
SECRET: A Model for Analysis of the Execution Semantics
of Stream Processing Systems

Irina Botan1, Roozbeh Derakhshan1, Nihal Dindar1,
Laura Haas2, Renée J. Miller3, Nesime Tatbul1

1ETH Zurich, Switzerland 2IBM Almaden Research Center, USA 3University of Toronto, Canada

ABSTRACT
There are many academic and commercial stream processing
engines (SPEs) today, each of them with its own execution
semantics. This variation may lead to seemingly inexplica-
ble differences in query results. In this paper, we present
SECRET, a model of the behavior of SPEs. SECRET is a
descriptive model that allows users to analyze the behav-
ior of systems and understand the results of window-based
queries for a broad range of heterogeneous SPEs. The model
is the result of extensive analysis and experimentation with
several commercial and academic engines. In the paper, we
describe the types of heterogeneity found in existing engines,
and show with experiments on real systems that our model
can explain the key differences in windowing behavior.

1. INTRODUCTION
Stream computing is passing from the domain of pure re-

search into the real world of commercial systems. Many
research projects [8; 11; 17, and others] have shown how
data can be processed as it pours into a system from a di-
versity of sources such as sensors, online transactions, and
other feeds. Each system proposed its own set of operators,
windowing constructs, and, in some cases, whole new query
languages [9, 12]. As these systems have been commercial-
ized [1, 6, 7], they have added features to meet the needs
of their own customers. There are no standards today for
querying streams; each system has its own semantics and
syntax. For the purchaser or user of an SPE, the choices are
confusing. Without a clear understanding of features and
semantics, applications are not portable, and can be hard
to build, even on a given SPE.

The emerging SPEs have different capabilities, and even
common capabilities may be expressed differently in differ-
ent systems. For example, both StreamBase [6] and Coral8
[1] allow time-based windows where a window is defined
by an interval size (in units of time) and where different
windows are separated by a slide value that specifies how
many units of time separate the start of different consecu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

tive windows. To specify such a window in StreamBase, the
user has to write “[SIZE x ADVANCE y TIME]”. In Coral8,
the same function is requested with the “KEEP x SECONDS”
clause. StreamBase allows an arbitrary slide value for a win-
dow (specified by the ADVANCE clause); Coral8 only permits
two values: 1 msec or a slide that is equal to the window
size. Worse yet, the underlying semantics of such common
features as windows is often radically different. Even if we
set window size and slide to the same respective values in
Coral8 and StreamBase, we can get different query results
due to hidden differences in their query execution models.

Recently, several more abstract models of streams and
windows have been proposed [15, 18, 14], for the most part
not associated with any existing system. These models tend
to define only a portion of the behavior expected of an SPE.
While they are useful as guides to future SPE developers,
they do little to help users understand existing systems, and
even less for comparing or explaining the behaviors of dif-
ferent systems.

In this paper, we propose a general model for describ-
ing and predicting the behavior of these diverse systems.
Our model is a descriptive model, not yet another execution
model. It strives to explain, and to allow the comparison of,
the differing behaviors found in existing SPEs. The model
is the result of detailed analysis and experimentation with
a carefully-chosen set of real commercial and academic sys-
tems. We believe that our unique approach of creating a
descriptive and explanatory model offers significant benefits
to potential users of stream systems, both before and after
they have chosen an engine for building their applications.

The next section illustrates the differences in features and
semantics of several SPEs. With these differences as mo-
tivation, Section 3 presents our proposed model. Section
4 demonstrates, through examples run on different engines,
how our model predicts the results that similar queries will
generate for the different systems. Related work is covered
in Section 5. Finally, we conclude in Section 6 with a dis-
cussion of future work.

2. MOTIVATION
Our goal is to create a formal framework which can be

used to analyze the execution behaviors of individual SPEs,
and to compare the execution behaviors of heterogeneous
SPEs. This heterogeneity exposes itself at three levels:

1. Syntax heterogeneity: This type of heterogeneity
refers to the differences in the language clauses (keywords)
used for the definition of common constructs (e.g., windows).
The syntax differences are understandable given the lack of

232

a standard language for stream processing.
2. Capability heterogeneity: This type of heterogene-

ity refers to the differences in support for certain types of
queries across different SPEs, and also exposes itself at the
language syntax level. For example, Coral8 offers a clause
that controls how often a query result should be emitted, a
feature we have not encountered in any other system.

3. Execution model heterogeneity: This type of het-
erogeneity refers to the differences in the underlying query
execution models across different SPEs. It is hidden from
and cannot be influenced by the application developer, and
is subtler than the other types of heterogeneity, hence po-
tentially more confusing. As a result, we focus on analyzing
the execution semantics of SPEs in this paper.

To motivate the need for the type of descriptive model
we propose, consider two examples, defined on a simple in-
put stream InStream(Time, Val) of tuples. Time represents
the application timestamp of the tuple in seconds, and Val,
an integer value, represents the content of the tuple. Our
queries compute an average over Val, and OutStream(Avg)

is the output stream containing the results of the query.
Example 1: Window construction in an SPE
Consider a query which computes the average value of the
tuples in the input stream using a time-based tumbling win-
dow of size 3 seconds.1 We ran this query on StreamBase [6]
three different times, each time feeding it exactly the same
input data file. Surprisingly, StreamBase produced different
results each time. It seems that the assignment by Stream-
Base of time values was slightly different for the three runs:

InStream(Time, Val) = {(10, 10),(11, 20),(12, 30),(13,40),
(14, 50),(15, 60),(16, 70), ...}

StreamBase Output1 = {(15),(40), ...}
InStream(Time, Val) = {(11, 10),(12, 20),(13, 30),(14,40),

(15, 50),(16, 60),(17, 70), ...}
StreamBase Output2 = {(10), (30), ...}
InStream(Time, Val) = {(12, 10),(13, 20),(14, 30),(15,40),

(16, 50),(17, 60),(18, 70), ...}
StreamBase Output3 = {(20),(50), ...}

Intuitively, we expected the result of Output3 in all runs
(i.e., the first three tuples belong to the first window, the
next three to the second window, etc.). However, the slightly
different time values seem to have led to a difference in win-
dow construction, hence different results.
Example 2: Evaluation differences across SPEs
Consider a query which continuously computes the average
value of the tuples over a time-based window of size 5 sec-
onds that slides by 1 second. We ran this query in three
different SPEs: STREAM [5], Coral8 [1], and StreamBase
[6], with the following results:

InStream(Time, Val) = {(30, 10),(31, 20),(36, 30), ...}
STREAM Output = {(10),(15),(20),(30), ...}
Coral8 Output = {(10),(15),(20),(30), ...}
StreamBase Output = {(10),(15),(15),(15),(15),(20),(30), ...}

StreamBase produced a different result than STREAM
and Coral8. Why? In STREAM and Coral8, the average
operator is invoked on a window whenever the window’s
content changes (i.e., when a tuple is added to or expires
from the window), whereas in StreamBase, the invocation
happens every second, even if the tuple content of the win-
dow stays the same. Thus the evaluation strategy used by

1In a tumbling window, the size of the window is equal to
the slide.

an engine is another important factor affecting the query
results.

These two motivating examples among others show that
we need a way to understand, express, and predict the query
execution behaviors of different SPEs. Our model, SECRET,
takes up this challenge.

3. THE SECRET MODEL
In this section, we present a model for analysis of the exe-

cution semantics of continuous queries in SPEs, focusing on
time-based windows and single-input query plans (see Ap-
pendix B.2 for extensions to other query types). We named
our model SECRET, as it captures window-based query
execution semantics along four complementary dimensions:
ScopE (Section 3.2.1), Content (Section 3.2.2), REport (Sec-
tion 3.2.3), and Tick (Section 3.2.4). Each of these models a
certain aspect of window-based execution all the way from
window construction into actual execution and result gen-
eration. Thus, our model gives an end-to-end view of what
impacts execution semantics from inputs to outputs.

SECRET is expressive; it captures the key behaviors of a
broad range of stream systems. It is simple: designed to be
easy to understand, and easy to apply, avoiding complicated
and redundant features. We have designed the features to
be orthogonal to each other, as well. SECRET is exten-
sible, offering the ability to add new features if necessary as
new SPEs are encountered. Finally, for clarity, we want our
model to separate the operational aspects of how the SPE
processes streams from the non-procedural effects of that
processing. For example, we can talk about how windows
are formed independently of their content; this does not de-
pend on any procedural aspect of a system. By contrast,
when the system chooses to evaluate results depends heav-
ily on its processing model. The model should also make a
clear separation between data-level issues (e.g., values in a
stream), query-level issues (e.g., window size) and system-
level issues (e.g., when the engine takes an action).

3.1 Basic Definitions and Assumptions
In this section, we present the definitions for a set of basic

stream processing concepts and constructs that we use in our
model, together with any relevant assumptions we make.

Definition 1 (Time Domain) The time domain T is a
discrete, linearly ordered, countably infinite set of time in-
stants t ∈ T. We assume that T is bounded in the past, but
not necessarily in the future.

Definition 2 (Stream) A stream S is a countably infinite
set of elements s ∈ S. Each stream element s : 〈v, tapp, tsys,
bid〉 consists of a relational tuple v conforming to a schema
S, with an application time value tapp ∈ T, a system time
value tsys ∈ T, and a batch-id value bid ∈ N. We use the
notation s.tapp, s.tsys, and s.bid to denote the application
time value, system time value, and batch-id value of stream
element s, respectively.

In the above definition (as in related work [19]), we have
used two different notions of time: “application time” (tapp)
and “system time” (tsys). These both take values from our
time domain T, but carry two different meanings, and there-
fore, are used for two different purposes in our model. The
value tapp captures the time information that is associated
with the occurrence of the application event that a stream

233

element represents (usually provided by the data source),
and therefore will be used as the basis for query execution
over the stream; whereas tsys captures the time information
that is associated with the occurrence of the related system
event (arrival of the corresponding stream element at the
system) and therefore will be used as the basis for reasoning
about tuple arrival events in the system and how the sys-
tem should react to them. Elements in a stream are assigned
unique tsys values, but multiple elements can share the same
tapp value. Therefore, streams are totally ordered by the tsys

values of their elements, whereas they are partially ordered
by their tapp values.

Definition 3 (Batch) A batch B of stream elements for a
given stream S is a finite subset of S, where all b ∈ B have
an identical tapp. Each such batch is given a unique batch-id
bid ∈ N such that, for all b ∈ B, b.bid = bid, indicating that
b belongs to the batch that is uniquely identified by bid. For
tuples t1 and t2 where t1.t

sys < t2.t
sys, then t1.bid ≤ t2.bid.

Batches are used to define a further ordering among si-
multaneous tuples [13]. By definition, all tuples in a given
batch have the same tapp value, but that does not mean that
all tuples with the same tapp value are in the same batch.
For example, we can have four tuples with tapp = 5 in two
consecutive batches of two tuples each. Therefore, a new
batch can arrive without tapp advancing. This implies that
streams are also partially ordered by their bid values.

Definition 4 (Window) A window W over a stream S is
a finite subset of S.

Windows can be defined in many ways. In this paper,
we will mainly focus on “time-based windows”. In time-
based windows, stream elements whose tapp values fall into
a certain tapp interval constitute a window. More formally:

Definition 5 (Time-based Window) A time-based win-
dow W = (o, c] over a stream S is a finite subset of S con-
taining all data elements s ∈ S where o < s.tapp ≤ c.

In general, systems do not process arbitrary sets of win-
dows, but rather require the windows to have a specific re-
lationship to each other defined by two parameters, size (ω)
and slide (β). More formally:

Definition 6 (Window Size and Slide) The set W of all
time-based windows defined over a stream S must satisfy the
following two constraints:

1. Size(ω): All windows must be the same size, that is,
∀W = (o, c] ∈W, c− o = ω.

2. Slide(β): The distance between consecutive windows
must be the same. For two windows W1 = (o1, c1] and W2 =
(o2, c2], we require that o1 6= o2. Furthermore, we say W1

and W2 are consecutive if o1 < o2 and there is no window
W ′ = (o′, c′) such that o1 < o′ < o2. For all consecutive
windows W1 and W2 in W, we require that o2 − o1 = β.

At tapp = t, we say a window W = (o, c] is open, if o <
t ≤ c. A window is closed, if c < t.

3.2 SECRET for Time-based Windows
In this section, we describe SECRET for time-based win-

dows. Given a query’s window parameters, ScopE provides
information about potential window intervals. Content then
helps us map those intervals into actual window contents,

Figure 1: SECRET of a query plan

for a given input stream. REport states under what con-
ditions those window contents become visible to the query
processor for evaluation. Finally, Tick models what drives
an SPE to take action on a given input stream. Tick is the
actual entry point to the control loop of our model, creating
a chain reaction by invoking Report, which in turn invokes
Content, which builds on Scope (Tick→ REport→ Content
→ ScopE).

Figure 1 illustrates how we use SECRET to explain the
semantics of a given query plan. SECRET is compositional
in the same way a query plan is composed of a sequence of
operators. We next present each of the SECRET parameters
in detail, in reverse order, from Scope to Tick.

3.2.1 Scope
For a query q, the function Scope maps an application

time value t to an interval over which q should be evaluated.
To define Scope, we define the active window as the open
window with the earliest start time at t.

We assume a value t0 ∈ T that denotes the application
time instant of the start of the very first window in a given
system. Its value is system-specific, and possibly, invocation-
specific, since different systems use a different starting point
for their application time line depending on environmental
factors (recall Example 1 of Section 2). Hence, the initial
window (W0) starts at time t0, the next one (W1) starts at
time t0 + β, and window i (Wi) starts at time t0 + iβ. Let
Wi = (oi, ci] be the ith window in W.

We now present a formula that computes n, the index of
the earliest open window (i.e., the active window) at time t.

n = max(0, d t−t0−ω
β
e)

This formula is obtained as follows: W0 closes at t0 + ω;
W1 closes at t0 + ω+ β; and Wn closes at time t0 + ω+ nβ.
At time t, we are interested in the earliest open window,
which is the smallest n that satisfies t ≤ t0 + ω + nβ (i.e.,
n > (t − t0 − ω)/β). Intuitively, n = 0 if the first window
that opened at t0 (and to be closed at t0 + ω) is still open.
Otherwise, a new window has been opened every β time
units. Then to find n for the earliest open window at t, we
need to divide the total elapsed time since the close of the
first window (i.e., t− (t0 +ω)) by β (and round it up to get
a whole number).

Hence, the start time of Wn = (on, cn] is on = t0 + nβ,
and Scope at time t is defined as follows:

Scope(t) =

(
∅ if t < t0
(on, t] otherwise

Figure 2 illustrates our Scope formulation. As a simple
example, assume we have a query q with a window of size 5
seconds and of slide 2 seconds, to be run on a system with

234

Figure 2: Scope of a window

t0 of 30 seconds. Then the window scope at t = 34 seconds
is Scope(34) = (30, 34], since n = 0 and o0 = 30.

There are a few important points to note about Scope:
1. The scope of a window for a given application time

point solely depends on an SPE’s t0 parameter and the
query’s window parameters (which define W). All these
parameters take statically-defined values, and therefore are
completely non-operational. In fact, one can hypothetically
generate window scopes for arbitrary application time val-
ues, even before the actual query processing on a particular
input stream starts, as Scope does not depend on the input
stream nor any other system-specific behaviors.

2. Our Scope formula focuses on the time interval for
the earliest open window. This is in fact one of many ways
one could define Scope. For example, previous work defines
Scope to be the time interval for the most recently closed
window [9, 18]. Likewise, it would also be possible to de-
fine Scope as the set of intervals for all open windows. Our
choice is justified by the need for a general and flexible Scope
definition that could be used as a basis for explaining the
behavior of systems that report their results on partial win-
dows as well as those that do so on closed windows only.

3. During our analysis, we observed that systems may
interpret the window slide value in two different ways, lead-
ing to two different window construction mechanisms. Some
construct their windows at every slide in the backward di-
rection, i.e., every new slide signals the end of a window
which started ω time units ago [9, 18]. Others construct
their windows at every slide in the forward direction, so ev-
ery new slide signals the beginning of a new window [6, 8].
The window scopes produced for these two alternative in-
terpretations differ only by a fixed amount δ, and therefore,
one can choose one of these models and calibrate the start-
ing time of the very first window t0 by δ in case the other
model’s behavior is desired. More specifically, in SECRET,
we chose to use the forward interpretation of slide in formu-
lating Scope, and to simply adjust t0 in order to model both
forward and backward windows as needed.

3.2.2 Content
Scope defines the interval for query evaluation at appli-

cation time t. A complementary function Content specifies
the set of elements of stream S that are in this scope. As
such, Content makes the mapping from the application time
interval representation of a window to a set of data elements.
We can formally define the content of a window at applica-
tion time instant t and system time instant τ as follows:

Content(t, τ) = {s ∈ S : s.tapp ∈ Scope(t) ∧ s.tsys < τ}

Note that unlike Scope, the result of Content depends
on actual contents of the input stream, which only become
available at run time. Therefore, Content(t, τ) might po-
tentially return different results even if it is called with the

same t value, depending on how much of the input stream
is already available (determined by τ) when it is invoked.

3.2.3 Report
The Report dimension in our model defines the conditions

under which the window contents become visible for further
query evaluation and result reporting. SPEs use different
reporting strategies as illustrated in Example 2 of Section 2.
We have identified four basic reporting strategies.

1. Content change (Rcc): reporting is done for t only if
the content has changed since t− 1.

2. Window close (Rwc): reporting is done for t only when
the active window closes (i.e., |Scope(t)| = ω).

3. Non-empty content (Rne): reporting is done for t only
if the content at t is not empty.

4. Periodic (Rpr): reporting is done for t only if it is a
multiple of λ, where λ denotes the reporting frequency.

Furthermore, some systems use multiple strategies (e.g.,
the content must have changed and be non-empty). Hence,
we will use four boolean variables (Rcc, Rwc, Rne, Rpr), each
of which can be set to true or false by a system. Note that
if all of these variables are set to false, then the report will
still return Content(t, τ). This is the default behavior in our
SECRET model. When all four variables are false, the re-
porting takes place every time it is triggered by the previous
step of the model (i.e., T ick to be defined below).

Report(t, τ) =

8>>>>>>>>><>>>>>>>>>:

Content(t, τ) if (¬Rcc ∨ Content(t, τ) 6=
Content(t− 1, τ))

∧(¬Rwc ∨ (|Scope(t)| = ω∧
t < max{s.tapp|s ∈ S ∧ s.tsys ≤ τ}))
∧(¬Rne ∨ Content(t, τ) 6= ∅)
∧(¬Rpr ∨mod(t, λ) = 0)

∅ otherwise

3.2.4 Tick
The Tick dimension in our model defines the condition

which drives an SPE to take action on its input (also re-
ferred to as “window state change” or “window re-evaluati-
on” [13]). Like Report, T ick is also part of a system’s inter-
nal execution model. While some systems react to individual
tuples as they arrive, others collectively react to all or sub-
sets of tuples with the same tapp value. During our analysis,
we have identified three main ways that different systems
“tick”: (a) tuple-driven, where each tuple arrival causes a
system to react; (b) time-driven, where the progress of tapp

causes a system to react; (c) batch-driven, where either a
new batch arrival or the progress of tapp causes a system to
react. 2 These different Tick behaviors are illustrated in
Figure 3. We show two time lines for tsys and tapp. Tu-
ple arrivals are shown on the time line for tsys, and window
scopes are shown underneath, on the time line for tapp. Cir-
cles around the tuples show the units of tuples that the
system will react to at one time, whereas the arrows show
to which application time instant those units belong. Note
that the tuples are the same in all three figures, and that
the four tuples in the middle have the same tapp value.

The tick models described above are based on the detec-
tion of three events: new tuple arrival, the progress of ap-
plication time, and new batch arrival. The detection of each

2
Remember from the definition of batch that a new batch can arrive

without tapp advancing.

235

(a) Tuple-driven system (b) Time-driven system (c) Batch-driven system

Figure 3: Tick models

of these events is really based on the detection of new tu-
ple arrival, since both application time information as well
as batch-id information are carried in the tuples. Every
new tuple arrival can only be uniquely detected if we check
whether the stream has a tuple corresponding to every sys-
tem time instant (for which there can be either one or none).

Before we present the formulas, we would like to note two
key ideas that helped us structure our formulation:

1. At every tick, SECRET needs to check the reporting
condition. However, since T ick operates on system time
units and Report operates also on application time units,
we need a mapping between them. We achieve this mapping
with five mapping functions which will be presented shortly
(app, prev app, batch, prev batch, and prev tick). Note that
the mapping is purely based on what is observed in the input
stream, and not on any synchronization assumption between
tsys and tapp time lines, although this is something that real
systems often do in order not to block the system’s progress
when the input lags behind (see Appendix B.1.2).

2. Since tick events can only be detected at new tuple
arrivals, this will be a basic condition in our formulation.
We must be able to account for irregularities in tuple ar-
rival such as simultaneous tuples (i.e., multiple tuples with
a common tapp) and gaps (i.e., absence of tuples at certain
tapp). To detect simultaneous tuples, we need to be able to
compare the current tapp with the previous tick time. To
handle gaps, the arrival of a new tuple with tapp causes all
application time instants between tapp and the previous tick
time to invoke Report so that we do not miss any important
application time instants. This is why we need mapping
functions that provide us mapping for current instants as
well as previous ones, explained next.

First, we define S(τ) and SI(τ) as follows:
S(τ) denotes the set of tuples in stream S that has arrived

through time instant τ .

S(τ) = {s ∈ S|s.tsys ≤ τ}

SI(τ) denotes the set of tuples in stream S that has arrived
at time instant τ . There can be at most one such tuple.

SI(τ) = {s ∈ S|s.tsys = τ}

We use the following mapping functions to define T ick:
app(τ): Given a system time instant τ , returns the appli-

cation time value of the tuple that has arrived at τ .

app(τ) = {s.tapp|s ∈ SI(τ) ∧ SI(τ) 6= ∅}

prev app(τ): Given a system time instant τ , returns the
application time value of the most recent tuple that has
arrived before τ . If no such tuple exists, it returns t0.

prev app(τ) = max(max{t0, s.tapp|s ∈ S(τ − 1)})

batch(τ): Given a system time instant τ , returns the
batch-id value of the tuple that has arrived at τ .

batch(τ) = max{s.bid|s ∈ SI(τ)}

prev batch(τ): Given a system time instant τ , returns
the batch-id value of the most recent tuple that has arrived
before τ . If no such tuple exists, it returns 0.

prev batch(τ) = max(0,max{s.bid|s ∈ S(τ − 1)})

prev tick(τ): Given a system time instant τ , returns the
application time value of the most recent tuple that has
arrived before τ for which the result of the tick was non-
empty. If no such tuple exists, it returns t0.

prev tick(τ) = {max(t0, app(max(x|x < τ ∧ Tick(x) 6= ∅)))}

Based on the above, we will now formulate T ick for each
tick model. All formulas follow a similar structure.

In a tuple-driven system, Tick is triggered under two con-
ditions: (i) if a tuple arrives whose tapp is the same as the
previous tick time, or (ii) if a tuple arrives whose tapp is
greater than the previous tick time. The former ensures that
the system reacts to each tuple in a simultaneous sequence,
whereas the latter ensures that the system also reacts to the
application time instants where there might be a gap.

Tick(τ) =

8>>>>>>><>>>>>>>:

{Report(app(τ), τ)} if SI(τ) 6= ∅∧
prev tick(τ) = app(τ)

x<app(τ)S
x=prev tick(τ)

Report(x, τ) if SI(τ) 6= ∅∧

app(τ) > prev tick(τ)

∅ otherwise

In a time-driven system, there is no need to react to each
tuple in a simultaneous sequence separately, therefore, the
first condition in the tuple-driven case is skipped. On the
other hand, the second condition needs to be triggered if a
tuple with a new tapp arrives (which means that tapp has
advanced, to which the system must react).

Tick(τ) =

8>>><>>>:
x<app(τ)S

x=prev tick(τ)
Report(x, τ) if SI(τ) 6= ∅∧

app(τ) > prev app(τ)

∅ otherwise

Finally, a batch-driven system acts like a modified tuple-
driven system. We need to check both the condition for
simultaneous tuples as well as for a tuple with a new tapp

arriving. The only difference is that we need to addition-
ally check if the new tuple arrival initiates a new batch by
checking if the new batch-id is greater than the previous
one.

236

τ S(v, tapp, tsys, bid) tuple-driven time-driven batch-driven
τ = 30 (a, 1, 30, b1) Report(x, 30), ∀x ∈ [t0, 1) Report(x, 30), ∀x ∈ [t0, 1) Report(x, 30), ∀x ∈ [t0, 1)
τ = 40 (b, 2, 40, b2) Report(x, 40), ∀x ∈ [1, 2) Report(x, 40), ∀x ∈ [1, 2) Report(x, 40), ∀x ∈ [1, 2)
τ = 45 (c, 2, 45, b2) Report(2, 45) - -
τ = 60 (d, 2, 60, b3) Report(2, 60) - Report(2, 60)
τ = 80 (e, 2, 80, b3) Report(2, 80) - -
τ = 90 (f, 4, 90, b4) Report(x, 90), ∀x ∈ [2, 4) Report(x, 90), ∀x ∈ [2, 4) Report(x, 90), ∀x ∈ [2, 4)

Table 1: Tick example

Tick(τ) =

8>>>>>>>>>><>>>>>>>>>>:

{Report(app(τ), τ)} if SI(τ) 6= ∅∧
prev tick(τ) = app(τ)∧
batch(τ) > prev batch(τ)

x<app(τ)S
x=prev tick(τ)

Report(x, τ) if SI(τ) 6= ∅∧

batch(τ) > prev batch(τ)

∅ otherwise

In order to illustrate how our T ick formulation works, in
Table 1, we present a sample trace of the model for the
scenario shown in Figure 3. The table shows when exactly
each of the three models triggers Report and with which
time values. As expected, the time-driven model invokes
Report only when time advances, one for each time point
including the gap time (tapp = 3). The tuple-driven model,
on the other hand, invokes Report at every new tuple arrival.
Finally, the batch-driven model invokes Report at every new
batch arrival as well as time advance (tapp = 3).

3.3 Discussion
As we will show in the next section, SECRET can suc-

cessfully explain the execution behavior of three real, rep-
resentative SPEs which are quite different from each other.
Its expressivity is the result of careful design choices. For
example, Scope is defined for the earliest open window mak-
ing it easy for SECRET to capture the behavior of systems
that report partial window results (e.g., Coral8) as well as
full window results (e.g., StreamBase). Our model embraces
simplicity wherever possible. For example, Scope refers
to a single active window and we use the t0 parameters to
adjust window intervals rather than distinguishing between
forward/backward window construction, greatly simplifying
our Scope formulation. We do not model real-time effects
(e.g., timeouts, synchronizing application time with system
time, etc.), as this would make it difficult to define a clean,
predictable, and repeatable semantics (see Appendix B.1).
SECRET’s features are orthogonal and extensible. Each
behavior seen in our experiments is explained in a single
way by the model, and the various aspects can be com-
bined as needed. For example, different systems may use
different combinations of the evaluation strategies for the
Report dimension. Meanwhile, more values or more dimen-
sions can be added if we encounter a new SPE with new
features that cannot be expressed (see Appendix B). SE-
CRET also is clear: it decouples the different levels of con-
cerns from each other and treats them separately. For exam-
ple, Scope handles query-level issues, Content handles data-
level issues, and Report and Tick handle system-level issues.
Likewise, Scope and Content capture non-operational effects
of query processing, whereas Report and Tick capture the
operational ones. Thus, SECRET embodies the character-
istics we desired in our model.

4. EXPERIMENTS
We have tested our model with three different systems:

the STREAM open-source academic prototype [5], Coral8
Version 5.5 [1], and StreamBase Version 6.4 [6] (see Ap-
pendix B.3 for a discussion of this choice and extensions to
other systems). Each system’s SECRET parameter values
are obtained after a careful analysis. Table 2 summarizes
our findings; details can be found in Appendix A.1.

We apply our model on three query examples that we ran
on the SPEs to show how SECRET can explain the differ-
ences in their answers. In these experiments, we compare
the query results produced by the SPEs with those predicted
by our SECRET model simulator.
Experiment 1: Difference in Window Construction

Example 1 of Section 2 shows that the same query on the
same input stream might produce different results when it
is run multiple times on a given SPE (StreamBase). The
only configuration difference from one run to another seems
to be the initial value of the application time attributes of
the tuples. Here is how SECRET explains the situation:

First, we found that before each run, StreamBase re-
assigns application time values to tuples according to the
current system time. It takes the tuples’ own source-assigned
time values as the basis, using exactly the same time dif-
ferences between consecutive tuples (i.e., only the absolute
time values change; their relative values stay the same).

Second, t0 in StreamBase depends on the absolute value
of the application time of the first tuple (denoted by tt1), as
formulated in Table 2. The value t0 affects window scopes
and contents, and therefore, the query results.

Figure 4: Window contents for Experiment 1

In all three runs, when we plug in the values ω = 3, β = 3,
and tt1 into the t0 formula for StreamBase, we in fact get
the same t0 value of 8 seconds. Accordingly, the scopes of
the windows are also the same for these three runs as shown
in Figure 4. However, what falls into the scopes from the
input (i.e., SECRET’s Content) is different. This is why
the average results are different. Note that in run 3, the
first window is in fact empty. Therefore, the first result we
see in Output3 in Example 1 of Section 2 is the average re-
sult for the second window, as StreamBase does not operate
on and produce results for windows with empty contents.
Experiment 2: Difference in Window Report

Example 2 of Section 2 shows that the same query on
the same input stream might produce different results on
different SPEs. While STREAM and Coral8 gave similar

237

SPE t0 (Scope) Report Tick
STREAM [5] tt1 − ω window close & content change & non-empty & λ=1 time-driven

Coral8 [1] d tt1−ωβ e β-1 content change & non-empty & λ=1 batch-driven

StreamBase [6] d tt1−ωβ e β-1 window close & non-empty & λ=1 tuple-driven

Table 2: SECRET parameters of STREAM, Coral8, and StreamBase

query results for this query, StreamBase gave a different
one. We present how SECRET explains this situation.
Step 1. Tick: The input stream in Example 2 does not
include any simultaneous tuples. This means that each tuple
arrival will correspond to the arrival of a new application
time value as well as to the arrival of a new batch. Therefore,
all three systems will behave exactly the same in terms of
their Ticks (for details, see Appendix A.2.1).
Step 2. Scope and Content: According to Table 2, t0
equals 25, 24, and 24 for STREAM, Coral8, and Stream-
Base, respectively. These values are obtained by plugging
in the values for tt1 = 30, ω = 5, and β = 1 in the t0 formu-
las. To calculate the window scopes themselves, SECRET
uses the Scope formula presented in Section 3.2.1. Figure 5
depicts the scopes and contents of the windows for the en-
gines. Due to their t0 values, Coral8 and StreamBase share
the same window scopes and contents, while STREAM ex-
cludes the very first scope. However, since for the given
input, the first scope is empty anyway, in practice, there is
no difference in the scopes and contents of the three engines.

Figure 5: Window contents for Experiment 2

Step 3. Report: Table 3 illustrates how reporting is
triggered for the three systems (tn denotes the nth tuple).
StreamBase reports only the contents of non-empty win-
dows when they close, which happens at every second until
the last tuple expires. On the other hand, Coral8 reports
only the contents of non-empty windows when their contents
change, which happens at time 30, 31, 35, 36, and so on.
Finally, STREAM reports only the contents of non-empty
windows when they close and their contents change, which,
in this example, happens at exactly the same time points as
for Coral8. Hence, differences in the Report parameters ex-
plain why the three systems produce different answers (for
details, see Appendix A.2.2).

tapp StreamBase STREAM Coral8
30 {t1} {t1} {t1}
31 {t1, t2} {t1, t2} {t1, t2}
32 {t1, t2} - -
33 {t1, t2} - -
34 {t1, t2} - -
35 {t2} {t2} {t2}
36 {t3} {t3} {t3}

Table 3: Contents reported for Experiment 2

Experiment 3: Difference in Tick
In this this last experiment, we show that different tick

models can yield different results for a given query on a
given input stream. For this experiment, we chose a fixed
input with simultaneous tuples and a batch-driven system,
Coral8, but we configured the batches in three different ways
to create the three different tick scenarios. We did this using
Coral8’s atomic bundling mechanism [1]. If each individual
tuple is placed in a separate bundle, then Coral8 acts like a
tuple-driven system, since it then reacts to every new input
arrival (i.e., tuple ∼ batch). On the other hand, if we place
all of the simultaneous tuples in a common bundle, Coral8
works like a time-driven system, since it then reacts to all
such tuples collectively when the time advances (i.e., time-
unit ∼ batch). For all other configurations, Coral8 behaves
like a normal batch-driven system.

More concretely, for a fixed input stream of tuples S(v,tapp)
= {(10, 3),(20, 5),(30, 5),(40, 5),(50, 5),(60, 7),...}, we ob-
tained the following three configurations: STuple (one tu-
ple per batch), STime (all simultaneous tuples in the same
batch), and SBatch (two simultaneous tuples per batch).
With the batch-id (shown in bold), the input streams are:

STuple(v, tapp, bid) = {(10, 3, 1), (20, 5, 2), (30, 5, 3), (40, 5, 4),
(50, 5, 5), (60, 7, 6),...}

STime(v, tapp, bid) = {(10, 3, 1), (20, 5, 2), (30, 5, 2), (40, 5, 2),
(50, 5, 2), (60, 7, 3),...}

SBatch(v, tapp, bid) = {(10, 3, 1), (20, 5, 2), (30, 5, 2), (40, 5, 3),

(50, 5, 3), (60, 7, 4),...}

Then we ran a query on these three input streams, which
continuously computes the sum of values over a sliding win-
dow of size 4 seconds, yielding the following results:

Coral8 Output(STuple) = {(10), (30), (60), (100), (150), ...}
Coral8 Output(STime) = {(10), (150), ... }
Coral8 Output(SBatch) = {(10), (60), (150), ...}

Step 1. Tick: Table 4 shows the execution trace of our
batch-driven Tick formula on our example for STuple, STime,
and SBatch, each simulating a different Tick value. The tick
condition returns true, if the batch-id of the newly arrived
tuple is greater than the previous tuple’s batch-id. STuple

ticks at every new tuple arrival, STime ticks every time tapp

changes, and SBatch ticks at every new batch arrival.

(tuple, tapp) tuple-driven time-driven batch-driven
(t1, 3) Report(2) Report(2) Report(2)
(t2, 5) Report(3) Report(3) Report(3)

Report(4) Report(4) Report(4)
(t3, 5) Report(5) - -
(t4, 5) Report(5) - Report(5)
(t5, 5) Report(5) - -
(t6, 7) Report(5) Report(5) Report(5)

Report(6) Report(6) Report(6)

Table 4: Ticks for Experiment 3

238

Step 2. Scope and Content: Given tt1 = 3, ω = 4, and
β = 1, t0 can be calculated as -2 seconds for Coral8. Ac-
cordingly, Figure 6 depicts the window scopes and contents
based on the Scope formula of Section 3.2.1.

Figure 6: Window contents for Experiment 3

Step 3. Report: In Figure 6, windows which have pro-
duced results because of changes in their contents are de-
noted with fine dots. Table 5 depicts the result of the ag-
gregation run on these windows at the time instants when
Report is invoked (Table 4). SECRET correctly models the
result for STuple as {10, 30, 60, 100, 150, ...}, for STime
as {10, 150, ...}, and for SBatch as {10, 60, 150, ...} (for
details, see Appendix A.3).

tuple Report tuple-driven time-driven batch-driven
t1 Report(2) - - -
t2 Report(3) {10} {10} {10}
t3 Report(5) {30} - -
t4 Report(5) {60} - {60}
t5 Report(5) {100} - -
t6 Report(5) {150} {150} {150}

Table 5: Results reported for Experiment 3

5. RELATED WORK
It is hard to get information about underlying formal mod-

els used by current commercial systems [1, 2, 3, 4, 6, 7].
Each system seems to use a different model, and the query
results that they generate are not easy to compare. Jain et
al. [13] tried to reconcile the differences across two of these
commercial systems, Oracle CEP and StreamBase. They
only consider the way that window execution is triggered.
Though an important first step, this work focuses on only
one aspect of execution behavior (i.e., Tick in SECRET),
just one of the aspects our model captures and explains.

A few recent studies have tried to offer cleaner abstract
models without necessarily being tied to a specific system
implementation [14, 15, 16, 18]. We present a comparison
of these models to SECRET in Appendix D.

6. CONCLUSION AND FUTURE WORK
The SECRET model describes important differences in

the semantics underlying stream processing models. We de-
veloped SECRET by studying both academic and industrial
SPEs. We have shown, through examples and experimen-
tation, how SECRET can be used to understand, compare,
and predict the behavior of diverse SPEs. Our model is
unique to date in its comprehensive consideration of com-
mon differences in execution models, differences that can
lead to surprisingly varied results when even simple stream
queries are executed on different engines.

We have focused on queries with time-based windows and
unary operators only, excluding real-time effects, and an-

alyzed three representative SPEs. Appendix B discusses
some preliminary results on extending SECRET for other
query types, SPEs, and system considerations. In addition
to exploring and explaining the differences between different
engines, SECRET can be used to find equivalences between
them. Such equivalences can be used to devise query rewrite
and transformation rules (e.g., providing a foundation for
query optimization in a federation of SPEs [10]). We are
currently pursuing this interesting research direction.

7. REFERENCES
[1] Coral8, Inc. http://www.coral8.com/.

[2] IBM System S. http://www.ibm.com/.

[3] Microsoft SQL Server StreamInsight Technology.
http://www.microsoft.com/sqlserver/2008/en/us/

R2-complex-event.aspx.

[4] Oracle CEP. http://www.oracle.com/technologies/
soa/complex-event-processing.html.

[5] Stanford Stream Data Manager.
http://infolab.stanford.edu/stream/.

[6] StreamBase Systems, Inc.
http://www.streambase.com/.

[7] Truviso, Inc. http://www.truviso.com/.

[8] D. Abadi and et al. Aurora: A New Model and
Architecture for Data Stream Management. VLDB
Journal, 12(2), 2003.

[9] A. Arasu and et al. The CQL Continuous Query
Language: Semantic Foundations and Query
Execution. VLDB Journal, 15(2), 2006.

[10] I. Botan and et al. Design and Implementation of the
MaxStream Federated Stream Processing
Architecture. Technical Report TR-632, ETH Zurich
Department of Computer Science, June 2009.

[11] S. Chandrasekaran and et al. TelegraphCQ:
Continuous Dataflow Processing for an Uncertain
World. In CIDR Conference, 2003.

[12] B. Gedik and et al. SPADE: The System S Declarative
Stream Processing Engine. In ACM SIGMOD
Conference, 2008.

[13] N. Jain and et al. Towards a Streaming SQL
Standard. In VLDB Conference, 2008.

[14] J. Kramer and B. Seeger. Semantics and
Implementation of Continuous Sliding Window
Queries over Data Streams. ACM TODS, 34(1), 2009.

[15] L. Li and et al. Semantics and Evaluation Techniques
for Window Aggregates in Data Streams. In ACM
SIGMOD Conference, 2005.

[16] D. Maier and et al. Semantics of Data Streams and
Operators. In ICDT Conference, 2005.

[17] R. Motwani and et al. Query Processing,
Approximation, and Resource Management in a Data
Stream Management System. In CIDR Conference,
2003.

[18] K. Patroumpas and T. Sellis. Window Specification
over Data Streams. In EDBT Workshops, 2006.

[19] U. Srivastava and J. Widom. Flexible Time
Management in Data Stream Systems. In ACM PODS
Conference, 2004.

[20] M. Tsimelzon. On Streaming SQL Standards.
http://www.coral8.com/blogs/blog-entry/

streaming-sql-standards, September 2008.

239

http://www.coral8.com/
http://www.ibm.com/
http://www.microsoft.com/sqlserver/2008/en/us/R2-complex-event.aspx
http://www.microsoft.com/sqlserver/2008/en/us/R2-complex-event.aspx
http://www.oracle.com/technologies/soa/complex-event-processing.html
http://www.oracle.com/technologies/soa/complex-event-processing.html
http://infolab.stanford.edu/stream/
http://www.streambase.com/
http://www.truviso.com/
http://www.coral8.com/blogs/blog-entry/streaming-sql-standards
http://www.coral8.com/blogs/blog-entry/streaming-sql-standards

APPENDIX
A. EXPERIMENT DETAILS

In this section, we discuss some of the details related to
the setup and the experiments of Section 4.

A.1 Setup and Methodology
The result of a query is affected by three main factors: the

input, the query, and the system. The success criteria for
our model is to find at least one SECRET parameter setting
for a given system which can explain the execution behavior
of that system for a common set of windowed queries and
input configurations. We have done extensive experiments
with three systems to find their respective values for each of
the four SECRET parameters.

In these experiments, we varied the input data and queries
carefully, as they also affect the query results. More specifi-
cally, the input stream should have irregularities due to gaps
in application time or due to simultaneous tuples with com-
mon application times. Queries with time-based windows
should be analyzed under three categories: sliding windows
with β = 1, sliding windows with 1 < β < ω, and tumbling
windows with β = ω.

Not all systems support all possible input/query config-
urations (due to capability differences or incomplete imple-
mentation) and this might create some limitations. For ex-
ample, the available release of the STREAM prototype only
supports time-based sliding windows with β = 1. Therefore,
we can only test it with this type of query. However, the
same system has an associated research paper that describes
the more general theoretical model underneath its system
implementation [9], which we also used as a reference.

After analyzing the execution of all supported configura-
tions on each system, we obtained the SECRET parameters
for these systems as shown in Table 2. Next, we describe
how we arrived at these values.

For Scope, the system only influences the choice of the t0
parameter (i.e., the application time instant for the start of
the first window). We obtained the t0 formulas in Table 2
by running different queries with various size and slide value
combinations on a varied set of input streams multiple times.

Report values for the SPE set have been found, again
based on the queries that we ran on these SPEs.

For Tick, related work has already revealed the tick mod-
els for StreamBase (tuple-driven) and STREAM (time-driven)
[13]. Additionally, we found that Coral8 uses a batch-driven
model, based on our own experiments, personal communi-
cation with members of the Coral8 support team, as well
as a blog discussion provided at Coral8’s website [20]. In
Coral8, batches form automatically depending on how the
input adapter feeds tuples into the Coral8 server. Lastly, we
note that all tick models behave similarly when the input is
regular. To identify the differences, we needed to feed irreg-
ular input (with simultaneity in particular) to our sample
queries.

A.2 Experiment 2

A.2.1 Tick
All three systems in Example 2 have different tick val-

ues: STREAM is time-driven, Coral8 is batch-driven, and
StreamBase is tuple-driven. However, differences in the
ticks’ effect can only be seen when there are simultaneous

tuples in the input stream. When each tuple has a unique
application time, STREAM, Coral8, and StreamBase will
have the same tick behavior; since the arrival of a new tuple
corresponds to the arrival of a new application time as well
as the arrival of a new batch at the same time. Table 6 illus-
trates the execution trace of our Tick formula (Section 3.2.4)
on Example 2 for STREAM, Coral8, and StreamBase, re-
spectively. One can quickly see that on that input, all three
systems “tick” in exactly the same way.

(tuple, tapp) STREAM Coral8 StreamBase
(t1, 30) Report(29) Report(29) Report(29)
(t2, 31) Report(30) Report(30) Report(30)
(t3, 36) Report(31) Report(31) Report(31)

Report(32) Report(32) Report(32)
Report(33) Report(33) Report(33)
Report(34) Report(34) Report(34)
Report(35) Report(35) Report(35)

...

Table 6: Tick for Experiment 2

A.2.2 Report
Table 7 displays the execution trace for the report param-

eter in Experiment 2 at the application time instants when
reporting is called. If the reporting condition is true for a
window, the scope and the actual content of the window
are calculated and the content then becomes visible to the
aggregation operator. The table shows that SECRET mod-
els STREAM’s and Coral8’s results as {10, 15, 20, 30, ...},
and StreamBase’s results as {10, 15, 15, 15, 15, 20, 30, ...},
which are the actual results produced by those engines.

A.3 Experiment 3
Table 8 presents the execution of the SECRET model for

Experiment 3. The first column in the table refers to the
arrival of the tuple. For instance when the third tuple (t3)
arrived, STuple ticked since the batch-id of the tuple was
greater than that of the previously seen tuple. Consequently,
Report was called, and the content of the window (the ta-
ble shows only the v attribute of the tuples) became visible
for the evaluation of the sum operator. On the other hand,
STime and SBatch did not tick, since the batch-id of the tu-
ple remained the same. As a result of different Tick models,
the SPEs called Report at different time instants, which led
to different actual window contents as shown in Table 8.

B. EXTENDING SECRET
As we explained earlier, SECRET captures factors that

affect a query result including those that stem from the
query (ScopE), the input (Content), and the system (RE-
port, Tick). In this section, we discuss how SECRET can
be extended further with respect to these three aspects.

B.1 Input Aspects

B.1.1 System-time-based Windows
In this paper, we have focused on windows which are de-

fined based on on application time. Time-based windows
can also be defined using system time, which is the times-
tamp assigned to the tuples at their arrival to the system.
In this case, tapp = tsys. This case can also be handled by

240

tapp STREAM Coral8 StreamBase
Report? Scope Content Report? Scope Content Report? Scope Content

29 No - - No - - No
30 Yes (25 30] {10} Yes (25 30] {10} Yes (25 30] {10}
31 Yes (26 31] {10, 20} Yes (26 31] {10, 20} Yes (26 31] {10, 20}
32 No - - No - - Yes (27 32] {10, 20}
33 No - - No - - Yes (28 33] {10, 20}
34 No - - No - - Yes (29 34] {10, 20}
35 Yes (30 35] {20} Yes (30 35] {20} Yes (30 35] {20}
36 Yes (31 36] {30} Yes (31 36] {30} Yes (31 36] {30}
...

Table 7: Report for Experiment 2

tuple-driven (STuple) time-driven (STime) batch-driven (SBatch)

tuple Tick? Report Content Tick? Report Content Tick? Report Content
t1 Yes (1>0) - - Yes (1>0) - - Yes (1>0) - -
t2 Yes (2>1) Report(3) {10} Yes (2>1) Report(3) {10} Yes (2>1) Report(3) {10}
t3 Yes (3>2) Report(5) {10, 20} No - - No - -
t4 Yes (4>3) Report(5) {10, 20, 30} No - - Yes (3>2) Report(5) {10, 20, 30}
t5 Yes (5>4) Report(5) {10, 20, 30, 40} No - - No - -
t6 Yes (6>5) Report(5) {10, 20, 30, 40, 50} Yes (3>2) Report(5) {10, 20, 30, 40, 50} Yes (4>3) Report(5) {10, 20, 30, 40, 50}

Table 8: Comparing different input batch configurations (i.e., Tick models) in Coral8

SECRET, since in practice, it does not matter whether the
timestamps are assigned at the source or by the system.

There are a handful of systems in which time-based win-
dows are constructed based on the system time at the point
when the tuples hit each window-based operator. We have
excluded this case from our model, since it has a non-repeatable
semantics (e.g., the behavior would be sensitive to the op-
erator scheduling policy in the system).

B.1.2 Synchronized Timestamps
In our current model, time information can only be gath-

ered through tuples. This strategy might delay the process-
ing if there is a gap between tuple arrivals. In order to
prevent the delay, real systems use various mechanisms to
synchronize the application time of tuples with the actual
system time (e.g., heartbeats in STREAM [19], MAXDE-
LAY in Coral8 [1], and TIMEOUT in StreamBase [6]). Ex-
tending our model to include synchronized timestamps is
straightforward: if a maximum delay threshold is known in
advance, dummy tuples with punctuations can be injected
into the input stream and the application time can be ad-
vanced without waiting for the actual delayed tuples to ar-
rive.

B.1.3 Out-of-order Streams
SECRET makes an assumption that tuple arrivals are al-

ways totally ordered. This assumption might seem like a
limitation, but since SECRET aims to explain the execu-
tion model differences among SPEs, it has the finest gran-
ularity for tuple order information. Please note that some
engines impose a total order on the input data based on
arrival (such as StreamBase) before processing. The total
order assumption might not be met in practice because of
network latencies and distributed data sources. In case of
out of order tuples, the system can buffer input tuples for a
maximum amount of time and then reorder them [19].

B.2 Query Aspects

B.2.1 Tuple-based Windows
In this paper, we mainly focused on presenting SECRET

for analyzing the execution semantics of queries with time-
based windows. Our model can also be used to explain the
semantics of queries over tuple-based windows. A tuple-
based window is defined by tuple arrival, rather than by
time units (size and slide) First of all, since window type
is a query property, we can reuse Tick and Report (which
relate to system properties) without much change. The only
change required is that the window close condition in Re-
port should be defined in terms of Content size rather than
Scope size, since what counts in the window size is now the
actual number of tuples rather than the size of the time in-
terval. Similarly, since Content is an input-related property,
we can reuse it for tuple-based windows to a large extent.
One exceptional case that arises with Content is that time-
and batch-driven systems are known to have an “evaporating
tuples” situation when there are more simultaneous tuples
around than the window size can accommodate [9, 13]. We
address this requirement by adding a tuple selection function
into the Content formula that allows tuple selection when
necessary. Finally, since Scope is a query-related property,
we have reformulated it in the following way. For tuple-
based windows, since window size is defined in terms of the
number of tuples rather than the size of the application time
interval, windows must be constructed on the tuple-id do-
main instead of the application time domain.

B.2.2 Binary Operators
This paper has only focused on unary operators as they

are the foundation for stream queries. We can also ex-
tend our model to handle binary operators (such as joins).
Join operators are fundamentally different from unary slid-
ing window operators, as they involve two inputs with two
windows. Our model can directly explain how each of those
windows are populated with input tuples (i.e., Tick, Scope,
and Content can be used without any change). However,
one additional issue to consider is when to make the win-
dows of the two input streams visible to the join operator.
The Report definition must be extended to address this is-
sue.

241

B.3 System Aspects
As has been shown in earlier sections of this paper, we

have tested our model with three different SPEs (Stream-
Base, STREAM, and Coral8), which are representative in
the area and are widely used. StreamBase commercialized
the Aurora/Borealis academic prototypes, and therefore, its
basic execution model descends from those of these two sys-
tems. Similarly, the Oracle CEP engine directly follows
STREAM’s query execution model [13]. Lastly, Coral8 is
a widely used commercial system and its model is also sub-
stantially different from the two families of SPEs mentioned
above (also see Figure 2). Overall, we believe that we cover
a significant variety of SPE models in this paper.

Although we cover a major subset of SPEs and their exe-
cution models, it would be interesting to expand our exper-
imental set even further to include other SPEs as well. The
first step in analyzing an SPE with our SECRET model is
to find out what value each SECRET parameter should take
for the given system. If the required knowledge about the
system is not readily available, these values can be obtained
by executing a set of queries against a range of inputs. The
input stream should have irregularities due to gaps in ap-
plication time and due to simultaneous tuples with common
application times. Furthermore, queries should include some
with windows that slide each time unit, windows with slide
parameters (i.e., having a slide value greater than minimum
window unit, but less than the window size), or tumbling
windows (i.e., having a slide value of the same size as the
window size). By executing different configurations of these
input and query properties, the SECRET parameter values
can be revealed.

C. POTENTIAL USES OF SECRET
The original motivation behind our SECRET model was

to analyze the query execution behavior of SPEs and their
differences. However, the model can actually be utilized for
several other important purposes beyond this goal.

First, as we briefly mentioned in Section 6, SECRET
can also be useful for discovering equivalences among SPEs.
These equivalences can then be used for rewrite-based query
optimization in integrated stream processing settings (e.g.,
MaxStream [10]). Likewise, equivalences can also be used
to semantically translate a query running on one SPE to
enable porting of applications to other SPEs. For instance,
if it is known that no simultaneous tuples and gaps can oc-
cur in a given input stream, query translation is possible
even among SPEs having different Tick values, as in this
case, tuple-, time-, and batch-driven SPEs would all behave
similarly in terms of their Tick behavior.

Furthermore, SECRET parameters cover all the key as-
pects of query execution: input, query, and system. Based
on different input and query requirements that originate
from the applications, different SPEs might be preferred for
a given application. For example, if an application has si-
multaneous tuples (e.g., position reports of cars in dense ar-
eas of traffic) and there is no well-defined order among them,
using an SPE following a time-driven Tick model might be a
better option. On the other hand, if it is possible to define a
further ordering among the simultaneous tuples (e.g., based
on car types), an SPE following a batch-driven Tick model
might be preferable, as it could produce the result faster
than a time-driven SPE. Different reporting strategies may

also be better suited for different application needs. For in-
stance, for slowly changing datasets and queries with small
window sizes to process them, an SPE having window con-
tent change as its reporting strategy might be preferred over
one with a window close strategy in order to avoid repeated
results. On the other hand, for join queries, using an SPE
with window close as its reporting strategy might provide
more insight in understanding the query results compared
to one using a reporting strategy based on window content
change.

D. EXTENDED RELATED WORK
In this section, the difference between SECRET and a

subset of the previously proposed models is discussed.
As a first generation research system, STREAM’s CQL

provides a formal model based on the relational model [9].
In addition to introducing the stream data type and map-
ping operations between streams and relations, CQL has
also introduced the notion of time into the relational model,
which essentially adds the ”time-driven” continuous query
execution semantics. However, CQL semantics alone is not
sufficient to explain all the different behaviors that we see
from different SPEs today (e.g., other Tick models).

In the aftermath of the early-generation systems, a few
recent studies have tried to offer cleaner abstract models
without necessarily being tied to a specific system imple-
mentation, as we summarize next.

Maier et al. [16] generalizes the denotational semantics
approach of STREAM CQL, focusing on defining the mean-
ing of a stream itself rather than the complete query ex-
ecution semantics. Li et al. [15] have proposed a frame-
work for defining window semantics based on three func-
tions: windows, extent, and wids, where the window se-
mantics is described independent of the execution model.
Our work differs from Li et al. [15], in that we not only con-
sider window contents but also other operational issues that
influence the query results.

Patroumpas and Sellis have also proposed a formal frame-
work for expressing windows for a CQL-like model [18]. The
model is based on a time-parameterized scope function that
specifies a time-based window’s size and progression in time.
This work is not based on real system implementations, and
whether the proposed formalism is powerful enough to cap-
ture the existing systems’ behaviors is not known.

Most recently, Kramer and Seeger have proposed a pair
of logical and physical operator algebras for stream oper-
ators, applying ideas from temporal databases [14]. Their
approach is similar to that of the STREAM team, with a
few differences. First, every tuple is assigned a time in-
terval showing its validity period instead of a single times-
tamp. Second, the snapshot reducibility concept from tem-
poral databases is used in finding equivalences for query op-
timization, however, this concept does not apply to window
operators. Finally, the authors describe the physical imple-
mentation of their operators in their PIPES system. This
paper covers similar semantic issues as in the CQL model
and does not provide constructs to explain the operational
aspects of other SPE systems.

242

E. ACKNOWLEDGMENTS
We would like to thank John Wilkes and Olga Irzak for

their helpful comments on earlier versions of this paper;
Ghislain Fourny for his input about our formalism; Coral8
and StreamBase’s technical support teams for answering our
questions; and our former collaborators at SAP China and
Korea Labs for useful discussions. This work has been sup-
ported in part by the following grants: Swiss NSF NCCR
MICS 5005-67322, Swiss NSF ProDoc PDFMP2-122971/1,
and ETH Zurich Enterprise Computing Center (ECC) SAP
industrial partner grant DE-2008-022. Miller was partially
supported by NSERC.

243

