and, if so,
the transfer function gi(Ē, R̄) computes the new register that is asso-
ciated with the execution after the successful transition. An arc can
also be defined as a special ε-arc that does not consume any event,
and whose transition functions operate only over the register.

Example 2 (AFA for Trading). Figure 3 shows the AFA for the

query Q1 of Example 1. The register consists of a pair of integer

fields 〈r1, r2〉. Field r1 tracks the difference between the number

of downticks and the number of upticks across V-patterns, while

r2 tracks the number of consecutive V-patterns detected thus far.

We have Q = {q0, . . . , q3},A = {a0, . . . , a5},F = {q3}, and Z =

Figure 3: AFA for the V-pattern query Q1 of Example 1.

〈0, 0〉. Each arc ai is annotated with fence function fi (to determine

whether the transition is triggered) and transfer function gi (for

the new register content). Methods up(e) and down(e) determine if

event e is an uptick or a downtick, while drop(e) indicates the mag-

nitude of the drop. For instance, arc a1 checks if e is a downtick; if

yes, it increments r1 while leaving r2 unchanged.

AFA Computation Consider a contiguous ordered event subse-
quence s. We formalize the computation of an AFA M using an in-

stantaneous description (ID) [15] of M as a 3-tuple (α, q, r), where
α is the subsequence of events that have not been processed, q ∈ Q

is the current state, and r (with schema R̄) is the current register.
The initial ID is (s, q0, Z). Transitions are denoted using the next-ID

relation `M . For each event-consuming arc ai ∈ A from state q to
state q′, we have the relation (eα, q, r) `M (α, q′, r′) if and only if
fi(e, r) is true and gi(e, r) = r′. If ai is an ε-arc, we have the relation
(α, q, r) `M (α, q′, r′) if and only if fi(−, r) is true and gi(−, r) = r′.

The relation `M computes one step of M, while the reflexive,
transitive closure `∗M computes zero or more steps of M. The AFA

M is said to accept the subsequence s (i.e., recognize the pattern)
if (s, q0,Z) `∗M (∅, q, z), where q ∈ F and ∅ is an empty sequence.

Example 3 (AFA Computation). Continuing Example 1 with Q1,

each event is either an uptick or a downtick. We compute the AFA

of Figure 3 (with k = 2), over the ordered event sequence s =

e1 . . . e5e8e6 of Figure 2. The initial ID is (s, q0, 〈0, 0〉). When event

e1 is consumed, it triggers the function f0 associated with a0, the

only outgoing arc from q0. Assuming e1 is a price drop greater than

δ, the new register is computed using g0 and the AFA completes

the step (e1 . . . e5e8e6, q0, 〈0, 0〉) `M (e2 . . . e5e8e6, q1, 〈0, 0〉). Next,

downtick e2 can be consumed by both arcs a1 and a2, giving two

possible next-IDs, (e3e4e5e8e6, q1, 〈1, 0〉) and (e3e4e5 e8e6, q2, 〈1, 0〉).

We see that there can be multiple next-ID relations, not all of

which lead to acceptance. In our example, the sequence of com-

putations (e1 . . . e5e8e6, q0, 〈0, 0〉) `M (e2 . . . e5e8e6, q1, 〈0, 0〉) `M

(e3e4e5e8e6, q1, 〈1, 0〉) `M (e4e5e8e6, q2, 〈2, 0〉) `M (e5e8e6, q2, 〈1, 0〉)
`M (e8e6, q1, 〈0, 1〉) `M (e6, q2, 〈1, 1〉) `M (∅, q3, 〈0, 2〉) leads to s

being accepted by M since q3 ∈ F .

Streaming AFA Operator We now define the semantics of our
streaming AFA operator. The pattern output is described in an
order-independent manner by specifying the output stream as a set
of events computed in terms of the set of all input events1.

Definition 2 (Streaming AFA Operator). Given (1) an AFA M =

(Q,A, q0,F ,Z, Ē, R̄), and (2) an input stream that consists of a

(possibly countably infinite) set of events I, let I denote the ordered

sequence based on LE, of all events in I, and S denote the set of

all possible contiguous subsequences of I. The output stream of a

streaming AFA operator OM is a (possibly countably infinite) set

1As in previous work, we assume that timestamps are unique. A
clean extension to non-unique timestamps is straightforward (based
on the concept of “multi-events” introduced in Sec. 4). Our algo-
rithms also extend naturally, but the details are omitted for brevity.

222

of events O defined as follows. An output event ei = 〈pi, ci〉 where

pi = z and ci = 〈LE,RE〉, belongs toO iff, for some sequence s ∈ S,

we have (s, q0,Z) `∗M (∅, q, z) where q ∈ F (i.e., M accepts s) and

[LE,RE) is the intersection of all event lifetimes in s.

In our running example, the event sequence s = e1 . . . e5e8e6

forms a valid match for Q1, resulting in a single output event with
the lifetime shown in Figure 2 (bottom). The definition of output
lifetime naturally prevents matches across events that are not within
the window w (e.g., across e1 and e7 in Figure 2).

The events that contribute to a match e can be reconstructed if
needed, by looking for events in the input stream whose lifetime
[LE,RE) ⊇ [e.LE, e.RE). As an aside, note that associated with
any application time t, there is a collection C(t) of input events (or-
dered by LE) that are live at t, i.e., have a lifetime that is stabbed by
t. Our operator has the desirable changing relation property [18]
that an output event is live at t if and only if C(t) contains the cor-
responding event subsequence that M accepts.

2.3 Adding Support for Dynamic Patterns

The goal is to seamlessly handle dynamic patterns, i.e., patterns
where arcs (and the associated states) may get added or removed
with time. The key idea behind our solution is to treat the AFA arcs
A as a second streaming event input to the operator.

An arc-event ea for an arc a from state qx to state qy is an event
that contains a payload and a lifetime. The payload has the form
〈qx , qy, f , g, isFinal〉. Here, isFinal is a boolean that, in case qy is a
newly added state to the AFA, indicates whether qy ∈ F . Functions
f (Ē, R̄) and g(Ē, R̄) are as defined earlier. Deletion of existing arcs
is performed using arc-event retraction.

The arc-event ea has a lifetime [ea.LE, ea.RE). The semantics of
AFA computation are modified to take arc lifetimes into account.
Specifically, the next-ID relation for an arc-event ea correspond-
ing to event-consuming arc a is (eα, q, r) `M (α, q′, r′) iff f (e, r)
is true, g(e, r) = r′, and ea.LE ≤ e.LE < ea.RE. If a is an ε-
arc, we have (α, q, r) `M (α, q′, r′) iff f (−, r) is true, g(−, r) = r′,
and ea.LE ≤ e.LE < ea.RE, where e is the event whose consump-
tion (indirectly) triggered ea. In other words, given an arc-event ea

with lifetime [ea.LE, ea.RE), only events with a timestamp stabbing
[ea.LE, ea.RE) can trigger arc a.

Note that we do not choose temporal-join-style semantics for dy-
namic patterns, where an event triggers an arc-event if their life-
times intersect. The reason is that these semantics are less intu-
itive for patterns — an arc-event can affect an event with an ear-
lier timestamp, even if the arc did not exist at event occurrence
time. Further, these semantics lead to a severe inefficiency in state
cleanup; we cover the details in Section 5.4.

Practical Lifetime Restrictions The most common usage sce-
nario for dynamic patterns is the case where users want an arc in-
sertion (or deletion) to apply to all future events from the point
of insertion forwards. We support this default operation mode,
where users do not explicitly specify arc-event lifetimes. Let tcurr =

max(te, t) where t denotes the largest timestamp across all events
received on the first input to the operator. When a new arc-event
ea is received on the second input, its lifetime is implicitly set to
(tcurr,∞). Arc deletions correspond to a change in arc-event life-
time from the old lifetime (LE,∞) to the new lifetime (LE, tcurr].

Example 4 (Dynamic Patterns). Refer to the running example in

Figure 3. Each arc a0, . . . , a5 is associated with a lifetime of [−∞,∞).
The change of k to k′ is expressed by first deleting arcs a3, a4, and

a5, i.e., changing their lifetime to [−∞, tcurr], and then inserting

three arcs with lifetimes (tcurr,∞) that use the new value k′. Future

events will produce output only if k′ V-patterns are encountered.

Figure 4: Two-state

AFA. Figure 5: CAN plan.

2.4 Speculation and Punctuations

Speculation We defined the streaming AFA operator’s semantics
declaratively, in the presence of disorder. Our implementation op-
erationally ensures that on any prefix of the input, the output event
stream adheres to the semantics above. Thus, we may produce out-
put that may need to be withdrawn subsequently due to an out-of-
order input event — we refer to this as speculation. Incorrect output
events are withdrawn by issuing retraction events. We can handle
speculative input and produce maximally speculative output, but
aggressive speculation may not always be desired; Section 5.3 de-
scribes techniques for controlling speculation.

Punctuations We need a way to ensure that an event is not arbi-
trarily out-of-order. Otherwise, we can never declare any produced
output to be “final”, i.e., it cannot change due to future events. This
facility is useful when we need to prevent false-positives in scenar-
ios where correctness is important [17], such as directing an auto-
matic power plant shutdown based on detected anomalies. Further,
we cannot clean historic state in the DSMS, since it may be needed
forever in order to adjust previous output.

Our notion of stream progress is realized using time-based punc-

tuations [6, 24, 26]. A time-based punctuation is associated with
a timestamp t and indicates that there will be no future event with
timestamp < t. Section 5.4 shows how punctuations can provide
output guarantees and perform state cleanup for AFAs. Appendix F
introduces predicate-based punctuations to further optimize cleanup.

3 AFA Expressiveness

In this section, we compare AFAs (with static patterns) to con-
strained augmented NFAs (CAN) in terms of expressiveness. Fur-
ther details on AFA expressiveness, including a comparison to clas-
sical automata classes, can be found in Appendix B.

A CAN-based model (see Section 1) cannot express patterns with
arbitrary arcs, such as the one in Figure 3. It might appear that this
limitation of CAN can be overcome as follows. First, add register
entries to maintain the set of “active” NFA states (thus, the register
uses O(n) space, where n is the number of NFA states). Next, define
a simple two-state AFA (see Figure 4), where the self-loop transi-
tion a0 encodes all actions corresponding to the original automa-
ton, updating register contents to simulate transitions to subsequent
NFA states. However, this strategy has problems:

• It is less efficient because of the overhead of embedding the
automaton within a transition. We will see in Section 6 that the
overhead is up to 25% for our workloads.

• It amounts to writing a custom function for a specific pattern, as
opposed to using a general operator that handles any automaton.

• The self-loop just feeds events sequentially to the user-code,
and thus we can no longer perform operator-level optimizations
such as efficient handling of disorder, ignorable events, etc.

• Dynamic patterns cannot be supported directly using this scheme.

• Supporting arbitrary NFA graphs allows one to understand what
regular language the pattern is a subset of, seems a more natural

223

way of expressing the pattern, is easier to modify, and makes
implementation cleaner when there are multiple partial matches
“in flight” at once.

Another alternative is to partition the pattern into multiple CAN

operators in a CQ plan. For example, an AFA that looks for a
large price drop followed by k chart patterns (where k may be data-
dependent) can be created using the query plan in Figure 5, where
one CAN detects every chart pattern, and another CAN detects a
large price-drop followed by k chart patterns. However, this solu-
tion is highly inefficient: (1) we need to detect every chart pattern
even though we are interested in chart patterns only after a large
price drop, and (2) there is overhead due to several operators and
event queues in the plan. Further, this alternative makes writing the
pattern CQ harder as compared to directly specifying an automaton.

4 Practical Examples of Using AFAs

We illustrate the generality of our approach by casting a variety
of applications into the AFA model. We next discuss uncertain
streams; in Appendix A, we discuss how the AFA can be specified
by a user or compiled, along with more examples such as stream
data cleaning, complex chart patterns, and network monitoring.

Uncertain Streams Uncertain data streams, where the content of
each event is not known with certainty, are becoming increasingly
commonplace [12], for example, in RFID/GPS networks and envi-
ronmental monitoring. Assume that each event ei has a probability
pi of being present in the stream, and that pi is stored as a column
(say prob) in the event schema. For example, if the readings of a
particular RFID reader are spurious 10% of the time, each event
would have prob = 0.9. We want each pattern CQ output event to
be associated with a probability that the pattern actually occurred.

We modify an AFA that matches a desired pattern over a tra-
ditional (certain) stream as follows: we add an entry (rprob) with
default value 1 in the register to track the probability of pattern oc-
currence. Each successful arc transition due to an event ei updates
the register value to rprob × pi. In addition, we add a self-loop tran-
sition that remains in the same state and sets the new register value
to rprob × (1 − pi), to model the non-occurrence of ei. This solu-
tion can lead to a proliferation of partial matches, and is controlled
by setting some output probability threshold below which further
matching is discontinued. Note that we were able to support uncer-
tain streams without modifying the DSMS or the AFA model.

We can also let each event take on different values with varying
probabilities. For example, a sensor may produce events reporting
an object’s color as blue with probability pblue = 0.7, indigo with
probability pindigo = 0.2, and green with probability pgreen = 0.1.
Here, we model the alternative values as a “multi-event” that con-
tains value-probability pairs. Any use of e.color = a in a fence
function becomes pa > 0, and the corresponding transfer function
is used to update a cumulative probability in a register: rprob =

rprob × pa. This construction does not change the number of states
and arcs in the AFA, and the uncertainty is handled by the existing
mechanisms for managing multiple in-flight partial matches.

5 Implementing the AFA Operator

We present the basic algorithm for static patterns with disordered
streams in Section 5.1, while Section 5.2 covers dynamic patterns.
Speculation control and cleanup are covered in Sections 5.3 and 5.4,
while further optimizations are covered in the appendices.

5.1 Algorithms for Static Patterns

Storing Arcs and Registers Our operator maintains an arctable

— a hash table indexed by state. For each state q, arctable contains

Figure 6: Data structure for AFA operator, showing the insert

of out-of-order event e8. Event lifetimes are also shown.

a list of arcs that originate from q. Each arc is a structure with point-
ers to the fence and transfer functions (fi and gi). Since registers
are similar to events (with a predefined schema), we leverage the
event infrastructure to store registers in a common in-memory page
pool. Thus, registers inherit the benefits of events, such as null sup-
pression. We only manage pointers to events and registers; hence,
the terms “events” and “registers” below refer to these pointers.

Data Structures We use a structure called pmatch (for partial

match) to store computation state for potentially incomplete pat-
tern matches. A pmatch is conceptually associated with an ordered
event subsequence e0 . . . ek, where e0 and ek are referred to as the
StartEvent and EndEvent of the pmatch (their lifetimes are de-
noted by [StartLE,StartRE) and [EndLE,EndRE) respectively). A
pmatch node uses four fields (described below) to concisely repre-
sent an ID that is derivable from the initial ID by executing the AFA

on the subsequence e0 . . . ek. Note that the corresponding output
match lifetime is [EndLE,StartRE).

The pmatch nodes are organized in an efficient data structure
called rbtree, which uses a red-black tree (see Figure 6) to index
each event by its timestamp (LE). For every event e indexed in the
tree, rbtree maintains a doubly linked list of all pmatch nodes with
EndEvent e. We maintain the following invariants for rbtree:

• (Content) In the absence of punctuations, for every in-order
subsequence e0 . . . ek of received events where e0.RE > ek.LE,
there exists a pmatch node corresponding to every ID (∅, q, r) s.t.
(e0 . . . ek, q0,Z) `∗M (∅, q, r) where q ∈ Q. Each pmatch node
contains 4 fields: StartLE = e0.LE, StartRE = e0.RE, q, and r.
These pmatch nodes are stored in the linked list for ek in rbtree

(thus, EndLE and EndRE are available to the pmatch node).

• (Ordering) The pmatch entries in any linked list are maintained
in increasing order of StartLE. We will see shortly that we can
maintain this ordering efficiently.

• (Completeness) The presence of a pmatch entry for the event
sequence s = e0, . . . , ek implies the existence of k other pmatch

entries in the tree (one for each distinct prefix of sequence s).

Insert Algorithm We now give a short description of the inser-
tion algorithm. More details, along with runtime complexity, and
the deletion algorithm, are covered in Appendix C. Algorithm 1
shows the insertion algorithm (we omit the handling of ε-arcs for
simplicity). The method Search≤(t) returns the entry in rbtree with
timestamp closest to and ≤ t. The method Search≥(t) is also de-
fined similarly. Both are O(lg r) operations, for r events in rbtree.

If the inserted event e is out-of-order (with a timestamp t), we
first call RemoveInvalidatedSequences (Lines 10—19) to delete
partial matches whose subsequences span across t and hence are no

224

Algorithm 1: AFA insertion (handling out-of-order input).

InsertEvent(event e) begin1

if out of order then RemoveInvalidatedSequences(e.LE);2

entry x← rbtree.Search≤(e.LE) ; // Get previous pmatch list3

entry y← new entry; y.event← e; y.list← MakeTransitions(x.list, e);4

y.list.Append(NewTransition(q0,Z, e) ; // New pmatch from state q05

foreach pmatch p in y.list do if p.q ∈ F then p.InsertOutputEvent();6

rbtree.AddEntry(e.LE, y) ; // List y will be in StartLE order7

if out of order then PropagateInsert(y);8

end9

RemoveInvalidatedSequences(timestamp t) begin10

entry e← rbtree.Search≥(t); boolean done← false;11

while not done do12

done← true ; // Early stopping condition13

pmatch p← e.list.Head;14

while p.StartLE ≤ t do // Delete invalid pmatches15

if p.q ∈ F then p.RetractOutputEvent();16

done← false; delete p; p ← e.list.Head;17

e← e.Next;18

end19

PropagateInsert(entry y) begin20

list z← y.list;21

while z is not empty do22

y← y.Next; z← MakeTransitions(z, y.event);23

// Reverse append to maintain (Ordering) invariant
y.list.AppendFront(z.Reverse)24

end25

longer valid. If a deleted pmatch corresponds to a final state, we
output a retraction event to compensate for the invalid prior output.
Invariant (Completeness) allows us to ensure that the algorithm
visits no more pmatch nodes than the minimum necessary.

We next (Lines 3—7) retrieve the pmatch list corresponding
to the immediately previous event, and apply transitions (using
arctable) to each outgoing arc for each pmatch. We also attempt
to start a new match (from q0) beginning at event e. If any new
pmatch state is final, we produce an output event. Event e is added
to rbtree and associated with the new list of pmatch nodes, which
follows the (Ordering) invariant by construction. Finally, if e is
out-of-order, we continue the matching process with subsequent
event entries in rbtree (Lines 20—25) until no new pmatch nodes
get created. During this process, we can maintain the (Ordering)
invariant without having to sort the pmatch lists (see Line 24).

Runtime complexity is covered in Appendix C; briefly, we pay
a higher price only for out-of-order events, with lower overhead if
an event is only slightly out-of-order. We finally note that our al-
gorithms access events and registers in a column-major order (in
rbtree), which makes them more cache-friendly than using hori-
zontal pointers between related pmatch nodes.

Example 5 (AFA Insertion). Figure 6 shows the data structure for

our running example, after e1 . . . e5e6 have arrived and e8 is being

inserted. We delete four invalidated pmatch nodes as shown, and

then create 2 new nodes for e8. One of these matches is propagated

to entry e6 as a new pmatch — this is at the final state and causes

output of an event with the lifetime shown.

5.2 Algorithm Changes for Dynamic Patterns

Arc-events are stored in arctable as before, along with their life-
times. Before applying an AFA computation, we ensure that the
arc is valid for the computation based on the semantics defined in
Section 2.3, i.e., the event timestamp is contained within the corre-
sponding arc-event lifetime.

Algorithms Under the default operation mode (cf. Section 2.3),
we do not need to do anything extra when there is an arc-event in-
sertion or deletion, other than updating arctable. This is because
under this mode, arcs do not affect existing events. Our seman-
tics ensure that existing pre-computed state (partial matches) will

remain valid for the new arcs and future events.

On the other hand, when arc-events are associated with explicit
user-specified lifetimes, on the insertion of an arc-event ea with
lifetime [ea.LE, ea.RE) from state qx to qy, we invoke the method
Search≥(ea.LE) to locate the first affected event in rbtree. We tra-
verse the linked list associated with the previous event to locate
partial matches ending at qx, and apply the new transition to each
of them (if qx is the start state, new matches are also started as be-
fore). If qy is a final state, we may generate new output matches.
This is repeated for each event whose LE stabs the lifetime of arc-
event ea. Note that any new pmatch entries created during this
process also need to be matched with further events, similar to the
PropagateInsert procedure in Algorithm 1. Arc-event deletion is
similar but slightly more complicated; it is omitted for brevity.

5.3 Controlling Operator Speculation

The algorithms above are maximally speculative; i.e., when there
are events with consecutive timestamps, we output matches across
them. Thus, an out-of-order event between them may cause retrac-
tions. We have two techniques for limiting speculation.

Leveraging Event-Ordering Information In many applications
(e.g., sensors and stocks), it may be possible for the source to pro-
vide additional ordering information in the form of a sequence

number that increases by 1 for every event. We can leverage se-
quence numbers to build an optimized AFA operator called AFA+O.

1. We do not perform AFA transitions across events with sequence
numbers that are not adjacent. In this case, the algorithm is
speculation-free in terms of output, and at the same time per-
forms maximal precomputation for expected out-of-order events.

2. We index events by sequence numbers instead of timestamps.
We can replace the red-black tree with a hash table on sequence
numbers, since the calls Search≤(x) and Search≥(x) can now
be replaced by hash table lookups for x and x − 1 or x + 1.

Controlling Speculation with Cleanse We feed the input stream
into an operator called Cleanse that is placed before the AFA.
Cleanse accepts a speculation factor σ as parameter. If the lat-
est punctuation has timestamp t, Cleanse maintains the invariant
that only events with a timestamp less than t + σ are propagated.
Other events are buffered in-order within Cleanse. Thus, when a
new punctuation with timestamp t′ arrives, Cleanse releases the
buffered events with timestamp less than t′ + σ, in timestamp or-
der. We can control speculation by varying σ. For example, σ = 0
implies that the Cleanse output is always in-order, and forces AFA

into zero speculation. Similarly, σ = ∞ causes AFA to be maxi-
mally speculative. We can also instead place Cleanse at the output
of AFA to control only the output size (details omitted for brevity).

5.4 State Cleanup using Punctuations

Let te and ta denote the latest punctuations along the event and arc
inputs respectively. For the purpose of AFA state cleanup, the effec-

tive incoming punctuation for the AFA operator is tp = min(te, ta).
We cover cleanup in detail in Appendix C.1; briefly, whenever tp

increases, we perform state cleanup and output a punctuation tp.
Cleanup is based on the following insight: since there can be no
new event with a timestamp before tp, the earliest possible out-of-
order event (or arc) will require the presence of no event earlier
than the latest event with timestamp < tp. Further, an arc-event ea

can be discarded when tp ≥ ea.RE.

Our dynamic pattern semantics allow us to cleanup an event e

when the punctuation crosses e.LE. The alternate temporal-join-
style semantics, where an event is affected by an arc-event if their
lifetimes intersect, would imply that we need to retain an event e

225

parameter value

number of events 100K
probability of uptick p 0.5, 0.7

initial price drop δ $0.25
price change N(0.70, 0.30)

window size W 500–2000
%ignorable events I 0–90%

number of V-patterns k 1–3
pattern CQs Q1,Q2,Q3

Figure 7: Experimental parameters. Figure 8: Throughput across approaches. Figure 9: Throughput; dynamic patterns.

until the punctuation crosses e.RE; before this time, an inserted arc-
event could intersect e’s lifetime and require AFA computation with
e. This can be very inefficient for large window sizes.

6 Evaluation

We use Microsoft StreamInsight [3], a commercial DSMS, to run
all experiments. The experiments are performed on a 3.0GHz Intel
Core 2 Duo PC with 3GB main memory, running Windows Vista.
Our AFA operator (around 1000 lines of C# code) supports specu-
lation, disorder, dynamic patterns, and the optimizations proposed
in this paper. We evaluate several flavors of our AFA operator:

• AFA: The basic operator with dynamic patterns (cf. Section 5).

• AFA+O: AFA that leverages sequence numbers (cf. Section 5.3).

• AFA+ignore: An enhanced AFA operator that optimizes for ig-

norable arcs, to efficiently ignore intermediate events that are
not part of the pattern (cf. Appendix D for details).

In order to compare against dynamic patterns, we implement Op-

erator Restart as an alternative: whenever the pattern changes, we
replace the old AFA operator in the CQ plan with a new AFA that
uses the new pattern specification, and feed it the currently active
events (from a buffer) so that no matches with existing events are
lost. We also implemented the Cleanse operator (see Section 5.3)
with a user-specified speculation factor σ to order/release events.

6.1 Metrics and Workloads

We track: (1) Throughput, which measures the number of events
processed per second. (2) Latency, which indicates the difference
between the system time of a pattern output and the arrival time of
the latest event contributing to the output. (3) Memory, which mea-
sures the amount of memory used for storing registers and pmatch

entries in the operator. (4) Output Size, which is the number of
output events produced, including retractions (i.e., chattiness).

Synthetic Dataset We use a stock trading application, where each
event is a stock quote with fields symbol, price, and price change.
We generate 100K events using an event generator that models the
workloads used in Agrawal et al. [2]. Price has a probability p

of rising (uptick) and 1 − p of falling (downtick), with magnitude
drawn from a truncated normal distribution with mean $0.70 and
standard deviation $0.30. This is the default dataset in experiments.

Real Dataset We approximate a transactional stock ticker by col-
lecting historical opening prices (mined from Yahoo! Finance) of
one stock (YHOO) from years 1996 to 2009, to generate an event
trace. This dataset is extrapolated into a larger dataset of 100K
events by repeating the observed price variations multiple times.

Queries We test 3 queries. Queries Q1 and Q2 are shown in Ex-
ample 1 (δ is the price drop). Note that k is data-dependent in Q2.
Query Q3 is a register-free query looks for a linear sequence of 8
ticks. Each arc in Q3 is randomly looks for an uptick or a downtick.

We use a sliding window with W events per window. There is
one punctuation every W events. For some experiments, I% of
events are converted into random ignorable events that are irrel-

evant to the pattern match. Events are preloaded from logs into
memory, to avoid I/O bottleneck. Default parameters are summa-
rized in Figure 7. We report additional results in Appendix D.

6.2 Comparing AFAs to Other Techniques

We compare the AFA operator against two alternative proposals:

• IPM (Iterative Pattern Matcher): This is an optimized pattern
CQ implemented using standard stream operators, based on the
recursive stream query processing strategy proposed recently [7].
Briefly, IPM consists of two join operators that join the stream-
ing events with AFA transitions and with earlier partial matches.
New pattern matches are fed back to the second join operator to
enable subsequent matches. IPM handles out-of-order events,
but requires explicit source-provided sequence numbers.

• CAN (Constrained Augmented NFA): We use a two-state CAN

that embeds the original unconstrained automaton (cf. Sec-
tion 3) to achieve AFA’s level of expressiveness. This scheme
uses our AFA+ignore implementation, thus deriving all the ben-
efits of our algorithms. The main purpose of comparing to CAN

is to evaluate whether we pay a performance penalty for natively
supporting queries with arbitrary arcs. Note that CAN corre-
sponds to the execution model used in recent research [2, 10]
(assuming static patterns and ordered input).

We use query Q1 (k = 2) with both the real dataset (δ = 0.05)
and the synthetic dataset (p = 0.5, δ = 0.25), and compare through-
puts when processing in-order data with no ignorable events. The
window size is W = 2000 events. Figure 8 shows that we get the
highest throughput when we leverage sequence numbers (AFA+O).
The basic AFA operator is slightly worse, followed by AFA+ignore.
CAN has lower throughput2 than AFA+ignore (around 16% for real
data and 25% for synthetic data), due to the overhead of embedding
the original AFA within the outer CAN.

We do not evaluate the query-plan-based alternative described
in Section 3, since it can be made arbitrarily worse than other tech-
niques (by increasing δ). Finally, IPM does 5×worse than our oper-
ators, for the same input data and pattern CQ. This difference is be-
cause IPM does not use our specialized algorithms to optimize for
pattern matching. (The added overhead of enqueuing and dequeu-
ing events across multiple operators was found to be marginal.)

6.3 Detailed Evaluation of AFAs

1) Evaluating Dynamic Patterns We set W = 500 and p = 0.5
so that upticks and downticks are equally probable. We use Q3, a
linear AFA with 8 arcs, with the synthetic in-order dataset. Every d

events, we delete a random arc from the AFA and insert a new arc in
its place, that converts an uptick into a downtick or vice versa. This
change does not affect the probability of a match; thus, any vari-
ations in throughput are only due to the overhead of dynamic pat-
terns and not due to the new pattern itself. Figure 9 shows through-
put as we vary the arc insertion interval d. Throughput (∼ 350K

2We also found that CAN uses around 8% more memory than
AFA+ignore, primarily due to the larger register.

226

Figure 10: Output size vs. spec-

ulation.

Figure 11: Latency vs. specula-

tion.

Figure 12: Throughput vs. dis-

order.

Figure 13: Memory utilization

vs. disorder.

events/sec) for a static pattern is also shown. We see that even in
the case of an arc change every 10 events, the overhead incurred by
dynamic patterns is less than 10%. In contrast, Operator Restart

degenerates quickly due to the overhead of replacing the AFA and
rebuilding state whenever the pattern changes. Dynamic patterns
were also found to have negligible impact on memory (not shown).

2) Controlling Speculation We use Q1 with the synthetic dataset
(k = 1, p = 0.5, W = 500, δ = 0.25). 5% of events are out-of-order
by between 1–5000 events. We use the optimized AFA+ignore op-
erator, and set the ignorable event percentage (I) to 70% and 90%.
One event arrives at the DSMS every millisecond. The Cleanse op-
erator is used to control aggressiveness. As we increase the spec-
ulation factor σ from 0 to 1000ms, Figure 10 shows that there is
more aggressive speculation leading to greater output size (in terms
of number of events). Moreover, I = 90% causes lesser relative
increase (4.5×) in output size compared to I = 70% (14×) with
increasing speculation — this is because AFA+ignore ensures that
ignorable out-of-order events do not cause the operator to unnec-
essarily retract and reissue matches. With AFA+O, output size is
always the same as that for AFA when σ = 0 because we can lever-
age sequence numbers to output events only when certain, without

having to wait for punctuations. Also, latency (see Figure 11) de-
creases with σ as expected. Maximal speculation (σ = ∞) was
found to reduce the latency to less than 0.5ms.

3) Increasing Out-of-order Events We use CQ Q2 with p =

0.7 and W = 500, and increase disorder by moving events in the
stream. We shiftω% of events randomly by between 1–1000 events.
The Cleanse operator is not used. We compare AFA and AFA+O.
Figure 12 shows throughput as we increase ω. AFA and AFA+O

are comparable when there is no disorder, giving an event rate of
∼ 200K events/sec. Disorder reduces throughput in the absence of
sequence numbers, since speculative matches may need to be cor-
rected. AFA+O gives the highest throughput and is mildly affected
by disorder. Figure 13 shows memory consumption; we see that it
increases with disorder as expected, with AFA+O degrading slower
because it avoids unnecessary matches due to out-of-order events.

7 Conclusions

Current models for pattern CQs over streams considerably improve
expressiveness over regular expressions. We continue in this direc-
tion, and further enhance the model to better handle new applica-
tions — our AFA model allows unrestricted transitions and supports
out-of-order input and revisions, while maintaining or improving
efficiency. We further motivate and solve the new problem of effi-
ciently handling dynamic patterns, which are important for modern
business applications. To our knowledge, this is the first attempt at
defining declarative order-agnostic stream semantics for the AFA

model with dynamic patterns and augmented with schema-based
registers. AFAs are versatile and can be used in innovative ways,
e.g., over uncertain streams. We describe novel algorithms to im-
plement the AFA operator, and present new optimizations. Exper-

iments on Microsoft StreamInsight show that we achieve rates of
more than 200K events/sec (up to 5× better than simpler schemes).
Dynamic patterns can deliver orders-of-magnitude better through-
put than solutions such as operator restart, and our optimizations
are effective at improving or controlling several other metrics.

References
[1] D. Abadi et al. The design of the Borealis stream processing engine.

In CIDR, 2005.
[2] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pat-

tern matching over event streams. In SIGMOD, 2008.
[3] M. Ali et al. Microsoft CEP Server and Online Behavioral Targeting.

In VLDB, 2009.
[4] B. Babcock et al. Models and issues in data stream systems. In

PODS, 2002.
[5] S. Babu, U. Srivastava, and J. Widom. Exploiting k-constraints to re-

duce memory overhead in continuous queries over data streams. ACM

TODS, 2004.
[6] R. Barga et al. Consistent streaming through time: A vision for event

stream processing. In CIDR, 2007.
[7] B. Chandramouli, J. Goldstein, and D. Maier. On-the-fly progress

detection in iterative stream queries. In VLDB, 2009.
[8] Chart Patterns. http://tinyurl.com/6zvzk5.
[9] Y. Chen et al. Large-scale behavioral targeting. In KDD, 2009.

[10] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. To-
wards expressive publish/subscribe systems. In EDBT, 2006.

[11] Y. Diao et al. Path sharing and predicate evaluation for high-
performance XML filtering. ACM TODS, 2003.

[12] Y. Diao et al. Capturing data uncertainty in high-volume stream pro-
cessing. In CIDR, 2009.

[13] EsperTech. http://esper.codehaus.org/.
[14] M. Franklin et al. Continuous analytics: Rethinking query process-

ing in a network-effect world. In CIDR, 2009.
[15] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Lan-

guages and Computation. Addison-Wesley, 1979.
[16] T. Johnson, S. Muthukrishnan, and I. Rozenbaum. Monitoring regular

expressions on out-of-order streams. In ICDE, 2007.
[17] M. Liu et al. Sequence pattern query processing over out-of-order

event streams. In ICDE, 2009.
[18] D. Maier et al. Semantics of data streams and operators. In Interna-

tional Conference on Database Theory, 2005.
[19] A. Majumder, R. Rastogi, and S. Vanama. Scalable regular expression

matching on data streams. In SIGMOD, 2008.
[20] Y. Mei and S. Madden. Zstream: a cost-based query processor for

adaptively detecting composite events. In SIGMOD, 2009.
[21] R. Motwani et al. Query processing, approximation, and resource

management in a DSMS. In CIDR, 2003.
[22] Oracle Inc. http://www.oracle.com/.
[23] E. Ryvkina et al. Revision processing in a stream processing engine:

A high-level design. In ICDE, 2006.
[24] U. Srivastava and J. Widom. Flexible time management in data stream

systems. In PODS, 2004.
[25] StreamBase Inc. http://www.streambase.com/.
[26] P. Tucker et al. Exploiting punctuation semantics in continuous data

streams. IEEE TKDE, 2003.
[27] S. Viglas and J. Naughton. Rate-based query optimization for stream-

ing information sources. In SIGMOD, 2002.
[28] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event pro-

cessing over streams. In SIGMOD, 2006.

227

APPENDIX

A AFA Specification and Examples

We focus on the specification provided as input to the AFA execu-
tion model. Beyond compiling existing pattern languages [10, 13]
to AFAs, an alternative, which we find to be convenient and flex-
ible in practice, is a front-end tool that allows users to construct
the AFA directly. The AFA operator accepts the AFA specification
as a set of states and arcs. For each arc ai, the specification pro-
vides the source and destination state, and the two functions fi and
gi. The functions are specified in languages such as C++ or C#,
or SQL-like expressions that are type-checked, bound to the event
and register schemas, and converted into code at CQ compile-time.
For instance, the arc a1 in Figure 3 can be succinctly written using
anonymous functions (e.g., .NET lambda expressions):

f1: (e, r) => down(e)
g1: (e, r) => new Register(r.r1+1, r.r2)

Stream Data Cleaning Sensor data cleaning [31] is becoming an
important application for streams. Streaming data can be cleaned
using multiple stages, each of which is a CQ to clean the stream
in different ways. AFAs can be used to perform some stages of
cleaning certain kinds of data. For example, with RFIDs on books,
there might be a standard pattern of how a book moves through
a library (remove from shelf, check out, re-shelf, etc.). If certain
events are missing in a pattern, we can use an AFA to “impute”
them. In other words, the AFA recognizes the expected pattern with
a missing step, and outputs a “fill-in” event with that step. Note that
this process may require complex calculations (e.g., interpolation)
based on state accumulated from the other events.

Chart Patterns Consider the more compli-
cated head and shoulders [30] chart pattern
(on the right), where we look for a trading
pattern that starts at price p1, moves up to lo-
cal maximum p2, declines to local minimum
p3 > p1, climbs to local maximum p4 > p2,
declines to local minimum p5 > p1, climbs
again to local maximum p6 < p4, and finally
declines to below the starting price p1. We can use the AFA of Fig-
ure 14 to detect this pattern, where we use three registers (r1, r2, r3)
to track prices p1, p2, and p4 respectively.

Network Monitoring Network intrusion detection systems (NIDS)
perform deep packet inspection on network streams to detect secu-
rity threats such as worms and viruses. For example, the Snort
NIDS [33] has more than 1000 regular expressions, that are com-
bined into a single automaton for efficiency [19]. As threats be-
come harder to detect, patterns will get more complicated and we
may need to maintain information (e.g., IP address) across NFA
transitions — suggesting the use of AFAs for network monitoring.
Further, the M3 cycle (see Section 1) implies that modern NIDS
systems could mine network traces in real-time to add (or update)
patterns rapidly in the current set. This requires efficient dynamic
patterns to handle pattern churn at high data rates.

B AFA Expressiveness

An AFA is an unconstrained NFA with registers and transitions. In
Section 3, we discussed the effect of unconstrained arcs on expres-
siveness. We now consider the effect of registers and transitions.

Classical automata classes such as Turing machines (TM), linear
bounded automata (LBA), push-down automata (PDA), and NFA
can be achieved by controlling the register size and transition func-
tion power. Functions can either be arbitrary or bounded, i.e., de-
pend only upon the input event, current state, and a constant part of

Figure 14: AFA for head & shoulders chart pattern.

the register. Let n be the number of events consumed by the AFA.

• For a TM, we copy the entire input into registers, and then “ex-
ecute” the TM. With bounded functions, execution requires un-
bounded registers and ε-arcs (to keep processing after input is
copied). With arbitrary functions, we just need O(n) registers to
hold input — the “execution” is encapsulated in the function.

• An LBA needs only O(n) register state with ε-arcs and bounded
functions, since it only accesses tape length linear in input size.

• We can express a PDA with O(n) register size (acting as a stack)
and bounded functions (that only perform push, pop, and test).

• A single O(lg n) register (acting as a counter) with bounded (in-
crement and decrement) functions gives us (single-)counter au-
tomata — a superclass of regular expressions and a subclass of
context-free languages, which can express, for example, (ai ·bi).

• Multiple O(lg n) registers with increment and decrement func-
tions can express (ai ·bi ·ci), which is not a context-free language.

• O(1) fixed-size registers can express regular expressions.

It is also worth noting that AFAs are within the expressiveness of
recursive augmented transition networks [34] for any given register
size and function restriction.

It may appear that O(1) fixed-size registers theoretically do not
increase expressiveness beyond regular expressions. However, the
reality for pattern specification and execution is different. For ex-
ample, assume we have a register that can take k possible val-
ues (categories), e.g., colors. An AFA with O(N) states requires
O(N · k) states in the equivalent NFA, with correspondingly more
arcs. It quickly becomes unwieldy to express even simple patterns
using such a model. The situation is worse with counters, even if
bounded — a 32-bit integer register requires 232 states in the equiv-
alent register-free NFA, for every state in the AFA. For example,
an AFA with a 32-bit counter and 3 states can accept (ai · bi) for
i < 232 — this requires around 233 states in the equivalent NFA.
This is clearly impractical, thus motivating the need for registers.

In summary, as compared to simpler models, AFAs with fixed
registers and unconstrained arcs allow concise and natural expres-
sion of many common pattern requirements, and provide greater
execution efficiency while avoiding a blowup in the number of au-
tomaton states or a need for more complex query composition.

C AFA Algorithms and Runtime Complexity

Recall from Section 5.1 that we use a pmatch structure to store
computation state for pattern matches. A pmatch is associated with
an event subsequence e0 . . . ek, where e0 and ek are referred to as the
StartEvent and EndEvent of the pmatch (their lifetimes are de-
noted by [StartLE,StartRE) and [EndLE,EndRE), respectively).
We assume no ε-arcs in the AFA for simplicity.

Insert Algorithm Algorithm 1 shows the insertion algorithm that
was described in Section 5.1; we cover additional details below.

If the inserted event e is out-of-order (with a timestamp t), we
first call RemoveInvalidatedSequences (Lines 10—19) to delete
the pmatch nodes that are no longer valid. We start at the rb-

tree entry with next largest timestamp after t, and begin deleting
pmatch nodes from the linked list until we reach a pmatch with

228

StartLE > t. If a deleted pmatch corresponds to a final state, we
output a retraction event to compensate for the invalid prior output.
We repeat the process until we reach an rbtree entry that contains
no affected pmatch nodes. By invariant (Completeness), we can
stop because if there were any future affected pmatch node, there
would have been an affected pmatch in this entry. Thus, we avoid
traversing pmatch entries that do not need to be deleted.

We next (Lines 3—7) retrieve the pmatch list for the previous
event, and apply the next-ID relation `M (with input e) to the ID

corresponding to each pmatch. Each application of `M to a pmatch

node p returns a set of new pmatch nodes that are said to be deriv-

able from p. This process returns a list L of pmatch nodes for
sequences ending at e. We also attempt to start a new match (from
q0) beginning at event e and append this to L. If any reached state is
final, we output an event. Event e is added to rbtree and associated
with list L, which follows the (Ordering) invariant by construction.

The final step in case of out-of-order events (Lines 20—25), is
to apply subsequent events (received previously) in rbtree to the
matches in L. We continue this process until no new pmatch nodes
get created. During this process, we can maintain the (Ordering)
invariant without having to sort the pmatch lists (see Line 24).

Runtime Complexity Let each window hold at most w events,
and let there be r entries in rbtree (r depends upon the number of
events after the most recent punctuation). Assume that at most m

partial matches can end at the same event3, and each AFA transition
takes constant time. Lines 3—7 perform rbtree lookup and transi-
tions, incurring a total runtime of O(lg r + m). For an out-of-order
event that is disordered by at most d events, RemoveInvalidated-

Sequences has runtime linear in the number of pmatch entries to
be deleted, after the lookup in rbtree — this is O(lg r+min(w, d)·m).
Finally, PropagateInsert has runtime linear in the number of new
pmatch nodes created, which is O(m). Thus, the algorithm has
overall runtime O(lg r +min(w, d) ·m) for an out-of-order event, or
O(lg r + m) for an in-order event. Note that we pay a higher price
only for out-of-order events, with low overhead if an event is only
slightly out-of-order. Further, if we know a priori that the stream is
ordered (e.g., due to a Cleanse operator upstream or from the data
source), we can avoid the rbtree lookup, giving a runtime of O(m).

Delete Algorithm It is possible that an upstream CQ deletes (re-
tracts) an event that it issued earlier. Deletion of an event e proceeds
by first invoking RemoveInvalidatedSequences (see Algorithm 1)
with the timestamp of e, in order to delete all matches that depend
on e, and issue the necessary output retractions. After removing
this entry from rbtree, we look for new matches continuing from
the entry before e, by invoking PropagateInsert for that entry.

C.1 State Cleanup using Punctuations

A punctuation along the event (or arc) input with timestamp t im-
plies no future events (or arc-events) with timestamp less than t.

Effective Punctuation Let te and ta denote the latest punctuations
along the event and arc inputs respectively. For the purpose of AFA

state cleanup, the effective incoming punctuation for the AFA op-
erator is tp = min(te, ta). Note that tp = te in the static pattern
case since ta = ∞. To see why tp = min(te, ta), note that in case
ta < te, a subsequent arc-event with LE ≥ ta can require the compu-
tation of AFA transitions using existing events with a timestamp of
ta or more. Under the default operation mode, the arc punctuation
ta is always implicitly tcurr, which makes the effective punctuation

3As in any NFA, m = O(aw) in the worst case, for at most a outgo-
ing arcs per NFA state. Note that most automata in practice, such
as those in Figures 3 and 14, have a constant m for partial matches
starting from a given event; which results in m = O(w), since we
have to start a new matching process for each event in the stream.

Figure 15: Ignorable arcs and state cleanup with punctuations.

tp = te instead of min(te, ta), since te ≤ ta. Thus, the effective punc-
tuation is identical to the static pattern case.

Cleanup Algorithm Let cover(t) denote the latest event in rbtree

with a timestamp earlier than t. We have the following invariant:

• (Cleanup) Let tp be the effective punctuation timestamp. There
exist no pmatch entries with EndEvent earlier than cover(tp).
Further, there exist no events with timestamp < t. Finally, there
exist no arc-events with RE ≥ tp.

Given an effective punctuation with timestamp tp, we traverse the
rbtree from left to right, deleting all the pmatch entries and events,
until we reach cover(tp). This event is deleted, but its pmatch en-
tries (and the entry in rbtree) are left untouched. Subsequent events
and pmatch nodes are retained because out-of-order events may
need to access them for applying transitions. Further, we can de-
clare all output events with a timestamp before tp as final, by send-
ing out a punctuation tp. Finally, an arc-event ea can be discarded
when the effective punctuation is ea.RE or more.

Discussion Notice that we clean events and pmatch entries even
if their constituent event lifetimes extend beyond the effective punc-
tuation. Such aggressive cleanup is possible because the latest set
of pmatch entries just before t cover all previous entries. In order
words, since we know that there can be no new event with a times-
tamp before t, the earliest possible out-of-order event insertion will
require looking up no earlier than cover(t). As noted in Section 5.4,
our dynamic pattern semantics allow us to aggressively cleanup an
event e as soon as the punctuation crosses e.LE.

D Supporting Ignorable Arcs

Pattern CQs should efficiently skip events that do not satisfy certain
conditions [2]. For a particular pattern, only some events might be
relevant, with the rest ignored to enable detection to continue. For
instance, in query Q1 (see Example 1), we may wish to ignore small
price drops during an uptick phase (and vice versa).

An ignorable arc ai is one that always translates into the next-ID
relation (eα, q, z) `M (α, q, z) when the fence function fi(e, z) is true.
Thus, ai is a self-loop with transfer function gi(e, z) = z, and can be
identified at query registration time. An AFA can operate correctly
without special handling for ignorable events; however, this solu-
tion can lead to significant memory overhead, particularly in the
presence of stream disorder. We need special optimization tech-
niques to detect such transitions and treat them specially to avoid
overhead. Interestingly, we will see that optimized handling of ig-
norable events can also significantly reduce the number of output
events in the presence of disorder, and improve throughput.

Solution Overview Recall that a pmatch node for a subsequence
e0 . . . ek contains 4 fields: StartLE = e0.LE, StartRE = e0.RE, q,
and r. We observe that a sequence of consecutive transitions along
an ignorable arc results in the creation of identical pmatch nodes in
rbtree, which are stored in consecutive rbtree entries. We leverage
this observation by creating an interval tree called itree in associa-
tion with rbtree. Every maximal consecutive sequence of identical

229

Figure 16: Throughput vs. ignorable. Figure 17: Memory vs. ignorable. Figure 18: Negative pattern.

pmatch nodes, p1, . . . , p j, where p1 `M p2 `M . . . `M p j, is re-
placed by (1) a single pmatch node p1 in rbtree (deleting the sub-
sequent identical nodes), and (2) an interval (p1.EndLE, p j.EndLE]
in itree that indicates the time interval over which p1 repeats itself,
and points to p1. Node p1 is called an anchor node.

Algorithmic Changes to Handle Ignorable Arcs To each pmatch

node pi, we add (1) a pointer to its previous pmatch node, (2) a
pointer to each next pmatch node derivable from pi either directly
or via a consecutive sequence of ignorable deleted pmatch nodes,
and (3) a pointer to an associated itree interval, if pi is an anchor.

Example 6 (Ignorable Arcs). Figure 15 shows an rbtree with pmatch

nodes and extra pointers to represent next-ID derivations. The iden-

tical pmatch nodes (between events e11 and e14) are removed, leav-

ing only the anchor at e10 with a pointer to its indirect next deriva-

tion at e15. The corresponding itree entry (interval) is also shown.

When an event e arrives with timestamp t:

1. We retrieve the set S 1 of immediately preceding pmatch nodes
via Search≤(t). We also lookup itree for intervals stabbed by
the EndLE of these pmatch nodes; this lookup returns a set S 2

of affected anchor pmatch nodes.

2. We apply ignorable arcs to each node p in S = S 1 ∪ S 2, and
denote the set of successful nodes by S 3. The current deriva-
tions of p ∈ S 3 can be left untouched since e does not invalidate
any of them. If p is already an anchor, its interval is extended if
necessary; otherwise, we convert it into an anchor and add the
corresponding interval in itree.

3. For each node p in (S − S 3), we iteratively invalidate all their
derived pmatch nodes (by following the next pointers). If p is
an anchor, the right endpoint of the interval is truncated to t.

4. Finally, MakeTransitions (for non-ignorable arcs only) is in-
voked for the nodes in S , followed by PropagateInsert for the
new pmatch nodes.

The worst-case per-event overhead of our scheme is O(k lg k),
where k is the number of maximal sequences of identical pmatch

nodes. Delete proceeds similarly and is omitted for brevity. Cleanup
using a punctuation tp proceeds as usual; however, an interval in
itree and the associated pmatch anchor can be cleaned up only
when cover(tp) lies after the right endpoint of the interval.

Avoiding Frequent itree Updates In the common case of in-
order events that cause the buildup of an increasingly long sequence
of identical pmatch nodes, we want to avoid updating itree after
every event. To solve this problem, when we receive an in-order
event that first triggers an ignorable arc, we associate the anchor p1

with the interval (p1.EndLE,∞) in itree. Thus, if subsequent events
are part of the same sequence, itree does not have to be updated.
When a new event e does not trigger the ignorable arc, the sequence
ends and we truncate the interval to (p1.EndLE, e.EndLE).

Discussion When we receive an out-of-order event that performs
an ignorable transition, we do not invalidate and re-build the span-
ning matches. This helps reduce chattiness at the output (see Fig-
ure 10), and even improves throughput when the percentage of ig-

norable events is high (see below). Finally, we note that the events
contributing to ignorable arcs are not deleted; they may be required
to compute transitions due to out-of-order events and arc-events.

Evaluation We use the AFA+ignore operator with CQ Q1 of Sec-
tion 6 (k = 1, p = 0.5,W = 500, δ = 0) and increase the percent-
age of ignorable events I (we use an ordered stream). Figures 16
shows that throughput is generally increasing because increasing I

implies fewer matches, which the technique optimizes for. On the
other hand, we see a slight drop in throughput at the start, due to
the overhead of looking up itree. Beyond I = 80% our technique
gives higher throughput than the basic operator without the opti-
mization. Figure 17 shows that memory usage drops significantly
as I increases, when we use the ignorable optimization. Without the
optimization, memory usage remains high as we increase I even
though it is slightly better when I < 20% due to the overhead of
maintaining pointers to itree entries.

E Handling Negative Patterns with AFAs

A common requirement for pattern CQs is to handle the absence of
certain subpatterns, as part of the overall pattern. One way to han-
dle negative patterns is to first generate positive matches and then
prune the negative matches. However, we wish to handle negative
patterns without generating intermediate false-positive results.

AFAs are can directly accept patterns with positive and negative
subpatterns, and provide an efficient execution layer for pattern lan-
guages that can express negation [2, 28]. The case where a negative
subpattern appears between positive subpatterns is easily handled
by a single AFA. Consider the more complicated corner case where
the pattern ends with a negative subpattern. For example, we want
to detect a trade for stock A, followed by no trades of a competing
stock B within w = 300secs. This query can be written using the
AFA in Figure 18. The register 〈r1〉 tracks the timeout for detect-
ing the absence of stock B, and a2 is a special arc that is triggered
by an end-of-window (eow) indicator (this can be implemented, for
example, using punctuations). Note that this corner case can alter-
nately be handled using a separate anti-semijoin stream operator.

F Aggressive State Cleanup in AFAs

Figure 15 shows an rbtree. The left line is the effective punctua-
tion tp = min(te, ta), i.e., the minimum of the punctuations along
the event and arc inputs. The right line is ta. Recall that cover(t)
denotes the latest event with a timestamp earlier than t. Items at
cover(ta).LE and later cannot be cleaned up because an arbitrary
arc may be inserted in future. Items earlier than cover(tp).LE can
be cleaned up as depicted in Figure 15 (see Section 5.1). We now
investigate cleanup between these two timestamps.

F.1 Aggressive Event Deletion

Consider the special case where (1) the fence function fi(Ē, R̄) asso-
ciated with an arc ai is expressible as a conjunction f Ē

i
(Ē)∧ f R̄

i
(R̄),

and (2) the transfer function gi(Ē, R̄) is reducible to gR̄
i
(R̄), i.e., it is

computable only over the previous register.

230

Algorithm 2: Computing path punctuations.

ComputePathPunctuation(path p = a1 . . . ak) begin1

π̄← π1 ;2

foreach arc a j in ordered path p do3

e← earliest event s.t. e.LE ≥ π̄ and f Ē
j

(e) is true;4

t ← min(e.LE, π j);5

π̄← max(π̄, t);6

return min(π̄, ta);7

end8

We define the triggering set of an event e as the set of arcs ai such
that f Ē

i (e) is true. If events are large in size, we can delete an event e

and replace the event pointer in rbtree with its triggering set L (note
that this requires computing f Ē

i (e)∀ai ∈ A). This optimization is
possible because we no longer need e to determine if an arc ai is
triggered — we only need to check whether ai ∈ L, and if yes,
we apply the fence function f R̄

i (r), where r is the previous register
value. Further, if ai is triggered, we compute the new register value
by invoking the transfer function gR̄

i (r).

F.2 Leveraging Punctuations with Predicates

Assume that (1) the fence function fi(Ē, R̄) associated with an arc
ai is expressible as a conjunction f Ē

i (Ē)∧ f ′i (Ē, R̄), and (2) there are
no retractions in the input stream to the AFA operator.

We can leverage predicated punctuations to clean state. A pred-

icated punctuation, also called a partial order guarantee [17], is
associated with a timestamp t and a condition C, and is a guaran-
tee that no event arriving in the future and satisfying C can have a
timestamp earlier than t. Predicated punctuations may be inserted
when performing a union across multiple streams, by a data source,
based on application semantics [26], or by network protocols [17].

The basic idea is to use predicated punctuations and the AFA

graph structure to determine what additional registers and events
can be deleted. An arc punctuation for an arc ai is the largest
timestamp πi with a guarantee that no event e arriving in the fu-
ture and for which f Ē

i (e) is true, can have a timestamp earlier than
πi. We can easily use the set of predicated punctuations to infer
an arc punctuation for every arc in the AFA. For example, assume
that a stream contains a union of sensor readings across multiple
floors. If an arc ai has the fence condition f Ē

i (Ē) = {Floor =

3 ∧ Temperature > 95} and we have a predicated punctuation with
timestamp 20 and condition {Floor ≤ 3}, we can infer that πi = 20.

An path punctuation with timestamp π̄(p) for a path p = a1 . . . ak

in the AFA directed graph is a promise that no future out-of-order
event with timestamp earlier than π̄(p) can trigger a1 and then cause
the execution of all subsequent transitions along path p.

Computing Path Punctuations As a first step, π̄(p)for a path
p = a1 . . . ak can be set to π1, since clearly no future event with
timestamp earlier than π̄1 can trigger a1. We can do better using
Algorithm 2 which leverages the AFA structure. Consider the path
p = a1 . . . ak . We start with π̄(p) = π1. In Lines 3–6, for each arc
a j on the path p, we look at the existing events and π j to try and
push π̄(p) ahead (Lines 4 and 5) to the latest possible timestamp
t ≥ π̄(p) such that a traversal of arc a j at timestamp earlier than t

is not possible. Intuitively, the non-existence of a later event e that
can cause transition a j implies that a match traversing the path from
a1 to a j is not possible. Note that we can use memoization to share
partial results while computing π̄(p) for many paths in the graph.

Cleaning State Recall that each AFA register is associated with a
pmatch node in some AFA state. Consider each non-final state q in
turn. Let t1 denote the minimum π̄(p) across the set of unique paths
p in M from q to some final state, where uniqueness is determined
by the set of edges in p. We can delete all registers corresponding

to pmatch entries (in rbtree) that are associated with q and that lie
to the left of cover(t1) in rbtree (i.e., whose EndLE is less than
cover(t).LE). Furthermore, for every event e, let t2 be the minimum
π̄(p) across all unique paths to a final state that contain (but do not
begin with) some arc in e’s triggering set. We can delete e if its
timestamp is earlier than t2.

G Additional Details on Related Work

Stream Pattern Matching The first generation of pattern CQs
support regular expressions over streams [16, 17, 19, 28, 35]. These
patterns are less expressive than AFA, and existing proposals mostly
use deterministic finite automata based algorithms that can explode
an NFA to an exponential number of states in the presence of non-
determinism, which is common in stream pattern CQs.

ZStream [20] supports sequence queries with aggregates, but
registers carry state only within an operator (such as Kleene clo-
sure). At the expense of lower expressiveness (e.g., this model
cannot express ai · bi), ZStream supports new operator re-ordering
optimizations. As discussed earlier, other research [2, 10] allows
the detection of more complex static patterns over ordered streams
using the CAN model. We continue further in this direction, and
support dynamic patterns over disordered streams with revisions,
under an execution model with unconstrained arcs. Multi-query
optimization schemes proposed earlier [10, 11] are directly appli-
cable to us, particularly in the context of dynamic patterns. The
match buffer [28] used to report the events that contribute to a pat-
tern can be adapted by our AFA to output the set of events con-
tributing to a detected match. We also note that pattern languages
such as SASE+ [28] can be compiled into an AFA.

Disorder and Dynamic Patterns The initial generation of stream-
ing systems assumed that events arrive in-order at the DSMS [4].
One solution to handle disorder is k-slack [5], where the stream is
assumed to be disordered by at most k tuples or time units, with
reordering performed before stream processing. Such an approach
can lead to higher latency, particularly in the presence of ignorable
events. The ability to issue compensations using retractions is pro-
vided by several systems; examples include revision tuples [23],
Dstreams [21], and lifetime modifications [6]. Out-of-order pro-
cessing has also been proposed for regular expressions [16], se-
quence queries [17], and relational operators [6, 32], but these tech-
niques do not directly apply to rich patterns. We apply partial order
guarantees [17] to clean state by introducing path punctuations.

Our earlier work describes techniques to detect forward progress
using recursive queries with relational operators [7]. Recursive
queries can express patterns succinctly, but are less efficient and
require modifications to the DSMS engine. In contrast, we pro-
vide native out-of-order support for a powerful AFA-based execu-
tion model of wide applicability, with extensions to handle several
requirements. Finally, dynamic patterns are reminiscent of systems
such as PSoup [29] that treat queries and data symmetrically.

Additional References
[29] S. Chandrasekaran and M. Franklin. Psoup: a system for streaming

queries over streaming data. The VLDB Journal, 12(2), 2003.
[30] Head & Shoulders Pattern. http://tinyurl.com/6e6qtb.
[31] S. Jeffery et al. Declarative support for sensor data cleaning. In Per-

vasive, 2006.
[32] J. Li et al. Out-of-order processing: a new architecture for high-

performance stream systems. In VLDB, 2008.
[33] Snort Network Intrusion Detection System. http://snort.org.
[34] W. A. Woods. Transition network grammars for natural language anal-

ysis. Communications of the ACM, 1970.
[35] F. Yu et al. Fast and memory-efficient regular expression matching

for deep packet inspection. In ANCS, 2006.

231

