GRAIL: Scalable Reachability Index for Large Graphs -

Hilmi Yildirim Vineet Chaoji Mohammed J. Zaki
Rensselaer Polytechnic Yahoo! Labs Rensselaer Polytechnic
Institute Bangalore Institute
110 8th St. India 110 8th St.
Troy/NY, USA chaojv@yahoo-inc.com Troy/NY, USA
yildih2@cs.rpi.edu zaki@cs.rpi.edu
ABSTRACT It is worth noting at the outset that the problem of reachabil-

ity on directed graphs can be reduced to reachability on directed

Gi I directed h idl i habilit i
Ven a arge cirected graph, repidy answering reachabiity qeries acyclic graphs (DAGs). Given a directed graphwe can obtain

between source and target nodes is an important problem. Existing . ; . .
methods for reachability trade-off indexing time and space versus ar;]_eguwalﬁnt EAGG (called theconclzlensatlon g(;aplmf GQ), Int th
query time performance. However, the biggest limitation of exist- which each node represents a strongly connected component of the

ing methods is that they simply do not scale to very large real-world ©"dinal graph, and each edge represents the fact whether one com-
graphs. We present a very simple, but scalable reachability index, ponent can reach another. To answer whgther nodan reachy
called GRAIL, that is based on the idea of randomized interval la- " G, we simply look up their qorrespondlng strongly connected
beling, and that can effectively handle very large graphs. Based onCOMPonentss, ands., respectively, which are the nodesd.

an extensive set of experiments, we show that while more sophis-If Su = Sy, then by definitioru and _reach; (and vice-versa). If
ticated methods work better on small graphs, GRAIL is the only ,S“ 5‘,& Sv, then we posg_the qugstlon Whe“&r. can reachs,
index that can scale to millions of nodes and edges. GRAIL has in G". Thus all reachability queries on the original graph can be

linear indexing time and space, and the query time ranges from answered on the DAG. Hencefgrth, we will assume.that all input
constant time to being linear in the graph order and size. graphs have been transformed into their corresponding DAGs, and

thus we will discuss methods for reachability only on DAGs.

1. INTRODUCTION

Full Transitive Closure DFS/BF
Given a directed grapty = (V, E) and two nodesi,v € V, a = > ———————— < ?

reachability queryasks if there exists a path fromto v in G. If
u can reachy, we denote it as — v, whereas ifu cannot reach

v, we denote it as /4 v. Answering graph reachability queries Construction Time

quickly has been the focus of research for over 20 years. Tradi- O(nm) <] o)
tional applications include reasoning about inheritance in class hi- o(1) Query Time > O(n+m)
erarchies, testing concept subsumption in knowledge representa- .

tion systems, and checking connections in geographical informa- O(n?) <€ Index Size o(1)

tion systems. However, interest in the reachability problem re-

vived in recent years with the advent of new applications which Figure 1: Tradeoff between Query Time and Index Size

have very large graph-structured data that are queried for reach- There are two basic approaches to answer the reachability queries
ability excessively. The emerging area of Semantic Web is com- on DAGs, which lie at the two extremes of the index design space,
posed of RDF/OWL data which are indeed graphs with rich con- as illustrated in Figure 1. Given a DAG, with n vertices and
tent, and there exist RDF data with millions of nodes and billions m edges, one extreme (shown on left) is to precompute and store
of edges. Reachability queries are often necessitated on these datthe full transitive closure; this allows one to answer reachability
to infer the relationships among the objects. In network biology, queries in constant time by a single lookup, but it unfortunately
reachability play a role in querying protein-protein interaction net- requires a quadratic space index, making it practically unfeasible
works, metabolic pathways and gene regulatory networks. In gen- for large graphs. On the other extreme (shown on right), one can
eral, given the ubiquity of large graphs, there is a crucial need for use a depth-first (DFS) or breadth-first (BFS) traversal of the graph
highly scalable indexing schemes. starting from nodex, until either the target,, is reached or it is de-

“This work was supported in part by NSF Grants EMT-0829835 termined that no such path exists. This approach requires no index,

and CNS-0103708, and NIH Grant IRO1IEB0080161-01A1. Putrequires)(n + m) time for each query, which is unacceptable
for large graphs. Existing approaches to graph reachability index-

o . . . ing lie in-between these two extremes.
Permission to make digital or hard copies of all or part of this work for While th . t vet inale best indexi h for DAG
personal or classroom use is granted without fee provided that copies are lle there 1S not yet a single best indexing scheme Tor S,

not made or distributed for profit or commercial advantage and that copies the reaChab”ity problem on trees_can b? solved effectivelinby
bear this notice and the full citation on the first page. To copy otherwise, to terval labeling[11], which takes linear time and space for con-
republish, to post on servers or to redistribute to lists, requires prior specific structing the index, and provides constant time querying. It labels
permission and/or a fee. Articles from this volume were presented at The each node: with a rangeL, = [rs,r.], Wherer, denotes the
36th International Conference on Very Large Data Bases, September 13—17,rank of the node in a post-order traversal of the tree, where the

g?&gégj?nggnggfhe VLDB Endowmev). 3, No. 1 ranks are assumed to begin at 1, and all the children of a node are

Copyright 2010 VLDB Endowment 2150-8097/10/0%.10.00. assumed to be ordered and fixed for that traversal. Funthete-

276

@[1,10]

/N

e @ra

| l
@>@[5,51 s

O D3

|
A[{(@[2,21

(a) Tree

®uy e

(b) DAG: Single Interval

@[1,10],[1,10]

e

®1,4],[1,6] @[1,5],[1,8 @[1,8],[1,3]

(&dnna /@[1,31,[1,5]
[1,1],[1,1] @[2,2],[4,4]

(c) DAG: Multiple Intervals

Figure 2: Interval Labeling: Tree (a) and DAG: Single (b) & Multiple (c)

notes the lowest rank for any nodein the subtree rooted at to O(n+m) (in cases where the search defaults to a DFS). GRAIL

(i.e., includingu). This approach guarantees that the containment is thus a light-weight index, that scales to very large graphs, due

between intervals is equivalent to the reachability relationship be- to its simplicity. Via an extensive set of experiments, we show

tween the nodes, since the post-order traversal enters a node beforthat GRAIL outperforms existing methods on very large real and

all of its descendants, and leaves after having visited all of its de- synthetic graphs, sometimes by over an order of magnitude. In

scendants. In other wordg,— v <— L, C L,. For example, many cases, GRAIL is the only method that can even run on such

Figure 2(a) shows the interval labeling on a tree, assuming that large graphs.

the children are ordered from left to right. It is easy to see that

reachability can be answered by interval containment. For exam-

ple,1 — 9, sinceLy = [2,2] C [1,6] = L1, but2 4 7, since 2. RELATED WORK

L7z =[1,3] € [7,9] = L. As noted above, existing approaches for graph reachability com-
To generalize the interval labeling to a DAG, we have to ensure bine aspects of indexing and pure search, trading off index space for

that a node is not visited more than once, and a node will keep the querying time. Major approaches include interval labeling, com-

post-order rank of its first visit. For example, Figure 2(b) shows an Pressed transitive closure, and 2HOP indexing [1, 21, 22, 15, 13, 5,

interval labeling on a DAG, assuming a left to right ordering of the 2, 7, 20, 19, 23, 6, 12], which are discussed below, and summarized

children. As one can see, interval containment of nodes in a DAG in Table 1.

is not exactly equivalent to reachability. For examples 4, but

Ly = [1,5] C [1,8] = Ls. In other words,L, C L, does not — [1][(;‘Z”S‘“)‘C“O“ Time] g‘;er)y“me ['(’)“:‘”;)Size
H pt. Tree Cover nm n n
imply thatu — v. On the other hand, one can show tiat ¢ GRIPP [21] O(m 1 n) O(m — n) O(m +n)
Ly = usw Dual Labeling [22] | O(n +m + %) | O(1) O(n + t?)
In this paper we present a novel, scalable graph indexing ap- PathTree [15] O(mk) O(mk)/O(mn) | O(nk)
proach for very large graphs, called GRAIL, which standsSaaph ﬁ'é%f[[zﬂ] 8&"2% 8%@ ggnﬁi
™ n m n+/m
Reachability Indexing via Rndomized ntervalL abeling. Instead GRAIL (s papen | O (dln T0)) O CETDRRICD)

of using a single interval, GRAIL employs multiple intervals that
are obtained via random graph traversals. We use the syiintool Table 1. Comparison of Approaches: n denotes number of ver-
denote the number of intervals to keep per node, which also corre-tices; m, number of edges; ¢ = O(m — n), number of non-tree
sponds to the number of graph traversals used to obtain the label.edges; ¥ number of paths/chains; and d number of intervals.
For example, Figure 2(c) shows a DAG labeling using 2 intervals

(the first interval assumes a left-to-right ordering of the children, - : '
whereas the second interval assumes a right-to-left ordering). beling for DAGs. The approach first creates interval labels for a

The key idea of GRAIL is to do very fast elimination for those ~SPanning tree of the DAG. This is not enough to correctly answer
pairs of query nodes for whom non-reachability can be determined 'éachability queries, as mentioned above. To guarantee correct-
via the intervals. In other words, If, ¢ L., which can be checked ~ N€SS, the method processes nodes in reverse topological order for
in O(d) time, we immediately retura /4 v. On the other hand, ~ €ach non-tree edge (i.e., an edge that is not part of the spanning
if successive index lookups fail, reachability defaults to a DFS in tree) between andv, with » inheriting all the intervals associated
the worst-case. The space complexity of our indexin@ign) with nodewv. Thusw is guaranteed to contain all of its children’s
sinced intervals have to be kept per node, and the construction intervals. Testing reachability is equivalent to deciding whether a
time isO(d(n + m)), sinced random graph traversals are made to list of intervals subsumes another list of intervals. The worst case
obtain those labels. Sinagis typically a small constant, GRAIL ~ COmplexity of this is the same as a full transitive closure.
requires time and space linear in the graph size for index creation., GRIPP [21] is another variant of interval labeling. Instead of
For query answering, the time complexity ranges froi) (in inflating the index size for the non-tree edges as in [1], reachabil-

cases where non-reachability can be determined using the index),ty testing is done via multiple containment queries. Given nodes
uw andw, if L, is not contained ir_,, the non-tree edges, y),

Optimal Tree Cover [1] is the first known variant of interval la-

277

such thate is a descendant of, are fetched, and recursively a new The problem of finding densest sub-matrices is NP-hard and they
query(y,v) is issued for every, until eitherv is reachable froma proposed a 2-approximation algorithm for it.

y node or if all non-tree edges are exhausted. If one ofjthedes Despite the overwhelming interest in static transitive closure,
can reachy thenw can reachv. Since there aren — n non-tree not much attention has been paid to practical algorithms for the
edges, the query time complexity@¥m — n). Dual labeling[22] dynamic case, though several theoretical studies exist [18, 16, 9].

processes non-tree edges in a different way. After labeling the se-Practical works on dynamic transitive closure [10, 17] and dynamic
lected tree, it computes the transitive closure of non-tree edges sc2HOP indexing [3] have only recently been proposed. However,
that it can answer queries by a constant number of lookups (in Ta- scalability remains a problem. Our focus in this paper is on static
ble 1t = O(m—n) denotes the number of non-tree edges). GRIPP indexing; extending GRAIL to the dynamic setting will be consid-
and Dual Labeling thus lie on the opposite sides of the trade-off il- ered in the future.

lustrated in Figure 1.

A chain decomposition approach was proposed in [13]to com- 3. THE GRAIL APPROACH
press the transitive closure. The graph is split into node-disjoint

chains. A nodeu can reach to node if they exist in the same vation that existing interval labeling variants identify a subgraph
chain, andu precedes. Each node also keeps the highest node of the DAG (i.e., trees in [1, 22, 21] and path-tree in [15]) in the

that it can reach in every other chain. Thus the space requirementf. st dqi te th . d " f
is O(kn) wherek is the number of chains. Such a chain decompo- Irst stage, and incorporate the remaining (uncovered) portion o

sition is computed if©(n®) time. This bound was improved in [5], the DAG, in the second phase of indexing or during the query time.

s : . However, most of the reachability information is captured in the
where they proposed a decomposition which can be computed in_. ’ L .) .)
O(n® + knV/k) time. Recently, [4] further improved this scheme first stage. The motivating idea in GRAIL is to use interval labeling

by using general spanning trees in which each edge corresponds tdnultipltitimes to redL_Jrche the \Ilz'o:kba;:d of tlhe selgonf] phase 0{ ind?x-
a path in the original graph. [2] solves a variant of the reachability Ing or the querying. The mulliple intervais yield a hyper-rectangie

problem where the input is assumed to a collection of non-disjoint instead of single interval per node.
paths instead of a graph.

Our approach to reachability indexing is motivated by the obser-

PathTree [15] is the generalization of the tree cover approach. It ;ode (E)iCip}thﬂS (E) g'red (£ |{n1d|§ct (£
extracts the disjoint paths of a DAG, then creates a tree of paths on 1 {3: 7,0] 13,7,9) 0
which a variant of interval labeling is applied. That labeling cap- 5 {1,3,4,7,9} 1] {1,3,4,7,9}
tures most of the transitive information and the rest of the closure 6 {1,3,4,7,9} {1,3,4,7,9}1 | 0

is computed in an efficient way. PathTree has constant time query-
ing and fast construction times, but its index size might get very Table 2: Exceptionsfor DAG in Figure 2(b)
large on dense graphs @enotes the number of paths in the de-
composition). In a recent paper by the same authors, they proposed In GRAIL, for a given node:, the new label is given ak,, =
3HOP [14] which addresses the issue of large index size. Although L. L2 ... L¢ whereL is the interval label obtained from the
3HOP has a reduced index size, the construction and query times;-th (random) traversal of the DAG, and< i < d, whered is the
degraded significantly. Based on our experimentation, PathTree isdimensionor number of intervals. We say that, is contained in
the best extant method in terms of query time. L., denoted ag, C L,,ifand onlyif L}, C L% foralli € [1,d).
The other major class of methods is base@bB®P Indexind7, If L, ¢ L., then we can conclude that-/ v, as per the theorem
20, 19, 23, 6, 12], where each node determines a set of intermedi-below:
ate nodes it can reach, and a set of intermediate nodes which can
reach it. The query betweanandv returns success if the inter- THEOREM 1. If L, Ly, thenu £ v. _ _
section of the successor setwfand predecessor set ofis not PrROOF: Given thatL, Z L., there must exist a “dimension,
empty. 2HOP was first proposed in [7], where they also showed Such thatZ;, Z L,. Assume that — v, and letz andy be the
that computing the minimum 2HOP cover is NP-Hard, and gave an lowest ranked nodes underandw, respectively, in the post-order
O(log m)-approximation algorithm based on a greedy algorithm traversal. In this casel;, = [ry,r.] and Ly, = [rz,], where
set-cover problem. Its quartic construction time was improved in 7= denotes the rank of node Butu — v implies thatr, > r,
[23] by using a geometric approach which produces slightly larger in post-order, and further that, < r,,, which in turn implies that
2HOP cover than obtained in [7]. A divide-and-conquer strategy to Lv = [y, 7] € [re, o] = L. But this is a contradiction to our
to 2HOP indexing was proposed in [20, 19]. HOPI[20] partitions @ssumption that. — v. We conclude that 7> v. B
the graph intok subg(aphs, computes Fhe 2HOP indexing within On the other hand, i, C L,, it is possible that this is a
_each subgraph and finally merges their 2HOP covers by ProcessS+ise positive, i.e., it can still happen that/4 v. We call such
ing the cross-edges between subgraphs. [19], by the same authors o . : P
mproved he merge phase by Channg the ay in which ross 3% POSe Sontanment xcepton, ot exmplen Figre
edges between subgraphs are processed. [6] partition the graph instan’ce for node nodeq is an excep,tion sincé; — [1 6}- c
a top-down hierarchical manner, _instea_d of a flat partitioning into [1,9] _ Lo, but iﬁ fact2 4 1. The basic,intuitio; in GI’?AIL_is
cdy,anl hen hei ZHOP vers are merge more oty han (2L USg Multpe random labels makes it morelkly ha such
:2r[gleggn'lt;hdeérnzgpéggzslgutperforms existing 2HOP approaches in ple, when one considers the 2-dimensional intervals given in Fig-
The HLSS [12] method proposes a hybrid of 2HOP and Interval ure .Z(C)’ for the Very same graph, 12 out of the 15 exceptlo'ns get
Labeling. They first label a spanning tree of the graph with interval ?(ilerInitiﬁ?:!e Ilforl_ns[tla ré?e[,lwge] Sée[ahzif [r;07l]O ngerLanS?;](g:pft(l)cr)n
labeling and extract a remainder graph whose transitive closure isthe s’econd interval V\7/e Ha\[ie 9 ¢ [1’ 71 \}Ve can t;l’.ls conclude
yet to be computed. In the transitive closure of the remainder graph , o

densest sub-matrices are found and indexed with 2HOP indexing.tji]?‘:’u:2 [7? 41} [Tog}l eg/e[ri n;])Ele tgr}ailijt”::i? 4exnc§(§)etgn;r?élgsg;§§

278

remain as exceptions. In general using multiple intervals drastically 3.2 Reachability Queries

cuts down on the exception list, but is not guaranteed to completely To answer reachability queries between two nodesind v,

eliminate exceptions. . . GRAIL adopts a two-pronged approach. GRAIL first checks whether
There are two main issues in GRAIL: i) how to compute the ¢ L. If so, we can immediately conclude that/ v, by The-

d random interval labels while indexing, and ii) how to deal with grem 1. On the other hand, if, C L., nothing can be concluded

exceptions, while querying. We will discuss these in detail below. jmmediately since we know that the index can have false positives,

. i.e., exceptions.

3.1 Index Construction There are basically two ways of tackling exceptions. The first is
The index construction step in GRAIL is very straightforward; to explicitly maintain arexception lisper node. Given node, we

we generate the desired number of post-order interval labels by denote byFE,, the list of exceptions involving node given as:

simply changing the visitation order of the children randomly dur-

ing each depth-first traversal. Algorithm 1 shows an implementa-

tion of this strategy; an intervdl,, is denoted as For example, for the DAG in Figure 2(b), we noted that there were
Li— (LIl Lif9]] = 15 exceptions in total, as shown in Table 2. From the table, we can
w=[Lu[l], Lu[2]] = [ra,7u] see thatF, = {1,4}, E4 = {3,7,9}, and so on. If every node

While the number of possible labelings is exponential, yet most has an explicit exception list, then once we know thatc L., all
graphs can be indexed very compactly with small number of di- We have to do is check if € E. If yes, then the paifu, v) is an

mensions depending on the edge density of the graph. Furthermore€XCePtion, and we retura 7 v. If no, then the containment is not

since it is not guaranteed that all exceptions will be eliminated, the &N €xception, and we answer— v. We describe how to construct

best strategy is to cease labeling after a small number of dimen-€XCeptions lists in Appendix A. o _
sions (such as), with reduced exceptions, rather than trying to __Unfortunately, kgeplng expllqt exception lists per node adds sig-
totally eliminate all exceptions, which might require a very large nificant overhead in terms of time and space, and further does not

number of dimensions. scale to very large graphs. Thus the default approach in GRAIL
is to not maintain exception at all. Rather, GRAIL uses a “smart”
DFS, with recursive containment check based pruning, to answer

E, ={y: (z,y) is an exception, i.e. .C L, andz /4 y}

Algorithm 1: GRAIL Indexing: Randomized Intervals queries. This strategy does not require the computation of excep-
RandomizedL abeling(G, d): tion list so its construction time and index size is linear.
1 foreach ¢ <— 1tod do
2 | r«1// global variable: rank of node Algorithm 2: GRAIL Query: Reachability Testing
3 Roots < {n : n € roots(G)} Reachable(Q)
4 | foreach z € Roots in random orderdo Vit L, ¢ L ?r’]gr’] :
5 | Call RandomizedVisit(z, i, G) 2 | return Falsel | u v
RandomizedVisit(z,i, G) : 3 elseif use exception listthen
6 if visited beforehen return 4 if v e E, then return False// u A v
7 foreach y € Children(z) in random orderdo 5 | esereturnTrue// u—w
8 | Call RandomizedVisit(y, i, G) 6 dse
9 7} < min{L%[1] : ¢ € Children(z)} /1 DFS with pruning
10 L% < [min(r,7), 7] 7 forqach ¢ € Children(u) such thatL, C L. do
Wrer+1 8 if Reachable(c, v, G) then
9 | returnTrue// u — v
. . 10 return False/ / w4 v
In terms of the traversal strategies, we aim to generate labelings_ —

that are as different from each other as possible. We experimented

with the following traversal strategies. Algorithm 2 shows the pseudo-code for reachability testing in

Randomized: This is the strategy shown in Algorithm 1, with a GRAIL. Line 1 tests whethef., ¢ L., and if so, returns false.
random traversal order for each dimension. Line 3 is applied only if exceptions lists are explicitly maintained,
Randomized Pairs: In this approach, we first randomize the order ~€ither complete or memoized (see Section A)vife E., then
labeling, using left-to-right (L-R) and right-to-left (R-L) traversals. ~default recursive DFS with pruning. If there exists a childf u,
The intuition is to make the intervals as different as possible; a node that satisfies the condition that, € L., and we check and find that
that is visited first in L-R order is visited last in R-L order. ¢ — v, we can conclude that — v, and GRAIL returns true (Line
. . . 9). Otherwise, if none of the children can reaglthen we conclude

Bottom Up: Instead qf processing the nodes in tOpOIOQ'C‘:’}l order thatu 4 v, and we return false in Line 10. As an example, let us
from the r?ots to the sinks, in this strategy we concep'gually Teverse . nsider the single interval index in Figure 2(b). et 2, and
th_e edges” and process the nodes in reverse topological order. W'thletu — 4, and assume that we are not using exception lists. Since
this changelL, Z L., == v 4 u. The bottom-up traversal can Lis = [1,5] C [1,9] = La, we have to do a DFS to determine
be done at random, or in random-pairs. reachability. Bott8 and5 are children o, but only5 satisfies the

It is clear that the index construction in GRAIL tak€%d(n + condition thatL, = [1,5] C [1, 8] = Ls, we therefore check i
m)), corresponding to thé traversals for the grap@. Further, the can reachl. Applying the DFS recursion, we will cheékand then,
space complexity is exact®dn = O(dn), sinced intervals are finally conclude thab cannot reacl. Thus the condition in Line
kept per node. 8 fails, and we return false as the answer (Line 10),2.64 4.

279

Computational Complexity: It is easy to see that querying takes (bi ocyc. or g), a collection of pathway and genome databases.
O(d) time if L, Z L,,. If exception lists are to be used, and they amaze andkegg have a slightly different structure, in that they
are maintained in a hash table, then the check in Line 3 @@kéy have a central node which has a very large in-degree and out-degree.
time; OtherWise, if the exceptions list is kept Sorted, then the times Small-Dense: These are Sma”’ dense real-world graphs taken from
is O(log(|Eu])). The default option is to perform DFS, but note [14] (see Table 4)ar xi v (ar xi v. or g), ci t eceer (ci t eseer .

that it is possible we may terminate early due to the containment j st . psu. edu), andpubned (wwv. pubnedcentral . ni h.

based pruning. Thus the worst case complexit@{s + m) for gov) are all citation graph datasets. GO is a subset of the Gene
the DFS, but in practice it can be much faster, depending on the Ont0|ogy (VW\NV geneont ol ogy. or g) graph7 and yago is a sub-
topological level ofu and depending on the effectiveness of prun- set of the semantic knowledge database YAGO (ww. npi - i nf .

ing. Thus the query time ranges frat(d) to O(n + m). npg. de/ suchanek/ downl oads/ yago).
Large-Real: To evaluate the scalability of GRAIL on real datasets,
4. EXPERIMENTS we collected 7 new datasets which have previously not been been

We conducted extensive experiments to compare our algorithm used by existing methods (see Table&)t eseer, ci t eseer x
with the best existing studies. All experiments are performed in andci t - pat ent s are citations networks in which non-leaf nodes
a machine x84 Dual Core AMD Opteron(tm) Processor 870 are expected to have 10 to 30 outgoing edges on average. How-
GNU/Linux which has 8 processors and 32G ram. We compared everci t eseer is very sparse because of data incompleteness.
our algorithm with pure DFS (depth-first search) without any prun- ci t eseer x is the complete citation graph as of March 2010 from
ing, HLSS [12], Interval (INT) [1], Dual Labeling (Dual) [22]), (ci teseerx.ist.psu.edu).cit-patents(snap.stan\
PathTree (PT) [15] and 3HOP [14]. The code for these methods - f or d. edu/ dat a) includes all citations in patents granted in
was obtained from the authors, though in some cases, the originalthe US between 1975 and 199§0- uni pr ot is the joint graph
code had been reimplemented by later researchers. of Gene Ontology terms and the annotations file from the UniProt

Based on our experiments for GRAIL we found that the basic (www. uni prot . or g) database, the universal protein resource.
randomized traversal strategy works very well, with no significant Gene ontology is a directed acyclic graph of size around 30K, where
benefit of the other methods. Thus all experiments are reportedeach node is a term. UniProt annotations consist of connections
only with randomized traversals. Furthermore, we found that ex- between the gene products in the UniProt database and the terms
ception lists maintenance is very expensive for large graphs, so thein the ontology. UniProt annotations file has around 7 million
default option in GRAIL is to use DFS with pruning. gene products annotated by 56 million annotations. The remain-

Note that all query times are aggregate times for 100K queries. ing uniprot datasets are obtained from the RDF graph of UniProt.
We generate 100K random query pairs, and issue the same queriesini pr ot 22mis the subset of the complete RDF graph which has
to all methods. In the tables below, we use the notation —(t), and 22 million triples, and similarlyini pr ot 200manduni pr ot 150m
—(m), to note that the given method exceeds the allocated time are obtained from 100 million and 150 million triples, respectively.
(10M milliseconds (ms) for small sparse, and 20M ms for all other These are some of the largest graphs ever considered for reachabil-
graphs;M = million) or memory limits (32GB RAM; i.e., the ity testing.
method aborts with Bad- al | oc error). Large-Synthetic: To test the scalability with different density set-
ting, we generated random DAGSs, ranging with 10M and 100M

Dataset | Nodes | Edges | Av p X
9 De% nodes, with average degrees of 2, 5, and 10 (see Table 6). We first
agrocyc | 12684 | 13657 | 1.07 . . randomly select an ordering of the nodes which corresponds to the
amaze | 3710 | 3947 | 1.06 Dataset | Nodes | Edges g‘égg topological order of the final dag. Then for the specified number of
:zgga iﬁégg 122% 1-8{73 T 5000 66707 1L edges, we randomly pick two nodes and connect them with an edge
human | 38811 | 39816 T .01 citeseer | 10720 | 44258 | 4.13 from the lower to higher ranked node.
Kegg 617 T 2395 122 go 6793 | 13361 | 1.97
ibrv 9602 | 10438 | 1.09 pubmed | 9000 | 40028 | 4.45 [Dataset | GRAIL | HLSS | INT | Dual | PT | 3HOP |
nasa 5605 | 6538 | 1.17 yago 6642 | 42392 | 6.38 agrocyc || 16.13 | 12307 | 5232 | 11803 | 279 | 142K
vchocyc | 9491 | 10345 | 1.09] amaze || 3.82 703K | 3215 | 4682 | 818 | 2304K
xmark | 6080 | 7051 | 1.16 Table 4: Small Dense Real anthra || 16 11061 | 4848 | 11600 | 268 | 142K
ecoo 16 12711 | 5142 | 12287 | 276 | 146K
Table 3: SmaIISparseReal human 71 135K 47772 134K | 822 [— (1)
kegg 38 1145K | 3810 | 6514 | 939 | 3888K
mibrv 12 3749 | 2630 | 3742 | 208 | 86291
Dataset Nodes | Edges | Avg| | Dataset Nodes | Edges| Avg nasa 53 1887 [811 | 999 | 126 | 33774
Deg De
st s T 0w rardiomox—Ton— 20— 9 vchacyc || 12 4500 | 2541 | 3910 | 201 | 85667
citeseerx 6540399 15011259 | 2.30 xmark 7.5 70830 | 1547 1719 263 | 151856
Cit-patents 3774768 | 16518947 | 4.38 rand10m5x | 10M 50M 5 - N
go-uniprot | 6967956 | 34770235 | 4.99] | randi0miOx| 10M | 100M | 10 Table 7: Small Sparse Graphs: Construction Time (ms)
uniprot22m 1595444 1595442 1.00 ranleOmZx 100M 200M 2
uniprot100i 16087295 16087293 1.00
unip:gusom 5037600 | 25037598 | Loo| | and100m5x| 100M | 500M | 5

4.2 Small Real Datasets. Sparse and Dense

Tables 7, 8, and 9 show the index construction time, query time,

4.1 Datasets and i_ndex size for the sr_nall, sparse, real datasets. Tables 10, 11, and
)) 12 give the corresponding values for the small, dense, real datasets.
We used a variety of real datasets, both small and large, as wellThe |ast column in Tables 8 and 11 shows the number of reachable

Table5: Large Real Table 6: Large Synthetic

as large synthetic ones, as described below. query node-pairs out of the 100K test queries; the query node-pairs
Small-Sparse: These are small, real graphs, with average degree are sampled randomly from the graphs and the small counts are
less thanl.2, taken from [15], and listed in Table Xmar k and reflective of the sparsity of the graphs.

nasa are XML documents, andnaze andkegg are metabolic On the sparse datasets, GRAIL (usilig= 2 traversals) has

networks, first used in [21]. Others were collected from BioCyc the smallest construction time among all indexing methods, though

280

48

Constr. Time —+—
Query Time ---x---

40 -

32

24

Construction Time (ms)

16 ! !

65

75

Query Time (ms)
Construction Time (sec)

15 L

35 500 3000

45

2 3 4 5 2 3
Number of Traversals Number of Traversals
@) (b)
Figure 3:

[Dataset [GRAIL [DFS [HLSS [INT [Dual [PT [3HOP [#Pos.Q]
agrocyc || 57 44 71 158 | 65 8 235 133
amaze 764 1761 | 99 101 | 63 7 4621 17259
anthra 49 40 68 157 | 65 8.5 | 139 97
ecoo 56 52 69 160 | 65 8.0 | 241 129
human 80 36 81 238 | 77 14 | —(t) 12
kegg 1063 2181 | 104 100 | 72 71| 81 20133
mtbrv 49 55 81 144 | 75 7.2 | 218 175
nasa 26.5 138 | 96 121 | 80 78| 79 562
vchocyc || 49.6 56 76 145 | 79 7.2 | 206 169
xmark 79 390 | 86 119 | 92 8.2 | 570 1482

Table 8: Small Sparse Graphs: Query Time (ms)

[Datasets]| GRAIL [HLSS [INT [Dual [PT [3HOP |
agrocyc || 50736 | 40097 | 27100 | 58552 | 39027 | 87305
amaze 14840 | 17110 | 10356 | 433345 | 12701 | 1425K
anthra 49996 | 33532 | 26310 | 37378 | 38250 | 58796
ecoo 50480 | 34285 | 26986 | 58290 | 38863 | 97788
human 155244 | 109962 | 79272 | 54678 | 117396 | —(t)
kegg 14468 | 17427 | 10242 | 504K 12554 | 10146
mtbrv 38408 | 30491 | 20576 | 41689 | 29627 | 74378
nasa 22420 | 20976 | 18324 | 5307 21894 | 28110
vchocyc || 37964 | 30182 | 20366 | 26330 | 29310 | 75957
xmark 24320 | 23814 | 16474 | 16434 | 20596 | 14892

Table9: Small Sparse Graphs: Ind

ex Size (Num. Entries)

Constr. Time —+— Constr. Time ——
Query Time ---x-—- . Query Time ---x-—
o
Q
= 8 2500
=
£ £
S 5 2000 =
g g
S = E}
& g { 1500 ©
o
L 15 100 L L 1000
4 5 2 3 4 5

Number of Traversals

©

Effect of Increasing Number of Intervals: (a) ecoo, (b) ci t - pat ent s, (c) r and10mL0x

noting that DFS gives reasonable query performance, often faster
than indexing methods, other than PathTree and GRAIL. Given the
fact that DFS has no construction time or indexing size overhead, it
is quite attractive for these small datasets. The other methods have
comparable index sizes, though INT has the smallest sizes.

On the small dense datasets, 3HOP and HLSS could not run on
ar xi v. GRAIL (with d = 2) has the smallest construction times
and index size of all indexing methods. It is also 2-20 times faster
than a pure DFS search in terms of query times, but is 3-20 times
slower than PathTree. Even on the dense datasets the pure DFS is
quite acceptable, though indexing does deliver significant benefits
in terms of query time performance.

As observed foramaze andkegg (Table 8), and forar xi v
(Table 11), the query time for GRAIL increases as the number of
reachable node-pairs (#P0sQ) increase in the query set. However,
the graph topology also has an influence on the query performance.
Small-sparse datasets, suchkagg andanaze, have a central
node with a very high in-degree and out-degree. For such graphs,
for many of the queries, GRAIL has to scan all the children of this
central node to arrive at the target node. This significantly increases
the query time (line 7 in Algorithm 2). To alleviate this problem,
one possibility is that nodes with large out-degree could keep the
intervals of their children in a spatial index (e.g. R-Trees) to accel-

[Dataset | GRAIL | HLSS | INT | Dual | PT | 3HOP | erate target node/branch lookup.
ariv 21.7 - 20317 | 450761] 9639 | — ()
citeseer || 43.1 120993 | 7682 26118 751.5 | 113075 - - :
% 55 59063 | 1144 | 4116 550.9 1 30070 [Dataset [Construction (ms)[[Query Time (ms) [Index Size |
pubmed || 43.9 146807 | 7236 | 27968 | 774.0 | 168223 . GRAIL GRAIL DFS GRAIL
yago 182 28487 | 2627 | 4928 | 512 | 39066 cit-patents ?%2(1312-9 32799-9 225635-9 g;;gggo
R , citeseer . . .
Table 10: Small Dense Graphs: Construction Time (ms) Citeseemx 19836 12496.6 | 198422.8 || 26272704
go-uniprot 32678.7 194.1 391.6 27871824
[Dataset]| GRAIL | DFS [HLSS [INT | Dual [PT | 3HOP][#P0s.Q] uniprot22m || 5192.7 132.3 44.7 6381776
ATV 575 2179 | - 273 | 281 | 244] -0 15459 un!protloom 58858.2 186.1 77.2 64349180
Citeseer || 82.6 208 | 328 | 227 | 141 | 245 263 388 uniprot150m || 96618 183 87.7 100150400
go 51.4 127 | 273 | 151 | 136 | 11.6 | 104 241 Table 13: Large Real Graphs
pubmed || 755 375 315 | 254 | 132 | 22.1 | 264 690
yago 46.9 121 258 | 181 | 88.4 | 13.8 | 157 171
. Constr. (ms) Query Time (ms) Index Size
Table 11: Small Dense Graphs. Query Time (ms) Size Deg. || GRAIL GRAIL DFS GRAIL
2 128796 187.2 577.6 | 100M
randi0m | 5 226671 5823.9 90505 || 100M
[Dataset]] GRAIL | HLSS | INT [Dual | PT [3HOP 0 207153 1415296.1| (1) LooM
arxiv 24000 —(t) 145668 | 3695K | 86855 | —(t) 2 1169601 258.2 762.7 800M
citeseer || 64320 | 114088 | 142632 | 426128 | 91820 | 74940 rand100m 5 1084848 20467 131306 || 400M
go 27172 | 60287 | 40644 | 60342 | 37729 | 43339 - T -
pubmed || 72000 | 102946 | 181260 | 603437 | 107915 | 93289 Table 14: Scalability: Large Synthetic Graphs
yago 26568 | 57003 | 57390 | 79047 | 39181 | 36274
Table 12: Small Dense Graphs: Index Size (Num. Entries) 4.3 LargeDatasets. Real and Synthetic

PathTree is very effective as well. 3HOP could not runhanran.
In terms of query time, PathTree is the best; it is 3-100 times faster We also ran PathTree, but unfortunately, @t - pat ent s and

than GRAIL, and typically 10 times

faster than HLSS and Dual.

Table 13 shows the construction time, query time, and index size
for GRAIL (d = 5) and pure DFS, on the large real datasets.

ci t eseer x is aborted with a memory limit error (—-(m)), whereas

INT is not very effective, and neither is 3HOP. However, it is worth for the other datasets it exceeded the 20M ms time limit (—(t)). It

281

was able to run only oni t eseer data (130406 ms for construc- sparse, the vast majority of these pairs are not reachable. As an al-
tion, 47.4 ms for querying, and the index size was 2360732 entries). ternative, we generated 100K reachable pairs by simulating a ran-
On these large datasets, none of the other indexing methods coulddom walk (start from a randomly selected source node, choose a
run. GRAIL on the other hand can easily scale to large datasets,random child with 99% probability and proceed, or stop and re-
the only limitation being that it does not yet process disk-resident port the node as target with 1% probability). Tables 16 and 17
graphs. We can see that GRAIL outperforms pure DFS by 2-27 show the query time performance of GRAIL and pure DFS for the
times on the denser graphgo- uni prot, ci t - patent s, and 100K random and 100K only positive queries, on some small and
ci t eseer x. On the other datasets, that are very sparse, pure DFSlarge graphs. We usefl = 2 for hurman, d = 4 for ar xi v and
can in fact be up to 3 times faster. d = 5 for the large graphs. The frequency distribution of number
We also tested the scalability for GRAIL (wih = 5) on the of hops between source and target nodes for the queries is plotted in
large synthetic graphs. Table 14 shows the construction time, queryFigure 4. Generally speaking, querying only reachable pairs takes
time and index sizes for GRAIL and DFS. Once again, none of the longer (from 2-30 times) for both GRAIL and DFS. Note also that
other indexing methods could handle these large graphs. PathTreeGRAIL is 2-4 times faster than DFS on positive queries, and up to
too aborted on all datasets, except f@and10n2x with avg. de- 30 times faster on the random ones.
gree 2 (it took 537019 ms for construction, 211.7 ms for query-

ing, and its index size was 69378979 entries). We can see that for__Dataset S— GRAIL S—
these datasets GRAIL is uniformly better than DFS in all cases. Its Ag o [Avg/o | Avg o [Avg/o
query time is 3-15 times faster than DFS. In facr@nd10mL0x human 80.4 235 0.292 1058.7 146.4 | 0.138
dataset with average density 10, DFS could not finish in the allo- | arxiv 420.6 112 0.027 334.2 4.19 0.013
cated 20M ms time limit. Once again, we conclude that GRAIL | cit-patents || 15800 | 1214 | 0.077 | 32664 | 1782 | 0.055
is th t scalabl hability | gd or | h il |_Cleseerx [7102755]73257.2 | 0.317 | 3103932| 14809 | 0.048
IS the most scalable reachability Index Tor large graphs, especially —;nq1omsx || 5824.0 | 363.6 | 0.062 | 19286.8 | 1009.8 | 0.052
with increasing density.
Table 16: Average Query Timesand Standard Deviation
Dataset|| Constr. Time (ms)|| Query Time (ms) || Index Size (# Entries)
withE | woFE || withE | woFE Label | Exceptions Dataset DFS _
amaze || 1930.2 | 3.8 4547 | 7581 || 22260 | 19701 Random Positive
human || 24235.5| 1345 || 596.4 | 81.1 310488 | 11486 Avg i o /Avg Avg o o /Avg
kegg || 23203 | 6.4 4043 | 1055.1 || 28936 | 18385 human 36.4 104 10286 | 9196 | 895 | 0.097
arxiv || 64913.2| 53.7 || 5324 | 424.99 || 60000 | 3754315 aniy 121796 | 1791 | 0014 [13742 | 304 | 0.022
- Cit-patents || 435359 | 1081.3 | 0.008 | 6827.8 | 3724 | 0.055
Table 15: GRAIL: Effect of Exceptions Citeseerx || 198422.9| 10064.3| 0.051 | 650232.0| 7411.4 | 0.011
rand10mbx || 90505.9 | 3303.2 | 0.036 | 49989.3 | 1726.9 | 0.035
4.4 GRAIL: Sensitivity Table 17: Average Query Timesand Standard Deviation

Exception Lists: Table 15 shows the effect of using exception lists o
in GRAIL: “with E” denotes the use of exception lists, where as Effect of Query Distribution: Tables 16 and 17 show the aver-
“w/o E" denotes the default DFS search with pruning. We used 2ge query times and the standard deviation for GRAIL and DFS,
d = 3 for amaze, d = 4 for human andkegg (which are the respectively. Ten sets, eaclj of 10K queries, are used to obtain
Sparse datasets)’ ad= 5 for ar xi v. We can see that using the mean and Standard deVlat|0n Of the query time. In random
exceptions does help in some cases, but the added overhead of induery sets when using GRAIL the coefficient of variation (CV —
creased construction time, and the large size overhead of storingthe ratio of the standard deviation to the mean) is betvig@rand
exception lists (last column), do not justify the small gains. Further- 1/40, whereas it varies fronh/3 to 1/70 when using DFS. As ex-
more, exceptions could not be constructed on the large real graphspected, DFS has more uniform query times compared to GRAIL
. . because GRAIL can cut some queries short via pruning while in
Numbe_r of Trqversa]s/l r_lterva!s (d).' In Flgur_e 3 We_plot.the Ef'. other queries GRAIL imitates DFS. However for query sets with all
fect of increasing the dimensionality of the index, i.e., increasing reachable (positive) node-pairs, CV decreases for GRAIL since the
th? number of traversals, on one sparse (ecoo), one large real likelihood of pruning and early termination of the query decreases.
(ci t - pat ent s), and one large synthetic (r and10mL0x) graph.

e . ; On the other hand, there is no such correlation for DFS.
Construction time is shown on the leftaxis, and query time on
the right y-axis. It is clear that increasing the number of inter-

vals increases construction time, but yields decreasing query times.
However, as shown fa&c o0, increasingl does not continue to de-
crease query times, since at some point the overhead of checking a

human —+—
arxiv. -—--x---
cit-Patents ---x---
citeseerx -8
rand10m5x —-—a-—

larger number of intervals negates the potential reduction in excep-
tions. That is why the query time increases frdm= 4tod = 5

for ecoo. To estimate the number of traversals that minimize the
query time, or that optimize the index size/query time trade-off is
not straightforward. However, for any practical benefits it is imper-
ative to keep the index size smaller than the graph size. This loose
constraint restrictd to be less than the average degree. In our ex-
periments, we found out that the best query time is obtained when
d = 5 or smaller (when the average degree is smaller). Other mea- Figure4: Reachability: Distribution of Number of Hops

sures based on the reduction in th(_a number of (direct) exceptions g¢sact of Density: We studied the effect of increasing edge density
per new traversal could also be designed. of the graphs by generating random DAGs with 10 million nodes,
Effect of Reachability: For all of the experiments above, we is- and varying the average density from 2 to 10, as shown in Figure 5.
sue 100K random query pairs. However, since the graphs are veryAs we can see, both the construction and query time increase with

Number of Queries

0 3 6 9 12
Number of Hops to Target

18

282

450 1500 2.05 20000
Constr. Time —+— Constr. Time —+—

400 F Query Time —-x-— /3 . > L Query Time —-x-—

3 /- 1200 3 /4 16000

Z ’ — 2 I —

o 390 3 @ 195 ; 8

E 300 4 900 3 E /-4 12000 T

5 £ 5 1o £

§ 250 4 600 g ‘§ - 8000 E

8 200 & 5 18T 3

IS 150 - 300 S 18 L / - 4000

100 S & oo ! ! 0 1.75 & & w/—/ﬁ(/ ! ! 0
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9
Average Degree Average Degree
@) (b)
Figure5: Increasing Graph Density: (a) GRAIL, (b) DFS

increasing density. However, note that typically GRAIL (with= Journal of Computing, 32(5):1335-1355, 2003.
5) is an order of magnitude faster than pure DFS in query time. [8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Also GRAIL can handle dense graphs, where other methods fail; in Introduction to AlgorithmsMIT Press, 2001.

fact, one can increase the dimensionality to handle denser graphs. [9] C. Demetrescu and G. Italiano. Fully Dynamic Transitive
Closure: Breaking through th@(n?) Barrier. INFOCS,

5. CONCLUSION 2000.

We proposed GRAIL, a very simple indexing scheme, for fast [10] C. Demetrescu and G. Italiano. Dynamic shortest paths and
and scalable reachability testing in very large graphs, based onran- transitive closure: Algorithmic techniques and data
domized multiple interval labeling. GRAIL has linear construction structuresJournal of Discrete Algorithms}(3):353-383,
time and index size, and its query time ranges from constant to 2006.

linear time per query. Based on an extensive set of experiments,[11] P. F. Dietz. Maintaining order in a linked list. BTOC, 1982.
we conclude that for the class of smaller graphs (both dense and[12] H. He, H. Wang, J. Yang, and P. S. Yu. Compact reachability

sparse), while more sophisticated methods give a better query time labeling for graph-structured data. GiKM, 2005.

performance, a simple DFS search is often good enough, with the[13] H. V. Jagadish. A compression technique to materialize

added advantage of having no construction time or index size over- transitive closureACM Trans. Database Syst.,

head. On the other hand, GRAIL outperforms all existing methods, 15(4):558-598, 1990.

as well as pure DFS search, on large real graphs; in fact, for these[14] R. Jin, V. Xiang, N. Ruan, and D. Fuhry. 3-hop: a

large graphs existing indexing methods are simply not able to scale. high-compression indexing scheme for reachability query. In
In GRAIL, we have mainly exploited a randomized traversal SIGMOD, 2000.

strategy to obtain the interval labelings. We plan to explore other la- [15] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficient answering

beling strategies in the future. In general, the problem of finding the reachability queries on very large directed graphs. In

next traversal that eliminates the maximum number of exceptions SIGMOD, 2008.

is open. The question whether there exists an interval labeling with [16] V. King and G. Sagert. A fully dynamic algorithm for
d dimensions that has no exceptions, is likely to be NP-complete. maintaining the transitive closuré. Comput. Syst. Sci.,
Thus it is also of interest to obtain a bound on the number of di- 65(1):150-167, 2002.

mensions required to fully index a graph without exceptions. In the

future, we also plan to generalize GRAIL to dynamic graphs. [17] I. Krommidas and C. Zaroliagis. An experimental study of

algorithms for fully dynamic transitive closurdournal of
Experimental Algorithmicsl2:16, 2008.

6. REFERENCES [18] L. Roditty and U. Zwick. A fully dynamic reachability

[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient algorithm for directed graphs with an almost linear update
management of transitive relationships in large data and time. INnSTOC, 2004.
knowledge baseSIGMOD Rec., 18(2):253-262, 1989. [19] R. Schenkel, A. Theobald, and G. Weikum. HOPI: an

[2] P. Bouros, S. Skiadopoulos, T. Dalamagas, D. Sacharidis, efficient connection index for complex XML document
and T. Sellis. Evaluating reachability queries over path collections. INEBDT, 2004.
collections. INSSDBM, page 416, 2009. [20] R. Schenkel, A. Theobald, and G. Weikum. Efficient creation

[3] R. Bramandia, B. Choi, and W. K. Ng. On incremental and incremental maintenance of the hopi index for complex
maintenance of 2-hop labeling of graphsViwWW, 2008. xml document collections. ICDE, 2005.

[4] Y. Chen. General spanning trees and reachability query [21] S. Trissl and U. Leser. Fast and practical indexing and
evaluation. InCanadian Conference on Computer Science querying of very large graphs. BIGMOD, 2007.
and Software Engineering, Montreal, Quebec, Canada, 2009. [22] H. Wang, H. He, J. Yang, P. Yu, and J. X. Yu. Dual labeling:

[5] Y. Chen and Y. Chen. An efficient algorithm for answering Answering graph reachability queries in constant time. In
graph reachability queries. IGDE, 2008. ICDE, 2006.

[6] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast [23] J. X. Yu, X. Lin, H. Wang, P. S. Yu, and J. Cheng. Fast
computing reachability labelings for large graphs with high computation of reachability labeling for large graphs. In
compression rate. IRBDT, 2008. EBDT, 2006.

[7] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop lalfglaM

283

APPENDI X Indirect Exceptions: Given that we have the list of direct excep-
tions EZ for each node, the construction of the indirect exceptions

A. EXCEPTIONLISTS (EZ) proceeds in a bottom up manner from the leaves to the roots.
If one desires to maintain exception lists for each node, a basic LetE.; = Efj UE';'J, denote the list of direct or indirect exceptions

property one can exploit is thatif € E, then for each parent for a child nodec;. To computeE?, for each exceptior € E.,

of v, it must be the case thatcannot reaclp. This is easy to see, e check if there exists another chitg such thatl., C L., and

since if for any parenp, if u — p, then by definitioru — v, and e ¢ E,, . Ifthe two conditions are metcannot be an exception for

thenv cannot be an exception far. Thus, the exception listfora ;. ‘sincer. L., implies thate is potentially a descendant of,
_nodeu can be constructed recurswely_from the exception lists of ange ¢ E., confirms that it is not an exception. On the other hand,
its parents. Nevertheless, the complexity of this step is the same asf the test fails, there must be an indirect exception fet and we

that of computing the transitive closure, namelgnim), which is add it to .. For example, consider nodén Figure 2(b). Assume
impractical. _ o we have already computed the exception lists for each of its chil-
In GRAIL, we categorize exceptions into two classed. Jfcon- dren,Es = ES U E} = 0, andEs = E¢ U B = {1,3,4,7,8}.

tainsv *, but none of the children af containsL,, then call the We find that for each inEs, nodesl, and4 fail the test with re-
exception between andv adirect exception. On the other hand, if spect toFs, sinceL, ¢ Ls, andLs Ls, thereforeEs = {1,4},
at least one child of, containsv as an exception, then we call the s jllustrated in Table 2.

exception between andv as anindirect exception. For example, Multiple Intervals To find the exceptions whe > 1, GRAIL

in Figure 2(b)3 is a direct exception fot, but 1 is an indirect ex- first tes the direct and indirect tions from the first t ;
ception for2, since there are children af(e.g.,5) for whom1 is rstcomputes e direct and Incirect exceplions from theirst raver
still an exception. Table 2 shows the list of direct (dend¥d and sal, as d'escnbed above. For computing the remaining exceptions
indirect (denotedz") exceptions for the DAG. after the:-th travers_al, GRAIL processes tdhe nodes in a bottom up
order. For every direct exception ine EZ, removee from the
direct exception list ife is not an exception fox for the i-th di-
mension, and further, decrement the counterefam the indirect
exceptions IistE; for each parenp of . Also, if after decrement-
ing, the counter for any indirect exceptienbecomes zero, then
c1 | — c3 — move e to the direct exception IisE,‘,f of the parentp, provided
L. C L,. Inthis way all exceptions can be found out for theh

—c2 — —c4—

I | | | | | | .:C | | | | | | I . .
| L —— el dimension or traversal.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P — —e2— e
—é1—

Figure 6: Direct Exceptions. ¢; denote children and e; denote
exceptions, for node .

Direct Exceptions: Let us assume that = 1, that is, each node
has only one interval. Given the interval labeling, GRAIL con-
structs the exception lists for all nodes in the graph, as follows.
First alln node intervals are indexed in @mterval tree[8], which
takesO(n log n) time andO(n) space. Querying the interval tree
for intervals intersecting a given range of interest can be done in
O(logn) time. To find the direct exceptions of node we first

find the maximal ranges among all of its children. Next ¢fag
intervals between the maximal ranges are queried to find excep-
tions. Consider the example in Figure 6, where we want to de-
termine the exceptions for node c¢; denote the children’s inter-
vals, whereag; denote the exceptions to be found. We can see
that L, = [1,15], and the maximal intervals among all its chil-
dren areL., = [1,6], L., = [8,11], andL., = [10,14]. Itis
clear that if an exception is contained completely within any one
of the maximal intervals, it cannot be a direct exception. Thus to
find the direct exceptions far, i.e., to find EZ, we have to query
the gaps between the maximal ranges to find the intersecting inter-
vals. In our example, the gaps are given by the following intervals:
[6,8], [11, 11 + 4], and[13, 13 + 6], whered > 0 is chosen so that
L?i +6 < Lij for any pair of maximal ranges. In our example,
a value ofé = 1 suffices, thus we query the interval tree to find
all intervals that intersedt, 8], or [11, 12], or [13, 14], which will
yI6|d Eg = {61, €2, €3, 64}.

In this section the phrases tontainsy”, “L ,, contains”, and “u
containsL,” are used interchangeably. All are equivalent to saying
that L., containsL,,.

284

