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ABSTRACT
The dramatic proliferation of sophisticated networks has re-
sulted in a growing need for supporting effective querying
and mining methods over such large-scale graph-structured
data. At the core of many advanced network operations lies
a common and critical graph query primitive: how to search
graph structures efficiently within a large network? Unfor-
tunately, the graph query is hard due to the NP-complete
nature of subgraph isomorphism. It becomes even challeng-
ing when the network examined is large and diverse. In
this paper, we present a high performance graph indexing
mechanism, SPath, to address the graph query problem on
large networks. SPath leverages decomposed shortest paths
around vertex neighborhood as basic indexing units, which
prove to be both effective in graph search space pruning and
highly scalable in index construction and deployment. Via
SPath, a graph query is processed and optimized beyond
the traditional vertex-at-a-time fashion to a more efficient
path-at-a-time way: the query is first decomposed to a set
of shortest paths, among which a subset of candidates with
good selectivity is picked by a query plan optimizer; Can-
didate paths are further joined together to help recover the
query graph to finalize the graph query processing. We eval-
uate SPath with the state-of-the-art GraphQL on both real
and synthetic data sets. Our experimental studies demon-
strate the effectiveness and scalability of SPath, which proves
to be a more practical and efficient indexing method in ad-
dressing graph queries on large networks.

1. INTRODUCTION
Recent years have witnessed a rapid proliferation of net-

works, such as communication networks, biological networks,
social networks and the Web, most of which can be natu-
rally modeled as large graphs [5]. The burgeoning size and
heterogeneity of networks have inspired extensive interest
in supporting effective querying and mining methods in real
applications that are centered on massive graph data. At the
core of many advanced network operations, lies a common
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and critical graph query primitive: given a network modeled
as a large graph G, and a user-specified query graph Q, we
want to retrieve as output the set of subgraphs of G, each
of which is isomorphic to Q. As a key ingredient of many
advanced applications in large networks, the graph query is
frequently issued in various domains: (1) in a large protein-
protein interaction network, it is desirable to find all pro-
tein substructures that contain an α-β-barrel motif, which
is specified as a cycle of β strands embraced by another cy-
cle of α helices [12]; (2) in a large software program which
is modeled as large static or dynamic call graphs, software
engineers want to locate a suspicious bug which arises as
a distortion in the control flow and can be represented as a
graph as well [7]; (3) in a bibliographic information network,
such as DBLP, users are always eager to extract coauthor
information in a specified set of conference proceedings [19].
A co-authorship graph is therefore reported as the graph
query result.

Unfortunately, the graph query problem is hard in that
(1) it requires subgraph isomorphism checking of Q against
G, which has proven to be NP-complete [10]; (2) the hetero-
geneity and sheer size of networks hinder a direct applica-
tion of well-known graph matching methods [9, 18, 20, 21,
27], most of which are designed on special graphs with no or
limited guarantee on query performance and scalability sup-
port. Due to the lack of scalable graph indexing mechanisms
and cost-effective graph query optimizers, it becomes hard,
if not impossible, to search and analyze any reasonably large
networks. For example, browsing and crosschecking biolog-
ical networks depicted simultaneously in multiple windows
is by no means an inspiring experience for scientists. There-
fore, there is a growing need and strong motivation to take
advantage of well-studied database indexing and query op-
timization techniques to address the graph query problem
on the large network scenario.

In this paper, we present SPath, a new graph indexing
technique towards resolving the graph query problem effi-
ciently on large networks. SPath maintains for each vertex
of the network a neighborhood signature, a compact indexing
structure comprising decomposed shortest path information
within the vertex’s vicinity. As a basic graph indexing unit,
neighborhood signature demonstrates considerable merits in
that (1) neighborhood signature is very space-efficient (O(1)
for each vertex), which makes it possible to scale SPath up in
large networks; (2) neighborhood signature preserves local
structural information surrounding vertices, which is espe-
cially useful for search space pruning before costly subgraph
matching; (3) neighborhood signature based graph index-
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ing, SPath, revolutionizes the way of graph query processing
from vertex-at-a-time to path-at-a-time, which proves to be
more cost-effective than traditional graph matching meth-
ods.

With the aid of SPath, we decompose a query graph into
a set of shortest paths, among which a subset of candidate
paths with high selectivity is picked by a graph query opti-
mizer. These candidate paths are required to properly cover
the original query graph, i.e., for each edge in Q, it should
belong to at least one candidate path selected. The query
is further processed by joining candidate shortest paths in
order to reconstruct the original query graph. Here the
graph matching is performed in a path-at-a-time fashion
and SPath plays a key role in shortest path reconstruction
and orientation in the large network. To the best of our
knowledge, SPath is the first scalable graph indexing mech-
anism which supports effective path-at-a-time graph query
processing on large networks, and thus achieves far better
query performance, compared with other traditional vertex-
at-a-time graph matching methods. Our main contributions
can be summarized as follows:

1. We propose a pattern based graph indexing framework
to address the graph query problem on large networks.
A query cost model is formulated to help evaluate dif-
ferent structural patterns for graph indexing in a qual-
itative way. As a result, decomposed shortest paths
are considered as feasible indexing features in the large
network scenario (Section 3);

2. We propose a new graph indexing technique, SPath,
which makes use of neighborhood signatures of vertices
as the basic indexing structure. SPath has demon-
strated an effective search space pruning ability and
high scalability in large networks (Section 4);

3. We design a graph query optimizer to help address
graph queries in a path-at-a-time manner. With the
aid of SPath, the graph query processing is facilitated
by joining a set of shortest paths with good selectivity
(Section 5);

4. We present comprehensive experimental studies on both
real and synthetic networks. Our experimental results
demonstrate that SPath outperforms a state-of-the-art
graph query method, GraphQL [12]. Moreover, SPath
exhibits excellent scalability and practicability in large
networks (Section 6).

2. PROBLEM DEFINITION
A network can be modeled as a graph G = {V, E, Σ, l}

where V is a set of vertices and E ⊆ V × V is a set of
edges. Σ is a vertex label set and l : V → Σ denotes the
vertex labeling function. For ease of notation, the vertex
set of G is denoted as V (G) and its edge set is denoted as
E(G). The size of G is defined as |V (G)|, the size of its
vertex set. Analogously, the graph queries posed upon the
network can be modeled as graphs as well. In this paper, we
focus our study on the case of connected, undirected simple
graphs with no weights assigned on edges. Without loss
of generality, our methods can be easily extended to other
kinds of graphs.

A graph G′ is a subgraph of G, denoted as G′ ⊆ G, if
V (G′) ⊆ V (G), E(G′) ⊆ E(G) and ∀(u, v) ∈ E(G′), u, v ∈
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Figure 1: A Network G and a Query Graph Q

V (G′). We alternatively say that G is a supergraph of G′ and
G contains G′. Subgraph isomorphism is an injective func-
tion f defined from G′ to G such that (1) ∀v ∈ V (G′), l′(v) =
l(f(v)); and (2) ∀(u, v) ∈ E(G′), (f(u), f(v)) ∈ E(G), where
l′ and l are the labeling functions of G′ and G, respectively.
Under these conditions, f is often referred to as a matching
of G′ in G.

Definition 1. (GRAPH QUERY) Given a network
G and a query graph Q, the graph query problem is to find
as output all distinct matchings of Q in G.

Example 1. Figure 1(a) and Figure 1(b) illustrate a net-
work sample G and a query graph sample Q, respectively.
Here we use numeric identifiers to distinguish different ver-
tices in a graph. A subgraph G′ of G with V (G′) = {8, 5, 7, 9}
colored in grey is isomorphic to Q and hence returned as an
answer to the graph query.

Note there may exist multiple matchings of Q in G. For
example, given a triangle graph Q with A, B, C as the
label for each vertex, respectively. All the matchings of Q
in G, as shown in Figure 1(a), are {1, 2, 3}, {4, 2, 3}, {6, 5, 3},
{8, 5, 7} and {11, 10, 7}. Subgraph isomorphism is known to
be NP-complete [10].

3. THE PATTERN-BASED GRAPH INDEX-
ING FRAMEWORK

In this section, we discuss the feasibility and principle of
graph indexing toward addressing the graph query problem
on large networks. We first introduce a baseline algorith-
mic framework with no indexing techniques exploited (Sec-
tion 3.1). In order to improve the query performance, we
extend the framework by leveraging structural patterns for
graph indexing (Section 3.2). A cost-sensitive model is then
proposed to help evaluate different structural patterns qual-
itatively (Section 3.3). As a result, path-based graph in-
dexing mechanism is selected as a feasible solution in large
networks.

3.1 The Baseline Algorithmic Framework
A straightforward approach to answering the graph query

Q against a network G is to explore a tree-structured search
space considering all possible vertex-to-vertex correspondences
from Q to G. The search space traversal is halted until the
structure of Q implied by the vertex mapping does not cor-
respond in G. While reaching a leaf node of the search space
means successfully mapping all vertices of Q upon G with-
out violating the structure and label constraints of subgraph
isomorphism, and is therefore equivalent to having found a
matching Q in G. Algorithm 1 outlines the baseline algo-
rithm in detail (See Appendix 9.2).
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Definition 2 (MATCHING CANDIDATE). ∀v ∈
V (Q), the matching candidates of v is a set C(v) of ver-
tices in G sharing the same vertex label with v, i.e., C(v) =
{u|l(u) = l′(v), u ∈ V (G)}, where l and l′ are vertex labeling
functions for G and Q, respectively.

In the baseline algorithm, for each vertex v ∈ V (Q), an
exhaustive search of possible one-on-one correspondences to
u ∈ C(v) is required. Therefore, the total search space

of the algorithm equals
∏N

i=1 C(vi), where N = |V (Q)|.
The worst-case time complexity of the algorithm is O(MN )
where M and N are the sizes of G and Q, respectively. This
is a consequence of subgraph isomorphism that is known
to be NP-complete. In practice, the running time of graph
query processing depends tightly on the size of the search
space,

∏N
i=1 |C(vi)|.

3.2 Structural Pattern Based Graph Indexing
It has been shown that answering graph queries is very

costly, and it becomes even challenging when the network
examined is large and diverse. In order to alleviate the time-
consuming exhaustive search in graph query processing, we
consider reducing the search space size,

∏N
i=1 |C(vi)|, in the

following two aspects:

1. Minimize the number of one-on-one correspondence
checkings, i.e, min N ;

2. Minimize for each vertex in the query graph its match-
ing candidates, i.e., min |C(vi)|, ∀vi ∈ V (Q).

The two objectives motivate us to explore the possibility of
leveraging structural patterns for graph indexing such that
the search space size can be ultimately minimized. For struc-
tural patterns, we mean any kind of substructures of a graph,
such as paths, trees, and general subgraphs.

We begin considering the first objective to reduce N . Note
in the baseline algorithm, N = |V (Q)| because we need to
consider one-on-one correspondence for each vertex of the
query, i.e., the graph query is performed in a vertex-at-a-
time manner. However, if we have indexed a set of structural
patterns p1, p2, . . . , pk ⊆ Q where ∀e ∈ E(Q),∃pi, s.t., e ∈ pi

(1 ≤ i ≤ k), the graph query can be answered pattern-at-a-
time by checking one-on-one correspondence on pi instead
(1 ≤ i ≤ k), such that N = k. If k < |V (Q)|, we successfully
reduce N to achieve our goal. Extremely, if we’ve indexed
the query Q in advance, N is minimized to 1 and we can
answer the graph query in one shot. Usually we have 1 ≤
N ≤ |V (Q)|.

We then examine how to achieve the second objective by
reducing |C(vi)| for all vi ∈ V (Q). In the baseline algo-
rithm, every u ∈ C(vi) is a potential matching vertex of vi

and therefore needs to be matched temporarily for further
inspection. However, a great many vertices in C(vi) have
proven to be false positives eventually if the global struc-
tural constraints of subgraph isomorphism are cross-checked.
So it is unnecessary to examine every vertex in C(vi) and it
will be desirable if we can make use of structural patterns to
help pre-prune false positives in C(vi), such that |C(vi)| can
be reduced. Given a graph G and u ∈ V (G), we consider a
neighborhood induced subgraph, Gk

u, which contains all ver-
tices within k hops away from u. This subgraph Gk

u ⊆ G is
referred as the k-neighborhood subgraph of u. We then pick
structural patterns in Gk

u based on the following theorem:

Theorem 1. If Q ⊆ G w.r.t. a subgraph isomorphism
matching f , for any structural pattern p ⊆ Qk

vi
, vi ∈ V (Q),

there must be a matching pattern, denoted as f(p) ⊆ G, s.t.
f(p) ⊆ Gk

f(vi)
, f(vi) ∈ V (G). 2

Proof. See Appendix 9.3.

Intuitively, if there exists a structural pattern p in the
k-neighborhood subgraph Qk

vi
of vi ∈ V (Q), whereas there

is no such f(p) in the k-neighborhood subgraph Gk
u of u ∈

C(vi), we can safely prune the false positive u from C(vi),
based on Theorem 1. It will be advantageous if we can index
structural patterns from the k-neighborhood subgraphs of
vertices in the network G before hand, such that false posi-
tives in C(vi) can be eliminated before real graph matchings.
Therefore we can achieve our second objective to reduce
|C(vi)|. It is worth mentioning that the baseline algorithm
does not consider any structural patterns but vertex labels
only for indexing. It is just a special case of our pattern
based indexing mechanism if we set k = 0.

Interestingly, the two objectives are neither independent
nor conflicting with each other. By extracting and indexing
structural patterns from the k-neighborhood subgraphs of
vertices in the network, can we achieve both objectives effec-
tively during graph query processing. Actually, the indexed
patterns capture the local structural information within ver-
tices’ vicinity and it will be extremely useful in search space
reduction.

A natural question may arise here: Among different kinds
of structural patterns, which one (or ones) are most suitable
for graph indexing on large networks? It is evident that by
explicitly indexing all structural patterns within the neigh-
borhood scope k for all vertices is of little practical use due
to the exponential number of possible patterns, even when
k is not set high. As a result, we need a careful selection
such that our graph indexing solution lies right between the
two extremes of indexing-nothing and indexing-everything.
More importantly, the graph indexing structure should scale
well in large networks and can achieve effective graph query
performance, simultaneously.

3.3 Structural Pattern Evaluation Model
In this section, we propose a cost-sensitive model to help

select the best structural patterns specifically used in large
networks. Three different patterns are considered, i.e., paths,
trees and graphs. For each structural pattern, we focus on
two cost-sensitive aspects: 1. feature selection cost, and 2.
feature pruning cost.

For a vertex u ∈ V (G) (or v ∈ V (Q)), the feature selection
cost, Cs, is to identify a pattern from the k-neighborhood
subgraph of u (or v). The number of such patterns is de-
noted as n (or n′). Given a pattern p in the k-neighborhood
subgraph Qk

v of v ∈ V (Q), the feature pruning cost, Cp, is to
check whether there exists a pattern p′ in the k-neighborhood
subgraph Gk

u of u ∈ C(v), such that p ⊆ p′. We further
assume the vertex labels of the network G are evenly dis-
tributed, such that |C(v)| = |V (G)|/|Σ|, v ∈ V (Q). There-
fore the total graph indexing cost, C, can be formulated as
a combination of (1) the total feature selection cost in G;
(2) the total feature selection cost in Q; and (3) the feature
pruning cost of Q, i.e.,

C = (|V (G)| ∗ n + |V (Q)| ∗ n′) ∗ Cs

+
|V (Q)| ∗ |V (G)| ∗ n′ ∗ Cp

|Σ| (1)
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Cost n(n′) Cs Cp

Path exponential linear time linear time
Tree exponential linear time polynomial time

Graph exponential linear time NP-complete

Table 1: Qualitative Costs for Different Patterns

Given a network G, both |V (G)| and |Σ| are constant
(|V (G)| can be very large, though). As Q is always much
smaller than G, so |V (Q)| can be regarded as a small con-
stant as well. The graph indexing cost C is therefore rel-
evant to n, n′, Cs and Cp. Table 1 shows the qualitative
costs w.r.t. these parameters for different structural pat-
terns. First, the number of patterns (n or n′) can be expo-
nentially large in the k-neighborhood subgraphs, even when
k is not set high. However, the number of path patterns
is usually much less than that for trees and graphs. For
the feature selection cost, Cs, we can choose either BFS
or DFS traversal method to identify one specific pattern
in the k-neighborhood subgraph. As to the pattern prun-
ing cost, Cp, the path containment testing takes linear time
only. While for trees, a costly polynomial algorithm is re-
quired [22], and GraphQL [12] took a even more expensive
semi-perfect matching method in cubic time. For graphs,
though, Cp is still NP-complete because we are trying to
use a set of subgraph isomorphism testings on small graphs
to substitute the costly subgraph isomorphism testing on
one large graph.

Based on the above analysis, paths excel trees and graphs
as good indexing patterns in large networks. Although more
structural information can be preserved by trees and graphs,
their potentially massive size and expensive pruning cost
even outweigh the advantage for search space pruning. Al-
though theoretically the number of paths is still exponen-
tially large in the worst case, in the remainder of the paper,
we selectively use shortest paths for graph indexing. Shortest
paths are further decomposed into a distance-wise structure,
which makes our graph indexing technique, SPath, highly
scalable. During graph query processing, shortest paths can
be easily reconstructed and their joint pruning power proves
to be very impressive.

4. SPATH
In this section, we present SPath, a path-based graph in-

dexing technique on large networks. The principle of SPath
is to use shortest paths within the k-neighborhood subgraph
of each vertex of the graph to capture the local structural
information around the vertex. To tackle a potentially poly-
nomial number of shortest paths within k-neighborhood sub-
graphs, we further decompose shortest paths in a distance-
wise structure, neighborhood signature, which reduces the
space complexity of SPath to be linear w.r.t. the size of the
network. Therefore SPath lends itself well to large networks.

4.1 Neighborhood Signature
Definition 3 ((k, l)-SET). Given a graph G, a ver-

tex u ∈ V (G), a nonnegative distance k and a vertex label
l ∈ Σ, the (k,l)-set of u, Sl

k(u), is defined as

Sl
k(u) = {v|d(u, v) = k, l(v) = l, v ∈ V (G)}

where d(u, v) is the shortest distance from u to v in G.

Sl
k(u) is the set of vertices k hops away from u and having

the vertex label l.

Definition 4 (k-DISTANCE SET). Given u ∈ V (G),
and a nonnegative distance k, the k-distance set of u, Sk(u),
is defined as

Sk(u) = {Sl
k(u)|l ∈ Σ}\{∅}

Definition 5 (NEIGHBORHOOD SIGNATURE).
Given u ∈ V (G), and a nonnegative neighborhood scope k0,
the neighborhood signature of u, denoted as NS(u), is de-
fined as

NS(u) = {Sk(u)|k ≤ k0}

NS(u) maintains all k-distance sets of u from k = 0 (a
singleton set with element {u} only) up to the neighbor-
hood scope k = k0. Therefore, all shortest path information
in the k0-neighborhood subgraph Gk0

u of u is encoded in the
neighborhood signature, NS(u). Note we do not maintain
shortest paths explicitly. Instead all paths are decomposed
into the distance-wise neighborhood signature. Although
extra costs have to be paid to reconstruct the exact short-
est paths during graph query processing, the time spent is
marginal because of the simplicity of path structures.

Example 2. For vertex u1 in the network G shown in
Figure 1(a), the 0-distance set S0(u) contains a unique (0, A)-
set A : {1}, which contains u1 itself. The 1-distance set
S1(u) is {B : {2}, C : {3}}, and the 2-distance set S2(u) is
{A : {4, 6}, B : {5}}. If the neighborhood scope k0 is set 2,
the neighborhood signature of u1, NS(u1) = {{A : {1}}, {B :
{2}, C : {3}}, {A : {4, 6}, B : {5}}}. Similarly, for vertex v1

in the graph query Q shown in Figure 1(b), the neighbor-
hood signature of v1, NS(v1) = {{A : {1}}, {B : {2}, C :
{3}}, {C : {4}}}

As shortest path information within the k-neighborhood
subgraph of a vertex is well preserved into its neighbor-
hood signature, it can be used in search space pruning, i.e.,
the false positives in the matching candidates C(v) can be
eliminated before the real graph query processing, where
v ∈ V (Q). We define neighborhood signature containment
(NS containment for short), which will be used for search
space pruning.

Definition 6 (NS CONTAINMENT). Given u ∈
V (G) and v ∈ V (Q), NS(v) is contained in NS(u), denoted
as NS(v) v NS(u), if ∀k ≤ k0, ∀l ∈ Σ, |⋃k≤k0

Sl
k(v)| ≤

|⋃k≤k0
Sl

k(u)|.

Theorem 2. Given a network G and a query graph Q, if
Q is subgraph-isomorphic to G w.r.t. f , i.e., Q ⊆ G, then
∀v ∈ V (Q), NS(v) v NS(f(v)), where f(v) ∈ V (G). ¤

Proof. See Appendix 9.4.

Based on Theorem 2, for a vertex v ∈ V (Q) and a vertex
u ∈ V (G), where u ∈ C(v), if NS(v) is not contained in
NS(u), denoted as NS(v) 6v NS(u), u is a false positive
and can be safely pruned from v’s matching candidates C(v).
Therefore, the search space is reduced.

Example 3. For u1 ∈ V (G) shown in Figure 1(a) and
v1 ∈ V (Q) shown in Figure 1(b), their neighborhood sig-
natures are presented in Example 2. Although u1 ∈ C(v1)
because u1 and v1 have the same label A, NS(v1) 6v NS(u1).
In particular, when l = C, |⋃k≤2 SC

k (v1)| = 2 as v3 ∈
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Figure 2: The Global Lookup Table H and the His-
togram and ID-List of NS(u3), u3 ∈ V (G) (k0 = 2)

SC
1 (v1) and v4 ∈ SC

2 (v1). However, |⋃k≤2 SC
k (u1)| = 1 as

u3 ∈ SC
1 (u1) only, such that |⋃k≤2 SC

k (u1)| < |⋃k≤2 SC
k (v1)|.

So u1 is a false positive and can be safely pruned from C(v1).
By taking advantage of neighborhood signatures, we can prune
the search space for C(v1) from {u1, u4, u6, u8, u11} to {u6, u8,
u11}, for C(v2) from {u2, u5, u10, u12} to {u5}, for C(v3)
from {u3, u7, u9} to {u7}, and for C(v4) from {u3, u7, u9}
to {u7, u9}. The total search space size,

∏4
i=1 |C(vi)|, has

been reduced from 180 to 6.

Algorithm 2 (see Appendix 9.5) outlines the neighbor-
hood signature containment algorithm for v ∈ V (Q) and
u ∈ V (G), where u ∈ C(v). Note we don’t need to maintain
the exact elements in Sl

k(u) or Sl
k(v) for NS containment

testing. Instead only the cardinality information of the two
sets are enough during the computation. The time com-
plexity of Algorithm 2 is O(k0|Σ|), so it is a constant-time
algorithm. In practice, the neighborhood signature contain-
ment testing can be executed efficiently.

4.2 SPath Implementation
Our graph indexing structure, SPath, maintains the neigh-

borhood signature of each vertex in the network G. In prac-
tice, we further decompose neighborhood signatures into dif-
ferent components:

1. Lookup Table: We separately maintain Sl
0(u), u ∈

V (G) as a global lookup table (Note here k = 0):
H : l∗ → {u|l(u) = l∗}, l∗ ∈ Σ, such that given a
vertex v in the query graph, we can easily figure out
its matching candidates, C(v), which exactly equals
H(l(v));

2. Histogram: we maintain a succinct distance-wise his-
togram |Sl

k(u)| for 0 < k ≤ k0 in the neighborhood
signature. Based on Algorithm 2, we need not main-
tain the exact elements in the (k, l)-set of u, Sl

k(u).
Instead only the cardinality information, |Sl

k(u)|, is
required in search space pruning. A numeric value,
count, keeps track of |Sl

k(u)| in the neighborhood sig-
nature histogram.

3. ID-List: We separately maintain the (k, l)-set of u,
Sl

k(u), u ∈ V (G), in an auxiliary data structure, ID-
list, which keeps track of the exact vertex identifiers in
Sl

k(u).

The principle to decompose neighborhood signatures into
a global lookup table, histograms and ID-lists is that both
the lookup table and histograms can be maintained as a
space-efficient data structure, upon which the NS contain-
ment testing can be performed without referring to the exact
vertex information stored in ID-lists. Note ID-lists may be

very large and only in the graph query processing phase, will
ID-lists be visited to reconstruct real paths.

Example 4. Figure 2(a) presents the global lookup table
of the network G in Figure 1(a). And Figure 2(b) illustrates
the histogram and ID-list structure of the neighborhood sig-
nature of u3 in the network G.

To construct our graph indexing structure SPath for a
network G, we need to build for each vertex u ∈ V (G), its
neighborhood signature NS(u). If the neighborhood scope
value k0 is specified, a BFS traversal from u up to k0 steps
is required to collect shortest path information in the k0-
neighborhood subgraph of u. Suppose the average degree of
vertices in G is d, the time complexity of building NS(u) is∑k0

i=0 di and the worst-case time complexity is O(|V (G)| +
|E(G)|). Therefore the worst-case time complexity for index
construction is O(|V (G)| ∗ |E(G)|).

As to the space complexity, the global lookup table H
takes O(|V (G)|+ |Σ|) space. Given a vertex u ∈ V (G), the
space for the histogram structure is O(k0|Σ|). So the total
space complexity of SPath is O(|V (G)|+ |Σ|+k0|Σ||V (G)|),
i.e., the size of SPath grows linearly w.r.t. the network size,
|V (G)|. Note the ID-List structure is located on the disk in
that its size can be very large (the worst space complexity
can be O(|V (G)|2)) and it will not be used until the real
path reconstruction. In practice, however, if the network is
of medium size, e.g., for biological networks, we can maintain
both histograms and ID-Lists in main memory to facilitate
the graph query processing.

5. GRAPH QUERY PROCESSING
In this section, we will examine how graph queries are

processed and optimized on large networks with the aid of
SPath. Given a query graph Q, we first study how Q can be
decomposed to a set of shortest paths, among which a subset
of paths with good selectivity is then selected as candidates
by our query plan optimizer. Q is then reconstructed and
instantiated by joining the selected candidate paths until
every edge in Q has been examined at least once. The major
advantage of our method is its path-at-a-time philosophy in
query processing and optimization, which proves to be more
cost-effective and efficient than traditional vertex-at-a-time
methods.

5.1 Query Decomposition
Given a query graph Q, we first compute the neighbor-

hood signature NS(v) for each v ∈ V (Q). We then examine
the matching candidates C(v) by calling Algorithm 2 for
NS containment testing. For ∀u ∈ C(v), if NS(v) 6v NS(u),
u is pruned from C(v) as a false positive and the result-
ing matching candidates after pruning is called the reduced
matching candidates of v, denoted as C′(v).

During the NS containment testing of v w.r.t. u ∈ C′(v),
the shortest paths originated from v are generated as by-
products of the neighborhood signature, NS(v). Note if a
path p connecting two vertices is shortest in Q, its mapping
counterpart p′ in the network G is not necessarily shortest
between the mapping vertex-pair. We need to select the
shortest paths from Q that are shortest in G as well, because
only shortest paths have been indexed properly in SPath.

Theorem 3. For v ∈ V (Q), a shortest path originated
from v with length bounded up by k∗ is guaranteed to be
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shortest as well in the k0-neighborhood subgraph Gk0
u of u,

where u ∈ C′(v), if

k∗ = arg min
k

{
|

⋃

k≤k0

Sl
k(u)| − |

⋃

k≤k0

Sl
k(v)| > 0

}
, ∀l ∈ Σ

Proof. See Appendix 9.6.

Based on Theorem 3, we select the shortest paths origi-
nated from v with length no greater than k∗. These paths
are guaranteed to be shortest in the k0-neighborhood sub-
graph of u, where u ∈ C′(v). In the extreme case when
k∗ = 0, the shortest path is degenerated to a vertex and our
graph query processing algorithm boils down to the baseline
vertex-at-a-time algorithm (Algorithm 1).

Example 5. Consider v1 ∈ V (Q) in Figure 1(b) and
u8 ∈ V (G) in Figure 1(a), because NS(v1) v NS(u8), u8 ∈
C′(v1), the reduced matching candidates of v1. When k = 1,
|SB

1 (v1)| = |SB
1 (u8)| = 1, and |SC

1 (v1)| = |SC
1 (u8)| = 1.

However, when k = 2, |SC
2 (v1)| = 1 but|SC

2 (u8)| = 2. So
k∗ = 2, and the shortest paths originated from v1 w.r.t. u8

are (v1, v2), (v1, v3), (v1, v2, v4) and (v1, v3, v4).

5.2 Path Selection and Join
After the query graph Q has been decomposed, for each

u ∈ C′(v), it is attached with a set of shortest paths, denoted
as Pu, which can be easily looked up in SPath and will be
used jointly to reconstruct Q. However, a natural question
may arise: which shortest paths should we choose in order to
reconstruct Q? To reconstruct the graph query means for
every edge in Q, it should be examined at least once during
the subgraph isomorphism testing such that the correctness
of the query processing algorithm can be secured. So our
selected shortest paths should properly “cover” the query,
i.e., ∀e ∈ E(Q), there should exist at least one selected
shortest path p, such that e ∈ p. Furthermore, the subset
of selected shortest paths should be cost-effective and help
reconstruct the query Q in an efficient way. We consider two
objectives in our query plan optimizer to address the path
selection problem:

1. We need to choose the smallest set of shortest paths
which can cover the query. This problem can be re-
duced to the set-cover problem, if every edge in E(Q)
is regarded as an element and every path is a subset
of elements. Set-cover has proven to be NP-complete
and a greedy log(n)-approximation algorithm was pro-
posed [6];

2. We need to choose shortest paths with good selectiv-
ity, such that the total search space can be minimized
during real graph matching.

Let’s first assume we have obtained such a subset of short-
est paths which suffices for the above-mentioned objectives.
Our graph query processing is then performed by joining
shortest paths from among the set of selected paths.

Definition 7. Given a path p = (vp1 , vp2 , . . . , vpk ) and
a path q = (vq1 , vq2 , . . . , vqk′ ), the join of p and q, denoted
as p ./ q, is defined as an induced graph on the vertex set
{vp1 , vp2 , . . . , vpk}∪{vq1 , vq2 , . . . , vqk′ } , where {vp1 , vp2 , . . . ,
vpk} ∩ {vq1 , vq2 , . . . , vqk′ } 6= ∅. The join-predicates are de-
fined on the vertices {vp1 , vp2 , . . . , vpk}∩{vq1 , vq2 , . . . , vqk′ }.
i.e., p and q are joinable if they share at least one common
vertex.

It is reasonable to suppose that the join cost of p ./ q is pro-
portional to |C′(p)| ∗ |C′(q)|, where |C′(p)| = ∏k

i=1 |C′(vpi)|
and |C′(q)| = ∏k′

j=1 |C′(vqj )|, the multiplicity of sizes of the
reduced matching candidates for each vertex in the path. If
the number of join-predicates (i.e., the number of common
vertices shared by both p and q) for p ./ q is Npq, and sup-
pose Npq join-predicates are mutually independent, all of
which are associated with a selectivity factor θ, the remain-
ing estimated size of p ./ q will be |C′(p)| ∗ |C′(q)| ∗ θNpq .
Given a join path JP = (((p1 ./ p2) ./ p3) ./ · · · ./)pt which
covers the query Q, the total join cost can be formulated as

C(JP) = |C′(p1)| ∗ |C′(p2)|
+ |C′(p1)| ∗ |C′(p2)| ∗ θNp1p2 ∗ |C′(p3)| (2)

+ · · ·+ |C′(p1)|(
t−1∏

i=2

|C′(pi)|θNp(i−1)pi )|C′(pt)|

In order to minimize the join cost C(JP), we can either
(1) minimize the number of join operators: (t − 1), which
can be achieved by empirically choosing long non-repetitive
paths first; Or (2) minimize the estimate size for each join
operation, which can be obtained by always choosing the
paths with good selectivity; Or minimize both. Note our
objectives to minimize C(JP) are almost the same as the
objectives for path selection, as mentioned above. More
interestingly, these objectives share the same philosophy as
dictated in Section 3.3 for structural feature evaluation.

Keeping the aforementioned objectives in mind, we define
selectivity of a path p, denoted as sel(p), as follows

sel(p) =
ψ(l)∏

v∈V (p) |C′(v)| (3)

where ψ(·) is a function of the path length l, e.g., ψ(l) = 2l.
Intuitively, sel(p) in Equation(3) tries to take both objec-
tives into consideration. The larger the selectivity sel(p) of
p, the better chance p will be chosen from among the subset
of shortest paths and be joined first to recover the graph
query Q. In practice, our query optimizer takes a greedy
approach to always pick the edge-disjoint path with highest
selectivity first, and it achieves very effective query perfor-
mance.

5.3 Path Instantiation
After a path has been selected, it needs to be instantiated

in the network G, such that its exact matching can be de-
termined and the join predicates can be cross-checked when
path joins are executed between selected paths. We again
make use of neighborhood signatures for path instantiation.
Given a path p = (v1, v2, . . . , vt) in the query graph Q, a
straightforward way to instantiate p on G is an edge-by-
edge verification for each edge (vi, vi+1) ∈ p. Specifically,
for each vi, we examine its matching candidate u ∈ C′(vi).

If C′(vi+1) ∩ S
l(vi+1)
1 (u) 6= ∅, it means there exist counter-

part edges for (vi, vi+1) in the network G. It is worth noting
that for each verification, we need to retrieve the ID-List of

S
l(vi+1)
1 (u). If the ID-Lists reside on disk, the verification

leads to expensive disk accesses, which is the most time-
consuming part in graph query processing.

When selected paths are instantiated and joined with no
join-predicates violation, we find one matching of Q against
G successfully. The algorithm will not terminate until all
matchings are detected from G. Algorithm 3 (Appendix 9.7)
summarizes the whole procedure for graph query processing.
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Figure 4: Query Response Time for Clique Queries

6. EXPERIMENTAL EVALUATION
In this section, we report our experimental studies to il-

lustrate the effectiveness of SPath in graph query processing
on large networks. We compare SPath with GraphQL and
evaluate our algorithm SPath on both real and synthetic
data sets. In the real data set, SPath proves to be a high-
performance graph indexing scheme, and it achieves up to
4 times speedup in graph query processing, compared with
GraphQL. In the synthetic data set which contains a set of
disk-resident graphs, SPath demonstrates its scalability and
effectiveness in answering graph queries in excessively large
networks, whereas other proposed methods may fail in this
scenario. The experimental studies on the synthetic data
set are elaborated in Appendix 9.9. All our experiments
were tested on an AMD Phenom 8400 Triple-Core 2.10GHz
machine with 3GB memory running Ubuntu 9.04. SPath is
implemented with C++ and compiled with gcc 4.3.3. We
set all parameters of GraphQL as default values specified and
recommended in [12]. The only parameter of SPath, i.e., the
neighborhood scope k0, is set 4, if not specified explicitly.

6.1 A Yeast Protein Interaction Network
We adopt the same real data set used in GraphQL, which

is a yeast protein interaction network [8]. The experimental
settings are explained in Appendix 9.8.

We first consider the index construction cost for SPath on
this biological network. Figure 3(a) illustrates the memory
usage of SPath (in kilobytes) with the variation of the neigh-
borhood scope, k0. With an increase of k0 from 0 to 4, SPath
grows linearly and it takes less than 1M memory usage even
when k0 = 4. Note when k0 = 0, only the global lookup
table is built and it is the only data structure required in
the baseline algorithm. When k0 > 0, the histograms of
neighborhood signatures in SPath are constructed in main
memory as well. Figure 3(a) also presents that even the ID-
Lists can be loaded in main memory and the total memory
cost is less than 6M bytes. SPath proves to be very space-
efficient and in the following experiments, we explicitly store
ID-Lists into main memory. Figure 3(b) illustrates the run-
time of index construction for SPath. Even when k0 = 4,
SPath can be constructed within 30 seconds.
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Queries

We then focus on the graph query processing performance
in the network. We first test clique queries on the biolog-
ical network. The query set contains 1, 000 cliques with
sizes spanning from 2 to 7. If a query has too many match-
ings in the network (more than 1, 000), we early terminate
the algorithm and show the first 1, 000 matchings as out-
put (GraphQL has the same setting to report at most 1, 000
matchings of Q against G). Figure 4(a) shows the aver-
age query processing time for both SPath and GraphQL. For
queries with small size (≤ 4), both methods achieve simi-
lar query processing performance. As the query size grows
larger, SPath outperforms GraphQL for up to 50% improve-
ment in query response time. Note for clique queries, the
neighborhood signature of every vertex contains 1-distance
set only which subsumes all other vertices. In the mean time,
every clique query is decomposed to a set of edges (length-
1 paths) for query processing. So the improvement mainly
accounts for the optimal edge selection and join-predicate
cross-checking. Figure 4(b) shows the average processing
time for individual steps by varying clique sizes. The in-
dividual steps include query decomposition, abbreviated as
decomposition; path selection, abbreviated as selection and
path instantiation, abbreviated as instantiation. As shown
in the figure, instantiation takes up the majority time during
query processing.

We then test path queries on the biological network. Com-
pared with clique queries, paths are at the other extreme
of connectivity. Path queries have different sizes ranging
from 2 to 10. For each size, we choose 1, 000 paths and
the average query processing time is examined. As illus-
trated in Figure 5(a), with the increase of query size, SPath
achieves a speedup in graph query processing up to 4 times,
compared with GraphQL. In this scenario, the neighborhood
signature containment pruning takes into effect beyond the
direct neighborhood scope, and the path-at-a-time matching
method has proven much more effective than the traditional
vertex-at-a-time approach, adopted by GraphQL. Figure 5(b)
shows the average processing time for individual steps by
varying path sizes. Each of the individual steps takes less
time than that for clique queries, while selection spends even
less because the number of possible paths selected from the
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path queries is much less than that for the clique queries.
Similarly, instantiation still takes up the majority time for
query processing because we have to enumerate and instan-
tiate the paths in the network.

We finally test general subgraph queries extracted from
the biological network. Subgraphs are generated with sizes
ranging from 2 to 10 and for each specific size, 1, 000 queries
are tested and the average query processing time is mea-
sured. As shown in Figure 6(a), SPath still outperforms
GraphQL with a speedup for almost 4 times, especially when
the query size becomes large. Figure 6(b) illustrates the in-
dividual time spent for subgraph queries and instantiation
still dominates the whole graph query process for path in-
stantiation.

7. CONCLUSIONS
In this paper, we consider the graph query problem on

large networks. Existing data models, query languages and
access methods no longer fit well in the large network sce-
nario and we have presented SPath, a new graph indexing
method to answer and optimize graph queries effectively on
large networks. We evaluated different structural patterns
based on our cost-sensitive model and shortest path infor-
mation were chosen as good indexing features in large net-
works. Both index construction and query processing issues
of SPath were discussed in detail. We performed our ex-
perimental evaluations on both real data sets and synthetic
ones. The experimental results demonstrated that SPath
is a scalable graph indexing technique and it outperforms
the state-of-the-art GraphQL in addressing graph queries on
large networks.

There are still several interesting problems left for fur-
ther exploration. First of all, many large networks change
rapidly over time, such that incremental update of graph
indexing structures becomes important. Second, to accom-
modate noise and failure in the networks, we need to extend
our method to support approximate graph queries as well.
These interesting issues will be our new research directions
in near future.

8. REFERENCES
[1] Oracle Database 10g: Oracle Spatial Network Data Model.

Oracle Technical White Paper, 2005.
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9. APPENDIX
In this section, we provide related work, algorithm pseudo

codes and explanations, proof sketches of the theorems, ex-
perimental setting descriptions and additional experimental
results on synthetic data sets.

9.1 Related Work
The field of graph data management has seen an explo-

sive spread in recent years because of new applications in
bioinformatics, social and technological networks, commu-
nication networks, software engineering and the Web. It be-
comes increasingly important to manage graphs, especially
large graphs, in DBMSs. However, existing database mod-
els, query languages and access methods, such as the rela-
tional model and SQL, lack native support for large graphs.
The wave of graph-based applications calls for new models,
languages and systems for large graph-structured networks.

Recent research has embraced the challenges of designing
special-purpose graph databases. Generally, there are two
distinct categories that are often referred to as the graph-
transaction setting and the single-graph setting, or network
setting. In the graph-transaction setting, a graph database
consists of a set of relatively small graphs as transactions,
whereas in the single-graph setting, the data of interest is
a single large graph. In both settings lies a common and
critical graph query problem, which can be formulated as a
selection operator on graph databases and has been studied
first in the theoretical literature as the subgraph isomor-
phism problem [9, 18, 20, 27], Subgraph isomorphism has
proven to be NP-complete [10].

In a graph-transaction database, the graph query prob-
lem is to select all graphs in the database which contain
the query graph as subgraph(s). The major challenge in
this scenario is to reduce the number of pairwise subgraph
isomorphism checkings. A number of graph indexing tech-
niques have been proposed to address this challenge [24, 28,
11, 29, 31, 4, 23]. Different structural patterns are examined
to help prune the candidate search space at the first step.
Costly subgraph isomorphism checkings are verified in the
second step on the pruned search space, instead of on all
transactions of the graph database.

Although the graph query problem has been studied ex-
tensively in the graph-transaction setting, little attention [25,
12, 30] has been paid to improve the effectiveness of graph
query processing in the single-graph setting. In this sce-
nario, a graph query retrieves as output the complete set of
occurrences of the query graph in the large network. Note
the graph query problem in this setting is more general, in
that a set of small graphs can be regarded as a large graph
with different disconnected components. So an efficient so-
lution in the single-graph setting will definitely help solve
the graph query problem in the transaction setting. The
challenge in this scenario is to accelerate the subgraph iso-
morphism testing itself. To develop effective and scalable
techniques that address the graph query problem in the sin-
gle graph setting is the focus of this paper.

A straightforward approach to managing large networks is
to store the underlying graph structure in general-purpose
relational tables and make use of built-in SQL queries to
address the graph query problem. Oracle is currently the
only commercial DBMS that provides internal support for
graph data [1]. However, the relational model and SQL
are fundamentally inadequate to support graph queries on

large networks. Queries are translated into a large num-
ber of costly join operations and the structural knowledge
of graphs is broken down and flattened during the course of
database normalization. This allows little opportunity for
graph specific optimizations and prevents effective pruning
on the search space. The number of intermediate false posi-
tives can grow excessively large, especially when the network
examined is large and diverse.

In SAGA [25], the authors proposed an approximate graph
matching method, which employed a flexible graph distance
model to measure similarities between graphs. However, not
all exact matchings, but a subset of approximate match-
ings were returned as answers. In GraphQL [12], the au-
thors made use of neighborhood subgraphs for global prun-
ing and vertex profiles for local pruning. A search order op-
timizer was designed to jointly reduce the search space for
each vertex in the query graph. Their experiments demon-
strated that the graph-specific optimizations proposed by
GraphQL outperformed an SQL-based implementation by
orders of magnitude in graph query processing on large net-
works. GADDI [30] proposed a distance index-based match-
ing method which were specifically used for biological net-
works and small social networks. The basic indexing unit is
the NDS (neighboring discriminating substructure) distance
for every pair of vertices in the graph. The costly frequent
graph mining algorithm was adopted to help mine the dis-
criminative subgraphs. All of the aforementioned methods
have common problems: 1. they all target on pruning the
search space of each vertex, such that the whole search space
can be jointly reduced as much as possible. However, the
query processing is still performed in a vertex-at-a-time way,
which is extremely inefficient. 2. the methods proposed can
only support graph queries in small networks or networks in
specialized areas, whereas they cannot generalize and scale
up to real large networks.

Similar graph queries were proposed on large RDF graphs
as well [2]. A large RDF databases contains millions of RDF
tuples (s, p, v) where s is a subject, p is a property and v is
a value. Every RDF database has an associated RDF graph
where vertices correspond to subjects and values, and the
edges linking them are labeled with a property. A graph
query expressed in SPARQL language may contain some
variable vertices which can be substituted by either subject
or value vertices in the RDF graph. Note a RDF graph
contains vertices in two different categories: subject and
value, and each vertex bears a distinct label. So RDF graphs
are a special kind of networks in our study and our graph
indexing method is more general and can be easily extended
to answer graph queries on large RDF graphs.

Besides the graph query problem studied in this paper,
other kinds of queries were proposed on large graph databases
as well. Graph reachability queries [26, 16, 15] test whether
there exist path connections from a vertex u to another
vertex v in a large directed graph. Keyword search [14,
17, 13] over large graphs explores the graph structure and
finds subgraphs that contain all the keywords in the query.
Connection-preserving pattern matching queries [32] relax
the subgraph isomorphism constraints by allowing two ad-
jacent vertices in the query graph to be mapped to two ver-
tices within distance δ in the network. It is believed that
more queries of practical use, together with the correspond-
ing query processing techniques, will be proposed and stud-
ied toward a better understanding of large networks.
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Algorithm 1: Baseline Algorithm

Input: Query graph Q, Network G
Output: All subgraph isomorphism mappings f of Q

against G
begin1

for v ∈ V (Q) do2

C(v) ← {u|u ∈ V (G), l′(v) = l(u)};3

Recursive Search(v1);4

end5

Procedure Recursive Search(vi)6

begin7

for (u ∈ C(vi)) and (u is unmatched) do8

if notMatchable(vi, u) then9

continue;10

f(vi) ← u; u ← matched11

if i < |V (Q)| then12

Recursive Search(vi+1);13

else14

Output a mapping f ;15

f(vi) ← NULL; u ← unmatched;16

end17

Function boolean Matchable(vi, u)18

begin19

for ∀ edge (vi, vj) ∈ E(Q), j < i do20

if edge (u, f(vj)) /∈ E(G) then21

return false;22

return true;23

end24

9.2 A Baseline Algorithm for Graph Query
Processing

Algorithm 1 presents the baseline algorithm for graph
query processing on large networks [27]. We start with find-
ing matching candidates C(v) for each vertex v in the query
graph Q (line 2 − 3). The matching candidates C(v) is the
set of vertices in the network each of which bears the same
label with v, and the resulting product

∏|V (Q)|
i=1 C(vi) forms

the total search space of the algorithm. The core procedure,
Recursive Search, matches vi over C(vi) (line 11) and pro-
ceeds step-by-step by recursively matching the subsequent
vertex vi+1 over C(vi+1) (line 12− 13), or outputs a match-
ing f if every vertex of Q has a counterpart in G (line 15).
If vi exhausts all vertices in C(vi) and still cannot find a
feasible matching, Recursive Search backtracks to the previ-
ous state for further exploration (line 16). Function Match-
able examines the feasibility of mapping vi to u ∈ V (G) by
considering the preservation of structural connectivity (line
18− 24). If there exist edges connecting vi with previously
explored vertices of Q but there are no counterpart edges in
G, the Matchable test simply fails.

9.3 Theorem 1 Proof
Proof. Without loss of generality, we consider a sub-

graph g in the k-neighborhood subgraph of v, Qk
v , v ∈

V (Q). We first prove that for any vertex w ∈ V (g), its
mapping f(w) ∈ Gk

f(v), i.e., the vertex f(w) is in the k-

neighborhood subgraph of f(v). Because w ∈ V (Qk
v), there

exists a path p = v, . . . , w with length k′ ≤ k connecting

Algorithm 2: Neighborhood Signature Containment

Input: NS(v), v ∈ V (Q), NS(u), u ∈ V (G)
Output: If NS(v) v NS(u), return true; Otherwise,

return false
begin1

for l ∈ Σ do2

Count[l] ← 0;3

for k ← 1 to k0 do4

for l ∈ Σ do5

Count[l] ← Count[l] + |Sl
k(u)|6

if |Sl
k(v)| > Count[l] then7

return false;8

Count[l] ← Count[l]− |Sl
k(v)|9

return true;10

end11

v and w. Correspondingly, there exists a mapping path
f(p) = f(v), . . . , f(w) with length k′ connecting f(v) and
f(w) in Gk

f(v). So f(w) is at most k′ hops away from f(v)
(note f(w) is not necessarily the shortest path between f(v)
and f(w)), i.e., ∀w ∈ V (g), its counterpart f(w) is in the
k-neighborhood subgraph of f(v), Gk

f(v).
Then ∀e = (w, x) ∈ E(g), there exists a counterpart map-

ping edge e′ = (f(w), f(x)) in the k-neighborhood subgraph
of f(v) because Q ⊆ G w.r.t. f . Therefore, f(g) ⊆ Gk

f(v),
i.e., the mapping graph f(g) is in the k-neighborhood sub-
graph of f(v).

9.4 Theorem 2 (NS Containment) Proof
Proof. For ∀v ∈ V (Q), we consider an arbitrary vertex

v′ ∈ Sl
k(v), where 0 ≤ k ≤ k0 and l ∈ Σ. If k0 = 0, then

k = 0 and l = l′(v). However, l′(v) = l(f(v)) because Q ⊆ G
w.r.t. f , where l′(·) and l(·) are labeling functions of Q and
G, respectively. So |Sl

0(v)| = |Sl
0(f(v))| = 1.

We then consider the situations when 0 < k ≤ k0. In Q,
there must be a shortest path p = v . . . v′ of length k with v
and v′ as its endpoints. because Q ⊆ G w.r.t. f , the coun-
terpart mapping path f(p) = f(v) . . . f(v′), where f(p) ⊆ G,
can be either (1) the shortest path between f(v) and f(v′),
such that f(v′) ∈ Sl

k(f(v)); or (2) a non-shortest path be-
tween f(v) and f(v′), because there must be another path
p′, |p′| < k, connecting f(v) and f(v′) in G. This is true
if some edges in p′ cannot be mapped from any edge in Q.
If so, ∃k̄, 0 < k̄ < k such that f(v′) ∈ Sl

k̄(f(v)), i.e., f(v′)
appears in the (k̄, l)-set of f(v). Based on the two afore-
mentioned situations, ∀v′ ∈ Sl

k(v), ∃k̄, 0 < k̄ ≤ k, such that
f(v′) ∈ Sl

k̄(f(v)). So |⋃k≤k0
Sl

k(v)| ≤ |⋃k≤k0
Sl

k(f(v))| sat-
isfies.

9.5 NS Containment Algorithm
Algorithm 2 outlines the neighborhood signature contain-

ment testing for v ∈ V (Q) and u ∈ V (G), where u ∈ C(v).
We maintain a hash table, Count, to keep track of the value
of (|⋃k≤k0

Cl
k(u)|−|⋃k≤k0

Cl
k(v)|) for all l ∈ Σ. In real im-

plementation, only the labels either in k0-neighborhood sub-
graph of v or in k0-neighborhood subgraph of u (or both) are
examined. The time complexity of Algorithm 2 is O(k0|Σ|),
so Algorithm 2 is a constant-time algorithm.
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Algorithm 3: SPath Based Graph Query Processing

Input: Graph Query Q, Network G
Output: All matchings f of Q against G, s.t. Q ⊆ G
begin1

for v ∈ V (Q) do2

C′(v) ← {u|NS(u) w NS(v), u ∈ C(v)};3

for u ∈ C′(v) do4

Pu ← {p | |p| ≤ k∗} based on Theorem 3;5

v∗ ← arg minv |C′(v)|6

for u ∈ C′(v∗) do7

pu ← arg minp sel(p), p ∈ Pu;8

I ← ∅;9

Recursive Search(pu, I);10

end11

Procedure Recursive Search(pu, I)12

begin13

while ipu ← Next Instantiation(pu) do14

if not Joinable(I, (pu, ipu)) then15

continue;16

I ← I ∪ {(pu, ipu)};17

if ∀e ∈ E(Q) has been covered by I then18

Output a matching f ← ⋃
pu
{ipu |pu ∈ I};19

else20

pu′ ← arg minp sel(p), p ∈ Pu′ , where u′ is21

any vertex covered by the paths in I so far;
Recursive Search(pu′ , I);22

I ← I − {(pu, ipu)} ;23

end24

Function boolean Joinable(I, (pu, ipu))25

begin26

for ∀ path pi ∈ I do27

if pi and pu are joinable w.r.t. the join predicate28

set J in Q, but ipi and ipu fails the
corresponding join predictates from J in G then

return false;29

return true;30

end31

9.6 Theorem 3 Proof
Proof. Note k∗ is the minimum distance with which the

(k, l)-set of u begins to differ from the (k, l)-set of v. We
prove the theorem by contradiction. Assume there exists a
shortest path p = v . . . vk in the neighborhood subgraph of v,
and the length of p equals k ≤ k∗. Assume the vertex label
of vk is l, so vk ∈ Cl

k(v). However, the counterpart path
p′ = u . . . uk in the neighborhood subgraph of u is no longer
a shortest path, u ∈ C′(v). Equivalently, ∃k′, 0 ≤ k′ < k,
s.t., uk ∈ Cl

k′(u). However, for 0 ≤ k′ < k ≤ k∗, we have
|⋃i≤k′ S

l
i(u)|− |⋃i≤k′ S

l
i(v)| = 0. So we must have another

vertex v̂ in the neighborhood subgraph of v, s.t., v̂ ∈ Cl
k′(v).

It means that both vk and v̂ in the neighborhood subgraph
of v have the counterpart vertex uk in the neighborhood
subgraph of u. So NS(v) 6v NS(u). It contracts with the
fact that u ∈ C′(v), i.e., NS(v) v NS(u).

9.7 Graph Query Processing Algorithm
Our SPath based graph query processing is presented in

Algorithm 3. It starts with a preprocessing step by pruning

the search space for each vertex v in the graph query Q with
neighborhood signature containment testings illustrated in
Theorem 2 (Line 3). For each u ∈ C(v), if NS(u) 6w NS(v),
it will be eliminated from C(v) as a false positive. As
a result, we get the reduced matching candidates, C′(v).
For each matching candidate u ∈ C′(v), the set of short-
est paths, Pu, is generated simultaneously (Line 4 − 5).
Based on Theorem 3, all the paths in Pu with length no
greater than k∗ are guaranteed to be shortest as well in
the k0-neighborhood subgraph of u. We choose a vertex v∗

with a minimal size of the reduced matching candidates as
a starting point for graph query processing (Line 6). When
all possible matching candidates u ∈ C′(v∗) have been ex-
plored, our graph query processing algorithm terminates and
all matchings of Q against G will be figured out. Among the
set of shortest paths in Pu, an optimal path is selected based
on Equation 3 to initiate the recursive search (Line 7− 10).
I is a data structure which maintains the pairs of (path,
instantiated path) discovered so far.

In Recursive Search, we first instantiate the path pu in
the network G by calling the function Next Instantiation(pu)
(Line 14). In practice, for each vertex in the path pu to be in-
stantiated, we maintain an iterator to keep track of the ver-
tex oriented in the network G. Function Next Instantiation(p)
is called to manipulate iterators such that a new instantia-
tion of pu is enumerated in a pipelining manner. We then
test joinability between the newly instantiated path with all
the previously instantiated paths in I by calling the Join-
able function (Line 15). Joinable function checks the join
predicates between the path pu and every path pi ∈ I in
the query Q (Line 27 − 30). If their corresponding match-
ing paths ipu and ipi fail in any join-predicate verification
in the network G, we have to explore the next instantiation
of pu (Line 16), or backtrack to the previously examined
path (Line 23). Otherwise, if pu and every path pi ∈ I are
joinable, pu is coupled with the instantiated path ipu in the
network G. If every edge in the query graph Q has been
covered by some paths in I, a matching f is found out as
an output (Line 18− 19). Otherwise, we proceed by picking
another path with the best selectivity for further inspection
(Line 21−22). The optimal path selected is from among the
set of shortest paths Pu′ where u′ is any vertex having been
explored so far in I. In practice, a maximum priority queue
is maintained to get the path with highest selectivity. If two
(or more) paths have the same highest selectivity, ties are
broken by always picking the one which overlaps least with
previously selected paths. When a new path p is selected,
for any vertex u ∈ p, all shortest paths Pu pertaining to u
are added in the priority queue for further selection.

9.8 Experimental Settings for the Real Data
Set

The yeast protein interaction network consists of 3, 112
vertices and 12, 519 edges. Each vertex represents a unique
protein and each edge represents an interaction between pro-
teins. It is worth mentioning that the traditional RDBMS
based query processing method is extremely inefficient to
support graph queries on this biological network [12].

We further add Gene Ontology (GO) information as ver-
tex labels to the proteins. The GO is a hierarchy of cat-
egories that describes cellular components, biological pro-
cesses, and molecular functions of genes and their products
(proteins). Each GO term is a node in the hierarchy and
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Figure 7: Index Construction for SPath

has one or more parent GO Terms, and each protein may
have one or more GO terms. The original GO terms in the
yeast protein interaction network consist of 2, 205 distinct
labels. We relax these GO terms by using their highest level
ancestors. There are 183 such highest level GO terms in
total, which constitutes our vertex label set Σ.

As to the graph queries, GraphQL suggests two extreme
kinds of graphs with totally different structures: cliques and
paths. For biological networks, the clique structure corre-
sponds to protein complexes, while the path structure cor-
responds to transcriptional or signaling pathways. We fur-
ther extract general induced subgraphs by randomly choos-
ing seeds in the network and traversing the network in a
DFS fashion. These generated graphs can be thought of as
general queries with arbitrary structures lying in the middle
of the two extremes: path and clique.

9.9 Synthetic Disk-resident Graphs
We further evaluate our algorithm, SPath, on a series of

disk-resident synthetic graphs based on the Recursive Matrix
(R-MAT) model [3]. The graphs generated naturally follows
the power-law in- and out-degree distributions. All the pa-
rameters of the graph generator are specified with default
values suggested by the authors. For SPath, we maintain
both the global lookup table and the histogram structures
of neighbor signatures in main memory, while keeping all
the ID-Lists on disk.

We first examine the index construction cost of SPath on
different large networks. We generate four large networks
with |V (G)| = 500, 000, 1, 000, 000, 1, 500, 000 and 2, 000, 000,
and |E(G)| = 5∗|V (G)|, respectively. For each graph gener-
ated, the vertex labels are drawn randomly from the label set
Σ, where |Σ| = 1% ∗ |V (G)|. Note in a typical modern PC,
the number of potential tree or graph indexing structures
can be excessively large, which requires a storage in the tera-
byte or even peta-byte order. In this scenario, GraphQL fails
simply because it cannot scale up on these large networks.
However, as shown in Figure 7(a), SPath scales linearly with
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Figure 8: Query Response Time for Subgraph
Queries in the Synthetic Graph

an increase of the network size, which makes SPath a feasible
graph indexing solution applicable in large networks. Fig-
ure 7(b) illustrates the index construction time for SPath.
Note building SPath from the network is a pre-processing
step and executes only once before the real graph query
processing, so the cost is still affordable for large networks.

We then test the query processing performance of SPath
on one synthetic graph G with size |V (G)| = 1, 000, 000 and
|E(G)| = 5, 000, 000. We further generate subgraph queries
with different sizes 5, 10, 15, and 20 by randomly extracting
induced subgraphs from G by DFS traversal. For each spe-
cific query size, we generate 1, 000 queries and measure the
average query response time. As shown in Figure 8(a), SPath
can achieve satisfactory response time even when the query
size is large. However, all previously proposed methods, in-
cluding GraphQL, cannot answer graph queries on this mas-
sive network. Figure 8(b) shows the individual time spent
by different query processing components of SPath. As both
decomposition and selection are performed in main memory,
they take up little time during query processing. However,
instantiation needs to retrieve ID-lists from disk, so it be-
comes the leading factor and potential bottleneck for graph
queries on large networks.
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