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ABSTRACT

The huge amount of temporal data generated from many important
applications call for a highly efficient and scalable version index.
The TSB-tree has the potential of large scalability due to its unique
feature of progressive migration of data to larger mediums. How-
ever, its traditional design optimized for two levels of the memory
hierarchy (the main memory and the hard disk) undermines its po-
tential for high efficiency in face of today’s advances in hardware,
especially CPU/cache speed and memory size. We propose a novel
version index structure called the HV-tree. Different from all pre-
vious version index structures, the HV-tree has nodes of different
sizes, each optimized for a level of the memory hierarchy. As data
migrates to different levels of the memory hierarchy, the HV-tree
will adjust the node size automatically to exploit the best perfor-
mance of all levels of the memory hierarchy. Moreover, the HV-
tree has a unique chain mechanism to maximally keep recent data
in higher levels of the memory hierarchy. As a result, HV-tree is
several times faster than the TSB-tree for point queries (query with
single key and single time value), and up to 1000 times faster than
the TSB-tree for key-range and time-range queries.

1 Introduction

Large enterprises, scientific research and engineering projects com-
monly require efficient access to temporal databases. For example,
a company may keep the changes of salaries of all employees over
years. A supermarket may keep the price changes of all products
for future analysis. In an astronomy project, each star’s position is
observed every few days and the position change is recorded over
time. In these temporal databases, typical operations are queries
by a key, or a time, or both. For example, one may ask: “What
is the salary of the CEO?” (by key), or: “Report the salaries of all
the employees as of August 2008?” (by time), or: “What was the
salary of the CEO as of August 2008?” (by both key and time).
Similarly, an astronomer may request for the position changes of
a star during the last year. Version indexes provide efficient data
access for these types of queries. Various version index structures
(e.g., [7, 2, 13, 4]) have been proposed in the last two decades.
However, as the data generated from the above applications grows
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at an unprecedented speed, the existing structures are no longer
capable of handling the data in terms of both scalability and effi-
ciency. Wal-Mart’s data warehouse was 70 terabytes in 2001 [19],
and it became over 1,000 Terabytes in 2007. The Sloan Digital Sky
Survey project [1] captures images that cover the sky and the tele-
scope receives 70 gigabytes of images each night. All these new
demands call for a version indexing technique that has enormous
scalability and extremely high efficiency. In this paper, we design
a version index towards this end.

Among many existing version index structures, the TSB-tree [13]
has the unique feature of migrating old data progressively to larger
and larger mediums; it keeps recent data, which is more frequently
accessed, on a fast medium such as the main memory. Therefore,
the TSB-tree has the potential of scaling to very large datasets.
However, high scalability cannot be achieved without highly ef-
ficient tree operations (updates and searches). The TSB-tree’s tra-
ditional design, which was optimized for two levels of the memory
hierarchy (the main memory and the hard disk), undermines its po-
tential for high efficiency in face of today’s advances in hardware,
especially CPU/cache speed and memory size. As the size of main
memory grows rapidly, many databases can now be held in mem-
ory, and various studies have shown that improving cache behavior
leads to much better performance for memory resident indexes due
to growth in CPU/cache speed [15, 16]. The dataset sizes in the
aforementioned applications are far beyond the main memory size,
but still part of the data will reside in memory. We would like to
take advantage of the main memory indexing techniques. Our idea
is that the index should optimize cache behavior when data resides
in memory and optimize memory/disk behavior when data moves
to disk. Moreover, this idea can be extended to any level of the
memory hierarchy as data moves along.

In this spirit, we advocate the concept of full memory hierarchy
aware index design, which tries to optimize performance for all
levels of the memory hierarchy rather than just two levels. Guided
by this philosophy, we propose a version index called the memory
hierarchy aware version tree (HV-tree). The HV-tree has nodes of
different sizes optimized for different levels of the memory hierar-
chy. Data will be stored in a node of the best size as data moves to
different levels of the memory hierarchy. We summarize the con-
tributions of this paper as follows.

e To our best knowledge, this work is the first attempt for an
index design that optimizes performance for more than two
levels of the memory hierarchy.

We propose a novel version index structure, the HV-tree,
which has different node sizes optimized for different levels
of the memory hierarchy. Experiments show that straight-
forward conversions between nodes of different sizes incur
major overhead. A novel design decision here is to change



the node size gradually, which reduces the overhead of node

conversions substantially. Moreover, we propose a chain mech-

anism to maximally keep recent data in higher levels of the
memory hierarchy.

We perform extensive experiments to compare the HV-tree
with alternative approaches and the results show that the HV-
tree significantly outperforms the competitors in almost all
cases. The improvement over the best competitor is up to
three orders of magnitude for key-range queries and time-
range queries.

The rest of the paper is organized as follows. We first review
related work in Section 2. Then we discuss the principles of de-
sign for multiple levels of memory hierarchy and two straightfor-
ward TSB-tree adaptions towards our goal in Section 3. Section 4
describes the structure and algorithms of the HV-tree. Section 5
reports the experimental results and Section 6 concludes the paper.

2 Preliminaries and Related Work
2.1 Version Indexes

In temporal databases, an object’s value may change over time and
different values are considered different versions of the object. The
database keeps track of the changes of each object’s value, and ev-
ery change is associated with a version number or a timestamp.
Many structures [7, 2, 6, 4, 18, 13] have been proposed to index ver-
sioned and temporal data. The most related ones are the Write-once
B-tree (WOB-tree) [6], the Multi-version B-tree (MVB-tree) [4]
and the Time-Split B-tree (TSB-tree) [13]. They are all variations
of the B-tree; they allow nodes to be split by time or by key. A
commonality of the WOB-tree and the MVB-tree is that after a
time split, the historical data stays in the old node and the cur-
rent data goes to a new node. The TSB-tree has the unique feature
that it puts the old data in the newly created node after a time split
and therefore the old data can be progressively migrated from one
storage medium to another — an important feature that can always
keep current data on a high-speed medium (e.g., the main memory).
Next, we elaborate the TSB-tree since it serves as the foundation of
our HV-tree.

2.2 The TSB-tree

There are a few papers about the TSB-tree [13, 14, 12]. We base our
following description on the most recent one [12], which reports a
prototype integration of the tree into Microsoft SQL Server.

2.2.1 Structure

Similar to the B*-tree, the TSB-tree is a hierarchical structure con-
sisting of index (non-leaf) nodes and data (leaf) nodes. An index
entry is a triple (key, time, pointer), where pointer points to a
child node N; the values of key and time lower bound the key val-
ues and timestamps (respectively) of all the index or data entries in
the subtree rooted at N. Each data entry is a triple (key, time, data),
where key and time indicates the key value and the timestamp
of the data value data. Entries with the same key value but dif-
ferent time values are considered different versions of the same
object. Figure 1 shows an example of a versioned dataset. A
black dot/circle represent an insertion/update, respectively. Fig-
ure 2 shows the TSB-tree for the dataset assuming a node capacity
of 4. At timestamp 3 (Figure 2(a)), there are two versions for key 1,
(1,1, Alan) and (1, 3, Ben). The entry (1,1, Alan) is valid in the
time range of [1, 3) and we say its starting time and ending time are
1 and 3, respectively. Similarly, each index entry (correspondingly
each node) in the tree also has a starting time and an ending time.
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Figure 1: Versioned dataset example.

If an entry/node has an ending time before the current time, we say
the entry/node is historical; otherwise, we say it is current.
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Figure 2: TSB-tree example.

Each index entry (and its corresponding child node) maps to a
rectangular range in the key-time space. In Figure 1, the key-time
ranges are labelled according to the nodes in Figure 2(d). How
to derive the boundaries of the key-time range is explained in Ap-
pendix A.1.

2.2.2  Operations

Common index operations are insertion, deletion, update and search.
As a versioned index, the TSB-tree keeps all the changes of every
object and does not actually delete data. An update is treated as an



insertion with the entry’s time value set to the update timestamp.
Deletion is a special case of update where a record is flagged as be-
ing deleted; then a query beyond the deletion time will ignore the
“deleted” record. Therefore, insertion and search are the two main
operations of the TSB-tree.

2.2.3  Search and Query Types

The most basic type of query finds records with a given key value
and timestamp, which we call a point query since it corresponds to
a point in the key-time space.

To process a point query with key k1 and timestamp t;, the
search algorithm traverses down the tree starting from the root node.
For a visited node, the algorithm ignores all entries with t¢me value
greater than ¢, and finds the entries with the largest key value not
exceeding ki (there may be multiple entries with the largest key
value not exceeding k1); then among these entries, the algorithm
finds the one with the latest ¢ime value (, which must not exceed ¢1
since entries with time greater than ¢; are ignored). If this entry is
an index node entry, the algorithm continues to visit the child node
pointed to by this entry and repeat the above process until reaching
a data node. Using the same process, the algorithm will find the
record we are searching for if the record exists in the database (i.e.,
the entry found has the key value of k1 and it is valid at time £1).
An example is given in Appendix A.2.

Besides the point query, we can specify queries with various key
and time requirements. A key-slice time-range query finds records
with a given key value in a given time range. A time-slice key-range
query finds records in a given key range at a given timestamp. A
key-range time-range query finds records in a given key range and
a given time range, which is the most general form of the queries.
A key-range time-range query can be processed as follows. Every
entry corresponds to a region (or a point in the case of a data node
entry) in the key-time space as discussed in Section 2.2.1. Starting
from the root node, add to a FIFO stack the nodes whose key-time
regions intersect that of the query. Pop the nodes out of the stack
one by one and check whether its child nodes intersect the query
in the key-time space. Intersected nodes are inserted to the stack.
Continue this process until the stack is empty. The records that
intersect the query in key-time space are the answers.

2.2.4 Insertion

The insert algorithm first uses the search algorithm to locate the
data node to place the new record in. If the data node is not full, the
new record is simply inserted into it. If the node is full, it will be
split in time space or key space in order to accommodate the new
record. The node split generates a new index entry to be added to
the parent node, and the split may propagate to upper level nodes if
the upper level nodes are also full. Data nodes and index nodes are
split differently. We explain the split of data node next and index
node split in Appendix A.4.

Data Node Split. The TSB-tree may perform a key split or a
time split. A key split on a data node is very similar to a node split
in the B -tree, where entries with keys smaller than the split value
go to one node and the other entries go to another node. When a
data node is time split, entries with starting time after or equal to
the split time remain in the current node; entries with ending time
before the split time go to a new node; entries with time extents
spanning the split time are copied to both nodes. As a result, his-
torical entries move to a new node; this new node is a historical
node and never needs to update its content again, so it is moved to
disk. Current entries remain in the old node in memory.

The decision on whether to split a node by key or by time is
made based on a parameter called SV CU (Single-Version Current
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Utilization), defined as the size of a node’s current data divided by
the node size. If SV CU is smaller than a threshold 7', which means
there are many historical entries, then a time split is performed.
Otherwise, a key split is performed. In the Microsoft prototype
implementation [12], (i) whenever a key split is needed, a time split
is always performed before the key split to guarantee a minimum
storage utilization for any version, (ii) the suggested value for T'
is 0.67, and (iii) the splitting time is always the current time. An
example is given in Appendix A.3.

2.3 Main Memory Indexing Techniques

Most traditional index structures have been designed to optimize
performance for secondary memory such as the BT -tree and the R-
tree [8]. As main memory becomes larger and cheaper, it is feasible
to hold large datasets entirely in memory. The performance issue is
then how to optimize these structures to reduce the number of cache
misses. This problem becomes more important as the gap between
the CPU speed and the main memory speed enlarges [5]. Several
papers [16, 17, 15] have studied indexing and querying main mem-
ory databases. They mainly use the following two techniques to
improve cache performance:

(i) Aligning node size with block size. It aligns the node size with
the cache block size to reduce cache misses. Both the CSS-tree [15]
and CSB ™ -tree [16] use the cache block size as the tree node size.

(ii) Pointer elimination. It uses computation to find tree nodes
and get rid of pointers, so that more data can fit into a cache block.
For example, the CSS-tree arranges its nodes in an array to accel-
erate search. To handle updates better, the CSB " -tree keeps some
pointers, but the number of pointers is much smaller than a normal
B*-tree. Finding a node is through a pointer to a group of nodes
and offsets to member nodes of the group.

2.4 Memory Hierarchy Aware Design

Optimization for multiple levels of memory hierarchy has been
studied widely in hardware and algorithm designs (e.g.,[3, 20]),
but there has been very little work that considers multiple levels of
memory hierarchy in an index design, especially a version index.
Most popular indexes (e.g., B-trees and R-trees) are designed for
memory/disk performance. The above described main memory in-
dexes are also designed to optimize performance for only two levels
of the memory hierarchy, the cache and the main memory.

2.5 Partial Expansions

The technique of “partial expansions” suggests gradually increas-
ing the size of an overflown bucket to increase the space utilization
rate (e.g., [10, 11]). In our case, the gradual expansion of nodes
has a positive effect on space utilization, but more importantly, it is
used to avoid the overhead of directly converting small nodes into
a big one.

3 Design for Multiple Levels of Memory Hier-
archy

In this section, we discuss our principles towards a version index
design that optimizes performance for multiple levels of the mem-
ory hierarchy. We also present two straightforward adaptions of the
TSB-tree attempting the design goals.

3.1 Design Principles

Memory hierarchy refers to the hierarchical arrangement of stor-
age in a computer, which is designed to take advantage of memory
locality in computer systems. The memory hierarchy of a modern
computer typically consists of L1 cache, L2 cache, main memory,



hard disk and tertiary storage (such as optical disk and tape). Each
level of the hierarchy is mainly parameterized by latency, block size
and capacity. Higher levels of the hierarchy usually have smaller
block size, capacity as well as smaller latency. The difference of
latency between two levels of the hierarchy is up to several orders
of magnitude. Therefore, taking full advantage of the memory hi-
erarchy is essential for significant performance improvement. We
follow two major Principles in our design:

1. Tailor the index’s structure to suits the characteristics of each

level of the memory hierarchy.

2. Keep as much as possible frequently accessed data in higher

levels of the memory hierarchy.

For all the TSB-tree variants as well as our HV-tree, we assume
that main memory is sufficient to hold all current nodes. The TSB-
tree naturally complies with Principle 2 since current data, which
is more frequently accessed, remains in main memory and histor-
ical data, which is less often accessed, is migrated progressively
to lower levels of the memory hierarchy. Therefore, the TSB-tree
serves as a good starting point for our design. Next, we try to apply
also Principle 1 to the TSB-tree.

The main technique for optimizing for a memory level is the
simple rule of aligning node size with block size. Traditional index
designs set the node size to the hard disk page size (typically 4KB
or 8KB). This optimizes the main memory and hard disk perfor-
mance since the data transfer unit between the main memory and
hard disk is the hard disk page size (and hence data is stored as
4KB or 8KB blocks both in main memory and on hard disk). The
TSB-tree already does this, so our research focuses on how to op-
timize the TSB-tree for cache behavior (we will discuss memory
levels beyond hard disk in Section 4.3.2).

Similarly, the trick to optimize for cache behavior is to set the
node size to be the cache block size, and this trick has been used
by a few previous proposals as discussed in Section 2.3. However,
a later study [9] shows that the actual optimal node sizes for the
CSB™-tree [16] are much larger than the cache block size due to
the number of instructions executed and the number of TLB misses.
The method in [9] cannot be directly applied to determine the opti-
mal node size for the TSB-tree, but it warns us to pick the optimal
node size with caution. Let Scqche denote the optimal node size for
the cache performance of the TSB-tree. Determination of Scqche is
highly hardware dependent and a through study on it is beyond the
scope of this paper. In this study, we take an empirical approach
and just run some experiments to find Scqche, Which turns out to be
1KB in our case. Details are given in Appendix D.1. In the rest of
the paper, we assume Scqche is a known parameter. Please note that
finding Scqche Optimizes for the combined effect of all the caches,
i.e., L1, L2 and L3 (if present) caches.

3.2 Straightforward TSB-tree Adaptions

Following the above discussion, we provide two straightforward
TSB-tree adaptions attempting to optimize cache performance as
follows.

The first TSB-tree adaption simply uses Scqche as the node size.
The idea is to optimize the tree for cache behavior and let the buffer
manager of the operating system (OS) to deal with paging. We call
this TSB-tree variant TSB-small. Our experiments show that TSB-
small actually performs worse than the TSB-tree. This is because
the performance loss caused by bad disk behavior overweighs the
performance gain caused by better cache behavior.

The second TSB-tree adaption uses Scache as the current node
size and the hard disk page size (denoted by Sqisi) as the historical
node size. We need to somehow convert the node size from Scqche
to Sqisk as current nodes become historical and move to the hard
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disk. Sagisk is typically a power of 2 times Scqche (in our experi-
mental setting, Sqisr and Secqche are 4KB and 1KB, respectively).
A straightforward way of converting the nodes is as follows. For
the first current node that becomes full and performs a time split,
we migrate the resultant historical node to the hard disk and simply
expand this historical node’s size to Sgiskx. Subsequently, when a
time split is performed on a node N, instead of immediately creating
a new node (for historical entries), we look for a sibling historical
node of N on the hard disk which has enough space to hold the
historical entries (since we will have historical nodes with lots of
unused space from the previous size expansion). If we find such a
node, then we can put the historical entries of N in it. Otherwise,
we create a new historical node on the hard disk with size Sg;sx to
contain the historical entries of N. Details of the node conversion
process is given in Appendix C. This TSB-tree variant is char-
acterized by condensing small nodes to large nodes, so we call it
TSB-cond. Our experiments again show that TSB-cond performs
worse than the TSB-tree. This is because node condensation incurs
the following two kinds of major overhead:

1. Searching for a sibling and condensing the nodes cause many
extra I/Os (historical nodes are on disk) and computation.
The condensation results in bad clustering and low utiliza-
tion rate in historical nodes. In many cases, an index node is
time split earlier than many of its child data nodes are. After
an index node time split, the resultant historical index node
will never gets updated and its child nodes will never gets
condensed, so the child nodes remain highly underutilized.

2.

4 The HV-tree

In this section, we present the structure and algorithms of the HV-
tree. An important and novel design of HV-tree is that its node size
changes gradually rather than directly from Scqche t0 Saisk. This
design makes it possible to have different node sizes without the
overhead to convert between them compared to TSB-cond. More-
over, we propose a chain mechanism to keep the maximum amount
of recent data in memory to further improve the performance (this
can be viewed as an enhancement of Principle 2). Table 1 summa-
rizes the symbols used.

Name | Description

T Splitting threshold value

Scache | Optimal node size for cache performance

Sdisk Optimal node size for memory/disk performance
Fi(s) | Node fanout for node type ¢ and node size s

R, Number of current entries in a node

Omig | Offset for migrated data

Ohnist Offset for historical data

Table 1: Symbols

4.1 Structure

The structure of the HV-tree is similar to that of the TSB-tree, but
the HV-tree has nodes of different sizes. The size of an HV-tree
node may be Scaches 2Scaches ---s Sdisk (note that Sg;sx is a power
of 2 times Scqche). For example, in our experimental settings,
Scache 18 1KB and Sg;s is 4KB, so an HV-tree node may be of
the size of 1KB, 2KB or 4KB.

Compared to a data node of the TSB-tree, a data node of the
HV-tree has an additional pointer, nextOldest, in the header in-
formation; other parts of an HV-tree data node is the same as a
TSB-tree data node. The additional pointer is used in the data mi-
gration process as explained in Section 4.3.



An index node of the HV-tree has two differences from that of
the TSB-tree.

1. An HV-tree index node has an additional pointer, nextOldest,

in the header information and it is used in data migration.

2. An HV-tree index entry is of the form (key, time, pointer,
histPtr); it has an extra pointer, histPtr, in addition to
a TSB-tree index entry. The first three fields, key, time,
and pointer, are used in the same way as in the TSB-tree;
hist Ptr is used in data migration.

4.2 Insertion

We call Scoche, 2Scaches -.., Sdisk the allowable sizes of an HV-tree
node. In the HV-tree, we always try to give the smallest allowable
size to a current node when possible. The rationale is to make
their sizes close to Scache to Optimize cache behavior. When start
building an HV-tree, the first data node is given the size of Scache.
When the root is split and we create a new root for the tree, the
new root is also given the size of Scqcne (the new root has only two
entries, so it can always fit into Scqche assuming that Scqcre can
contain at least two entries). In all other cases, we grow the tree
using the split procedure described as follows.

4.2.1 Splitting

When an entry is inserted into a full node, the HV-tree may perform
a time split, a key split or a node expansion. Node expansion is a
new operation compared to those of the TSB-tree. The decision on
which action to perform depends on the portion of current entries
in the node. When the portion of current entries is greater than
or equal to a threshold 7', then it is worth performing a key split,
resulting in two current nodes. The the two resultant current nodes
can fit into smaller allowable node sizes; we will give each resultant
current node the smallest allowable node size that can contain the
corresponding current entries.

When a node is full and the portion of current entries is smaller
than 7', if the node size is smaller than Sg;s%, we double the size of
the node — this is a critical difference from the TSB-tree; otherwise
(the node size is already Sq;sk), we perform a time split. After the
time split, only current entries remain in the original node. Since
the number of entries in the original node has decreased, we con-
tract the size of the original node to be the smallest allowable size
that can contain all the current entries. All the historical entries are
put in a new node of size Sgisr and the new node is added to the
tail of the migration chain. The historical nodes will be actually
moved to disk when we run out of memory. We will explain the
node migration process in Section 4.3.

The above steps are summarized in Algorithm 1. Note that this
algorithm applies for both data and index nodes. The input of
the algorithm is a node N and its type (index node or data
node). The function GetCurrentNodeNumber(/V) returns the num-
ber of current entries in node N (line 1). The function
Fiyype(IN header.size) returns the fanout of the node based on the
node type and the current size of the node which is given in the
header information. Then we can compute the portion of current
entries . The flow chart in Figure 3 helps understanding the HV-
tree splitting process and a running example is given in Appendix B.
One may ask: can we check the condition of {nodesize vs. Sq;sk }
before checking the condition of {3 vs. T'}? The answer is “No”. If
we do so, we will always expand a node until the node size reaches
Saisk, and then we start to choose between key split and time split.
Then it is no different from the original TSB-tree splitting proce-
dure.

Choice of T'. T is an important parameter. It controls what types
of actions are performed upon inserting into a full node and also af-
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fects node utilization. If 7" is large, there are more time splits and
hence more data redundancy. It may result in better query perfor-
mance for time-slice queries, but worse for other types of queries.
If T' is small, there are more key splits and less data redundancy,
which favors overall query performance.

Algorithm 1: splitNode(N, type)

1 Rc < GetCurrentNodeNumber(N)
2 3« R./Fiype(N header.size)
3if 3> T then

4 | KeySplitNoderype(N)

5 else

6 if N.headersize < Saisi, then

7 | ExpandNode(N)

8 else

9 TimeSplitNode;ype (V)
10 ContractNode(V)
11 add historical node to migration chain

12 if out of memory then
13 | Perform data migration

no

Node full?

yes

Calculate:
B = Rec + Fnode(size)

Compare:
BT
Compare:
Slarge, Size

¢5|'ze 2 Slarge

B<T

size < Siarge

Key split

Expand Time split

i

Contract
current node

i

Add historical node
to migration chain

L]

Do Migration

Figure 3: HV-tree splitting policy.

We observe that when a node is time split, its size is Sqisk. Af-
ter the time split, less than 7" portion of the entries remains in the
current node, and more than (1 — T") portion of the entries move
to a historical node. We would like the current node to fit into the
smallest allowable node size for optimizing cache performance, so
T should be smaller than . At the same time, a small 7" value

L(LL}LE
isk

results in a large value of (1 —T) and therefore high utilization rate
in historical nodes. However, setting 7" to be too small will cause
too many key splits and result in a very low single version utiliza-
tion rate (SVCU), which significantly hurts the time-slice query
performance Based on the above analysis, we choose the value of
T to be . In our experimental settings, Scqche = 1KB and
Sdisk = 4KB therefore 1" is 0.25. This value of T guarantees a
high utilization rate of 75% for historical nodes. Our experiments
also validates that it is a very good choice.

cachc




4.3 Data Migration

In the HV-tree, historical nodes are not moved to the hard disk im-
mediately after creation. Instead, they are linked through a migra-
tion chain and when the memory runs out, they will be moved to
the hard disk in the order of their creation time. This technique
allows us to keep as many as possible the most recent historical
nodes in the memory. In what follows, we describe first the chain
mechanism that links the historical nodes and then the process of
progressive migration of the nodes to lower memory levels.

4.3.1 Migration Chain

The HV-tree maintains two pointers, firstOldest and lastOldest,
to point to the start and the end of the migration chain, respectively,
as shown in Figure 4. When the first historical node is created,
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Figure 4: Migration chain.

both pointers point to that node. Then the chain is maintained as
follows. Suppose currently lastOldest points to N1 and then a
new historical node N gets created. We first let N1’s nextOldest
point to N and then let lastOldest point to N. Thus we have a
chain of historical nodes in the order of their creation time.

Let p denote the index entry that points to /N when N is cre-
ated. Another thing we do upon creation of a historical node N
is to assign a hard disk address for the future migration of N and
set p.histPtr to this hard disk address. The historical nodes are
migrated to the hard disk in the order of the migration chain: the
first node migrated to the first block on the hard disk, the second
node migrated to the second block on the hard disk, and so on. We
use a variable Op;s: to indicate where a newly created historical
node will be placed on the hard disk and Op,;s; is initialized to 0.
When a historical node N is created, the value of Oy, is given to
p.hist Ptr and then incremented by Sqis-

The reason we set the value of p.histPtr upon N’s creation
rather than at a later time (say, the time of the actual migration) is
as follows. Node N’s parent may be time split and the two resultant
nodes (one current and one historical) may both have pointers to N.
If we set the value of p.histPtr later, we have to pay the cost of
finding both parents of IV, and more importantly, we need to update
the historical parent of N, which is not supposed to be updated
anymore.

Since we need to set the value of p.hist Ptr while p.pointer is
valid, we must keep both pointers in an index entry.

The historical nodes are migrated to the hard disk in the order
of their creation time. Therefore, the nodes remaining in the main
memory are always the most recent ones. We maintain another
variable Oy to indicate where the next migrated historical node
should be on the hard disk and O, is initialized to 0. When a his-
torical node is migrated to the hard disk, O, g4 is incremented by

402

Sdisk. Another use of O g is to help determine whether a histori-
cal node has been migrated to the hard disk or not when searching
for the historical node, as explained in subsequent subsections.
Figure 4 shows an example of the HV-tree’s migration chain. An
arrow with a solid line represents a pointer denoted by the pointer
field in an index entry. An arrow with a dashed line represents a
hist Ptr pointer. Arrows with dotted lines represent the migration
chain. The texts inside the nodes indicate the nodes’ status. For
example, nodes 5 and 6 have been migrated to disk, so the memory
they once occupied can be used by other nodes. Nodes 8, 7 and 2
are part of the migration chain and will be migrated next if needed.

4.3.2 Migration Beyond Hard Disk

We still want to keep the most recent data in higher levels of the
memory hierarchy when migrating data to even lower memory lev-
els. Suppose there are n memory levels beyond the main memory,
L1, Lo, ..., Ly, and the capacity of L; is C;, where i = 1,2, ..., n.
For example, L1 may be the hard disk and L2 may be a tape.

We need to be able to perform two operations. The first one is
how to migrate a node down the hierarchy, and the second one is
how to locate a node in the memory hierarchy when retrieving it.

Migrate a node: When we want to migrate a node /N from the
main memory to Li, we check whether Op,;q < Cy. If yes,
we write N to location Opig of Li. If not, it means that we
have filled C; entirely. To keep recent historical nodes on higher
memory levels, we put N at location (Osmsg mod C1) of Ly and
move the existing node at location (Omig mod C1) of Ly to lo-
cation ((Opmig — C1) mod C>) of Lo. Figure 5 gives an exam-
ple where we have three memory levels with the capacities of 2,
4 and 8 blocks, respectively. A number ¢ in a block denotes the
i'" created historical node. When we try to migrate the third his-
torical node, L; is full and therefore we first move the node at
location (Opig mod C1) = (3mod2) = 1 of L; to location
((Omig — Ci)mod C2) = ((3 —2)mod4) = 1 of Ly. Then
we can migrate the third historical node to location 1 of Li. In
a similar manner, we migrate the fourth, fifth and sixth historical
nodes. When we try to migrate the seventh historical node, we
need to first migrate the fifth historical node to location 1 of Lo,
but location 1 of L2 is occupied by the first historical node. In this
case, we need to first migrate the first historical node to L3, then
migrate the fifth historical node to Lo, and finally migrate the sev-
enth historical node to L;. The formula we use to move the first
historical node from Ls to L3 is similar to the one we use to move
it from L1 to L.

L1 LZ L3
(@) —
L1 L3

(d)

Figure 5: Data migration beyond hard disk.



Locate a node: Suppose we want to locate node N and its parent
index entry is p. If p.hist Ptr is beyond Oy,ig, it means that N is
still in memory and we follow p.pointer to locate N. Otherwise
N has been migrated and its address is given by p.hist Ptr. Given
p.hist Ptr, we can use the reverse address computation of what is
used in data migration to find the location of N.

4.4 Search

Searching in the HV-tree follows the same procedure as the TSB-
tree except that we will follow pointer of an index entry only
when hist Ptr is larger than O,,;4 (Which means the node pointed
by pointer has not been migrated). Otherwise, we will follow
hist Ptr to locate the node.

4.5 Summary

Compared to the TSB-tree, the HV-tree has better cache behavior
for current nodes, better space utilization based on our analysis on
T, and better memory caching since it always keeps maximally the
most recent historical nodes in memory. Table 2 summarizes the
major differences between the HV-tree and the TSB-tree.

HV-tree

Variable node sizes

A full node can be key split, time
split or expanded

Delays migration of data

Index node splits depend on R.

TSB-tree

Fixed node sizes

A full node can be key and time
split, or just time split
Immediately migrates data

Index nodes are always time split
if possible

Table 2: HV-tree vs. TSB-tree.
Compared to TSB-cond, the HV-tree avoids node condensation
and therefore does not have the problems of extra I/Os and low
space utilization rates.

S Experiments

In this section we will compare the HV-tree with the standard TSB-
tree (denoted as “TSB-stand”), TSB-small and TSB-cond as de-
scribed in Section 3.2. Except the HV-tree, all the TSB-tree vari-
ants are allowed to use the buffer manager of the operating systems
to cache the pages. The test parameters and their default values are
described as follows.

We denote the percentage of updates among the total number of
insertions and updates by u, and we call this parameter the update
frequency. The default value for u is 80%. We assume that recent
data are more frequently queried, so query time follows a Zipfian
distribution skewed towards the current time, with a default o value
of 1. The search keys are randomly chosen from the existing keys.
We measure the total response time and the number of disk I/Os.
For all the query types, we run 500 queries following the above
described distribution and report the average result.

We ran all the experiments on an PC with an Intel P4 3GHz CPU,
1GB of memory and an 80GB hard drive. The hard disk page size
is 4KB. The capacity, block size, and associativity are (8KB, 64B,
1) for the L1 cache and (512KB, 64B, 8) for the L2 cache.

We vary the dataset size from 200MB up to 1,400MB so that we
can observe the behavior of the various techniques when the dataset
size is smaller and larger than the memory size. Every S00MB of
data corresponds to about 40,000,000 records where each record
has 4 bytes of data besides its key and time.

We focus on presenting the representative results, while addi-
tional results are given in Appendix D. For our HV-tree, we find
Scache to be 1KB through experiments (Appendix D.1); Sgisk is
the hard disk page size 4KB.
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5.1 Updates and Point Queries

We perform 500 point queries with keys randomly distributed and
time following Zipfian distribution as described above. We vary the
dataset size from 200MB to 1,400MB. Figure 6(a) shows the update
performance results and Figure 6(b) shows the search performance
results.

12 14 y
S 10 “m—TSB-stand —o— TSB-small 12
3 —=— TSB-stand —0—TSB-small
g —%—TSB-cond —s—HV-tree 10
£ 8 o —%—TSB-cond —s— HV-tree
[ ; 8
E 6 2
[ g
o
L a4 5
<
3 4 s —= = =¥
S 2 2
0+ 0 e

600 800 1000 1200 1400
Data Set Size (Mb)

200 400 600 800 1000 1200 140C 400

Data Set Size (Mb)
(a) Update

6

—®—TSB-stand —o—TSB-small —=— TSB-stand —0—TSB-small
= 601 _sy ’ . 2
§ TSB-cond HV-tr 5 —%—TSB-cond —s—HV-tree
£ Q¢ W
Y =
£ S3
= g
S ® 2
g
0 1 l/q/'\-—.—*"
a1
0
200 400 600 800 1000 1200 140( 200 400 600 800 1000 1200 1400
Data Set Size (Mb) Data Set Size (Mb)
(b) Search

Figure 6: Updates and Point queries, varying dataset size.

Figure 6(a) shows that the HV-tree has superior update perfor-
mance over all TSB-tree variants, in both time and I/O. TSB-small
and TSB-cond are worse than TSB-stand in most cases. The HV-
tree only accesses the hard disk for the larger datasets, while TSB-
stand accesses the hard disk for all sizes and have significantly
more disk I/Os than the HV-tree for the largest dataset. For the
largest dataset (1,400MB), the HV-tree is 4 times faster than the
best TSB-tree variant. The superior update performance is due to
the HV-tree’s better cache behavior and optimized data migration.

When searching for point queries (Figure 6(b)), TSB-small per-
forms worse than TSB-stand due to bad disk performance. TSB-
cond has the worst performance because of the extra I/Os caused
by searching for a sibling during node condensation and low uti-
lization rates caused by node condensation. The HV-tree clearly
has the best performance in both time and I/0. The HV-tree uses
no disk I/O until main memory is exhausted. It is over 6 times
faster than the best competitor, TSB-stand, before the dataset size
reaches 1GB and still 30% faster than TSB-stand after the dataset
size goes beyond 1GB. Please note that the search operation does
not involve any data migration. The better performance is mainly
due to the better cache behavior of the current nodes of the tree,
better historical node utilization and more recent nodes kept in the
main memory compared to TSB-stand, which uses the OS buffer to
cache historical nodes.

We have run experiments with varied update frequency and skew-
ness of the data (results in Appendix D.2 and D.3). The HV-tree
always outperforms the other techniques. In summary, the HV-tree
is the best performing method in terms of update and search.

5.2 Key-Range Queries

Figure 7(a) shows time-slice queries as we vary key selectivity from
0.00001% to 1% on the standard S00MB dataset. We see that for
selectivities less than 0.1%, the HV-tree is more than two orders
of magnitude faster than all TSB-tree variants. The improvement
of the HV-tree over other techniques is much higher than in up-
date/search operations because the key-range query involves re-



turning a lot more records. At 0.1% the HV-tree and TSB-stand
are roughly equal and beyond this at 1% selectivity, TSB-stand
performs the best. This is because TSB-stand’s policy of always
performing a time split before a key split results in a tree with very
high single version utilization rate, which strongly favors the time-
slice query especially when the selectivity is large. However, this
is a trade-off the HV-tree makes for better performance in all other
query types. Even for the time-slice query, the HV-tree is far better
than TSB-stand in small selectivities.
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Figure 7: Key-range queries with S00MB dataset.

Figure 7(b) uses the same key selectivities over the same dataset
but this time we perform queries which have a time range also.
The default time selectivity we chose was 50%, i.e., on average we
query half the history of all records in the key range. We see a
similar trend as in the time-slice query test. The HV-tree is up to
three orders of magnitude faster for the lowest selectivities. Even
for the highest selectivity 1%, all methods perform similarly. This
is because we are performing a very large query and the volume of
data to be returned is the major factor in the cost of the queries.

We repeated the previous tests with 1,000MB datasets and the
results show similar behavior. Details are given in Appendix D.4.

5.3 Space Utilization

We expect the HV-tree to have better space utilization than TSB-
tree variants. This is because there is less redundancy due to less
time splits. However, the fanout will be lower for the HV-tree be-
cause it uses smaller nodes and each entry in an index node is larger
due to the additional hist Ptr. We compare the sizes of the HV-tree
and all the TSB-tree variants for two 480MB datasets, with update
frequencies (u) of 25% and 75%, respectively. Table 3 shows the
results.

u HV-tree TSB-stand | TSB-cond | TSB-small
25% | 524.40MB | 964.57MB | 970.58MB | 965.43MB
75% | 512.08MB | 807.86MB | 834.41MB | 834.35MB

Table 3: Space utilization for 480MB dataset.

The HV-tree is the smallest among all the structures for both
datasets. Compared with the best TSB-tree variant (TSB-stand),
the HV-tree uses 45% and 36% less space for the 25% and 75% up-
date frequency datasets, respectively. This verifies that the HV-tree
has better space utilization and the additional pointers and smaller
nodes do not cause space utilization problems.

5.4 Other Experiments

We have performed experiments on time-range queries using both
500MB and 1,000MB datasets. The HV-tree outperforms other
TSB-tree variants by about 1000 times in all cases. Details are
given in Appendix D.5.

We also performed a test to see the effect of 7" on the perfor-
mance of the HV-tree. The results validate that our analysis pro-
vides a good choice for the value of 7I'. Details are given in Ap-
pendix D.6.

404

6 Conclusions

We have presented the HV-tree, a highly efficient and scalable ver-
sion index. The HV-tree allows different nodes sizes to optimize
for different levels of the memory hierarchy. It also has mecha-
nisms to smoothly convert the different sizes of nodes. For almost
all types of queries, the HV-tree is significantly more efficient than
TSB-trees. The improvement is up to 1000 times for key-range
and time-range queries. The HV-tree is the first index design that
effectively uses the caches, main memory, hard disk and further
memory levels as a whole. We have provided analysis on how to
choose important parameters for the HV-tree and the analysis was
also justified by experiments.

As future work, it is possible to design the HV-tree to exploit
multi-core CPUs for further performance improvement.
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APPENDIX

A TSB-tree Descriptions

A.1 Determination of Key-time Range of an
Index Entry

The lower bound is already known from the index entry itself. We
use entry (0,4, xN5) in the root node N3 (Figure 2) as an example
to show how to determine the upper bound of the key-time range
of an index entry. For the time upper bound, we search in N3 for
an entry with the same key (0) and with the smallest time greater
than 4, which is (0, 8, *N1), so the time upper bound is 8. For the
key upper bound, we search in N3 for an entry with key greater
than 0, and with time equal to or less than 4. (3,4, «N4) satisfies
the condition, so the key upper bound is 3. If no entry satisfies the
above conditions, then the time upper bound is the current time and
the key upper bound is infinity.

A.2 Example of Search for Point Queries

For example, suppose the current timestamp is 10 and we are search-
ing for the record with the key value of 1 at timestamp 6. The TSB-
tree at timestamp 10 is shown in Figure 2 (d). Starting from the
root N3, we ignore all entries with times greater than 6 (i.e., entry
(0,8, «N1)), and find the largest key not greater than 1 (i.e., key
0). The latest entry with key O has time 4. We follow the pointer to
the child node N5. In N5, we again ignore all entries with time val-
ues greater than 6 (i.e., (2,7, Fred)), and find the largest key not
greater than 1 (i.e., key 1). The latest entry with key 1 is (1, 5, Sid)
and we get the answer, Sid.

A.3 Example of Data Node Split

For the example in Figure 2, the initial insertion of key 4 at time 0,
key 1 at time 1, key 7 at time 2, and an update on key 1 at time 3
results in a full data node N1 as shown in Figure 2(a). The update
on key 1 at time 4 causes N1 to be split. We calculate SV CU to be
3/4 = 0.75 (3 current entries and 4 entries), greater than 7" = 0.67,
so N1 will be time split and then key split. First, it is split at the
current time 4. Entries (1,1, Alan) and (1, 3, Ben) have ending
times earlier than 4 and are moved to a new node N2 (historical
node). The new entry, (1,4, Tim) has a starting time equal to the
split time and therefore is put in the current node. The other entries
(4,0, Dan) and (7,2, Ed) have time ranges crossing the split time
and they are copied to both the new node and the current node; their
starting times in the current node N1 are changed to 4 since their
time ranges are lower bounded by 4. An index node N3 is created
as the new root and two entries are added to it, (0,0, xN2) and
(0,4, »N1). At this point, the tree is as shown in Figure 2(b). Next,
the current node N1 is key split by the value 3, resulting in two
current nodes (N1 and N4) and an index entry (3, 4, xN4) added to
the root N3. The tree after the update on key 1 at time 4 is shown
in Figure 2(c).

The new node N2 only contains historical entries and hence never
needs to be updated again. It is then migrated to a lower level of
the memory hierarchy (even a write-once medium). This assign-
ment of nodes makes it possible to progressively move historical
data to another storage medium, one node at a time.

After time 4, keys continue to be inserted and updated at times
5,6 and 7. At time 8 we want to update key 1 in node N4 but it is
full, so it needs to be split. The SV CU of N4 is calculated to be
0.5, which is less than 7', so only a time split is performed. Two
more insertions are made at times 9 and 10 with out any overflow
and the final tree is shown in Figure 2(d).
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A.4 Index Node Split

Index node splitting policies are different from those of data node
splitting. Complications arise when splitting index nodes. An in-
dex node entry corresponds to a rectangular region in the key-time
space. Entries spanning over a key range means that they may need
be duplicated in a split. This is not a problem if the entry is histor-
ical because it need not be updated again. If the entry is current,
duplicating it means that its child node will have two updatable
parents; this is a problem because updates on the child node may
require updating both parents, but we only know one parent from
the search for the child node and there is no easy way to locate the
other parent. To avoid this problem, we search for an earlier time
which allows the node to be time split; if no such time exists, then a
key split is always possible. Splitting at an earlier time reduces the
node usage for historical nodes and a key split reduces the fanout
for time-slice queries.

B Running Example of HV-tree Splitting

We will use the example in Figure 8 to explain the construction of
an HV-tree. In the figure, solid circles represent insertions, hol-
low circles represent updates and dashed lines represent key/time
regions.
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Figure 8: Example data for HV-tree.

In this example, we assume that Sgisk = 2Scache and therefore
the allowable node sizes for the HV-tree in this example is Scqche
and Sg;sk. Further, we assume that a node of size Scqche has a
fanout of 3 (for both index and data nodes) and a node of size Sq;sk
has a fanout of 6 (for both index and data nodes). We set 1" to 0.4.

Initially the HV-tree is empty containing only a single data node.
Insertion into non-full nodes in the HV-tree is the same as in the
TSB-tree. From time O to 2, we insert new entries into the only
node until it becomes full. The HV-tree after inserting the first
three entries is shown in Figure 9.

key, time, data
N1[1,1,Alan]4,0 Dan] 7,2 Ed |

Figure 9: Before a key split.

Key split: At time 3 we attempt to update the entry with key 1,
but the node is full so we calculate the R. of N1. The R. for a
data node is simply the number of current entries it contains, and
in this case R. is 3. R. divided by the fanout (3/3) is greater than
T (0.4). Therefore we perform a key split on the node. A key split
in the HV-tree is done in the same as in the TSB-tree. The resultant
HV-tree is shown in Figure 10.

Node expansion: The entry with key 1 is again updated at time
4 and 5. At time 5, the data node becomes full. The HV-tree at this
moment is shown in Figure 11.
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Figure 10: After a key split.
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Figure 11: Before a node expansion.

The R. of the full node N1 is now 1 (there is only 1 current
entry). R. divided by the fanout equals 0.33, and the node size is
less than Sg;s, so the decision to expand the node is made. This
is done by reallocating memory for the node, and the pointers are
updated in the parent node to the reallocated address. The only
change in the structure of the tree is the larger current node, shown
in Figure 12. This is a key difference from the TSB-tree. We now
have a current data larger than other current nodes.

N2[4.0,Dan | 7,2,Ed | |

N3[ 0.0 K[3.0 K

N1|1,1,Alan[1,3,8Ben[1,4,Tim | 1,5, 5id | | |

Figure 12: After a node expansion.

Time split: Time splitting nodes in the HV-tree is the same as in
the TSB-tree. However, after a time split, the HV-tree tries to con-
tract the size of the current node, and update pointers in the newly
created historical node to maintain a chain of migrated nodes. Fur-
ther insertions and updates are made to N1 at time 6 and 7. At time
8, key 1 needs to be updated again but N1 is full (shown in Fig-
ure 13). This time R, is 2 for N1; R, divided by the fanout 6 is less
than T, and the node already reaches the size Sq;si. Therefore, we
time split N1. Time split is performed in a similar way as in the
TSB-tree, creating a new historical node N4 and N4 is added to the
migration chain. The current node N1 is contracted to the small-
est allowable size that can hold the two current entries, which is
Scache- The the parent index entry of N4 uses the pointer field to
point to the current memory address of N4 and set the hisPtr field
to the value of Op;st, 0, which indicates where N4 will be placed
on the hard disk when it is migrated. Then Ops: is incremented by
Saisk indicating the where the next migrated node should be placed
on the hard disk. Figure 14 shows the HV-tree after the time split
and the values of Op;s¢ and Opyig.

At time 9, key S is inserted into the node N2. At time 10, the
insertion of key 8 also goes to N2 and there is not enough space.
We calculate R. divided by the fanout, which is greater than 7T'.
Therefore, we key split N2, which posts a new index entry to the
root node N3. However, N3 is also full so it is also split. This is
an example of splitting an index node, and the only difference is
in calculating the R. value. R. for index nodes is determined by
finding the latest time at which this node can be time split. Recall
that time-splitting index nodes is restricted because we cannot have
entries in historical index nodes pointing to current data nodes. The
only time the N3 can be time split at is time 0. This would leave
all entries remaining in the current node, which has R. = 3; R.
divided by the fanout is greater than 7". Therefore the decision to
key split N3 (at key 3) is be made. Figure 15 shows the HV-tree
after the insertion of key 8 at time 10.

Search: Suppose we want to search the HV-tree in Figure 15 for
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Figure 13: Before a time split.

key 1 at time 4. We start from the root, using the TSB-tree search
procedure. We ignore all entries with time value beyond the search
time 4 and find the entry with key-time pair such that the entry’s key
is not larger than the search key 1 and the entry’s time is the largest
time with the key 1. This leads us to N3. From there we are led to
N4. In the parent index entry of N4, we find that the hist Ptr field
is 0, which is not smaller than Opnig (Omig is O at the moment).
Therefore, we know that N4 is still in the main memory and use the
pointer field to locate it. The search continues in N4. We ignore
all entries with time value greater than 4, and find the latest entry
with key value 1. Then we find the value associated with key 1 at
time 4 was “Tim”.
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Figure 14: After a time split, node contraction, migration chain
update.
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Figure 15: After a data node and index node key split.

C Node Conversion for TSB-cond

After the first node migration to disk, for any subsequent time split
on a node N, we first try to find a sibling node of N which is histori-
cal and has enough space to hold the historical entries. Specifically,
we scan the parent node of N to find a historical entry, and then visit
the child node of this entry to determine if there is enough space to
hold the historical entries. If such a node exists, we do not need
to create a new historical node for the time split. The historical en-
tries that should be put in a new historical node are now put into the
sibling historical node. If we cannot find a sibling node of N with
sufficient space, then we create a new historical node with Sg;sk
and put the historical entries in it. Figure 16 shows an example.
There is a time split at time 4 and a key split by value 4. Node N3
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Figure 16: TSB-tree with Variable Node Sizes.

becomes a historical node, and N1 and N2 are current nodes. Later
at time 7 we time split N2. In the TSB-tree, we would create a new
historical node (calling it N4), but since N3 has extra space which
could hold the historical data from N2, we do not create N4 (this is
why it is shown in italics). Instead, N3 is used to hold the historical
entries and now there are two index entries pointing to N3.

D Additional Experimental Results
D.1 Finding S...1.

We would like to find out the optimal node size Scqche for the HV-
tree when all the nodes are in the main memory. Please note that
this optimal node size reflects the combined effect of all the cache
levels (L1, L2 and L3 if any). The main operations are updates
and searches. We varied the Scqche value for the HV-tree from
128b to 4KB. We recorded the average update response time for a
100MB data set and subsequent average query response time. We
also computed an equally weighted combination of the two, Fig-
ure 17 shows the results. We normalized the results to show just
the relative performance.

1.0

—— Update —O— Search —X— Combined

Relative Performance
o
«

0.0

128 256 512 1024 2048 4096
Node Size (bytes)

Figure 17: Tuning S¢,cp. for an HV-tree.

We observe that using 512B nodes is the best for our experimen-
tal settings in terms of update performance, probably because up-
dating involves significant amounts of data movement. Using 2KB
nodes is the best for search performance. When combining updates
and searches, using 1KB nodes yields the best performance. Con-
sidering a balanced workload, we have chosen 1KB as the value for
Scache-

D.2 Update Performance, Varying Update Fre-
quency

In this test, we let the update frequency w vary from almost only
insertions (low u values) to almost only updates (high w values).
We again measure the update performance (Figure 18(a)) and the
search performance (Figure 18(b)).
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Figure 18: Varying update frequency.

We see in Figure 18(a) that for updates the HV-tree is very steady.
Performing roughly the same for all update frequencies. The TSB-
tree variants have fluctuating performance. TSB-small is the best
performing variant, followed closely by TSB-stand. Compared to
both of these, the HV-tree always requires less time to perform up-
dates, with about 41% of the time of TSB-stand on average. Figure
18(b) shows a similar trend for the search performance. The TSB-
tree variants have fluctuating performance. The HV-tree constantly
performs the best, which has an average response time of only 30%
that of TSB-stand.

In summary, the HV-tree has nearly constant update and search
performance across all update frequencies, unlike TSB-trees which
fluctuate. Also the HV-tree has much better performance than all
the TSB-tree variants in all the tests.

D.3 Point Query, Varying Query Time Distri-
bution

The query times are generated following a Zipfian distribution. In
this experiment, we vary the « value of the Zipfian distribution,
which controls the skewness of the data. We generated a 1,000MB
dataset with queries following Zipfian distributions with the « val-
ues of 0.1, 1 and 10. The larger the o value, the more skewed
the data distribution is. When o takes the large value of 10, the
queries distribution is highly skewed and most of them are current
queries. When « takes the small value of 0.1, the query times fol-
low approximately a uniform distribution over the lifetime of the
database, which means there are more queries on historical data
than the queries with o = 10. Figures 19(a) and Figure 19(b) show
the I/O and response time of the queries.
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Figure 19: Varying search query time.

For an « value of 10, all the trees have next to zero I/Os for
the queries. This is because the query time distribution is highly
skewed and almost all queries are on current data. Since all the trees
keep current nodes in the main memory, none of them would have
any I/0O when processing the queries. As the « value gets smaller,
there are more queries on historical data nodes. The TSB-tree vari-
ants have notably increasing numbers of I/Os, over a magnitude
of order more than the I/O of the HV-tree. The HV-tree still has
near to zero I/Os even when oo = 0.1 because it keeps maximally
the most recent nodes (including historical ones) in the main mem-
ory. While TSB-tree is allowed to use the operating system’s buffer
manager, which is an LRU, obviously it cannot optimally keep all



the most recent nodes in the main memory and therefore have in-
creased number of I/Os when there are more queries on the histori-
cal nodes. TSB-small and TSB-cond have especially large numbers
of 1/Os for these cases due to their bad disk behavior. TSB-small
uses small nodes and need to access the hard disk more often to re-
trieve the same amount of data. TSB-cond uses optimal nodes sizes
for disk access, but because the data in nodes are not clustered as
well as in the HV-tree, TSB-cond also has much more I/Os.

The response time comparison shown in Figure 19(b) exhibits a
similar pattern to the comparison on the number of I/Os. All meth-
ods perform well when o = 10 but the response time increases as
o becomes smaller. However, the HV-tree’s response time remains
a very small value and outperforms all the TSB-tree variants by a
large margin.

D.4 Key-Range Queries with Large Datasets

The results of key-range queries on 1,000MB datasets are shown
in Figure 20. For time-slice queries (Figure 20(a)), every method
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Figure 20: Key-range queries with 1000MB dataset.

performs slower as expected. Because the datasets require all of
the main memory to be used, even the HV-tree must access the
hard disk. However, we still see that the HV-tree is an order of
magnitude faster than the best performing TSB-tree variant, TSB-
stand. As selectivity increases, the performance of HV-tree ap-
proaches that of TSB-stand. Similar to the experiments on the
500MB datasets, TSB-stand outperforms other TSB-tree variants
significantly in most cases. Only at the large selectivity of 1%, the
HV-tree is outperformed by TSB-stand because of the same rea-
son given for the experiments on the S00MB datasets. Figure 20(b)
shows varying key-range selectivities with a constant time-range
selectivity of 50%. But this time the HV-tree is better than TSB-
stand in all cases.

D.5S Time-Range Queries

In these tests we perform time-range queries. A time-range query
returns a requested fraction of the history of a record. We first
varied the time selectivity from 25% to 100% using the S00MB
dataset. Figure 21(a) shows results when just a single key is queried
and Figure 21(b) shows results when a 0.1% key-range selectivity
is used.

For both Figures 21(a) and 21(b), we see that the HV-tree is far
better than the TSB-tree variants. TSB-stand is still the best of
the TSB-tree variants. The HV-tree is about 1000 times faster than
TSB-stand. This is because the HV-tree performs less time splits
(meaning less redundancy), and of course the HV-tree has better
cache behavior on current nodes and more historical nodes kept in
the main memory. Again, the improvement of the HV-tree over
other techniques here is much higher than in update/search oper-
ations because the time-range query involves returning a lot more
records than updates and point queries.

We repeated the previous tests using a 1,000MB dataset and the
results are shown in Figures 22(a) and 22(b). All methods perform
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Figure 21: Time-range queries with 500MB dataset.

slower as expected. The comparative performance is similar to that
shown in the experiments using the S00MB dataset. The HV-tree
outperforms all TSB-tree variants with at least an order of magni-
tude improvement in all tests.
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Figure 22: Time-range queries with 1000MB dataset.

In summary, the HV-tree dominates all the TSB-tree variants for
time-range queries. This is because the HV-tree performs more
key splits and less time splits, which means more versions of the
same records are likely to exist in fewer nodes. Together with better
cache behavior and delayed data migration, the HV-tree has huge
advantage in time-range queries.

D.6 Verification of Threshold Value Choice

In section 4.2, we discussed our choice of T'. Here we run experi-
ments to validate the analysis. We conduct a series of tests varying
the update frequency u of datasets and 7" values used in the imple-
mentation of the HV-tree. We average the update time, search time
and memory usage over each of the update frequency values. Fig-
ure 23 shows the relative search, update and memory performance
as we vary T'. We also combine all three results with equal weights
to give an overall “combined” performance.
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Figure 23: Investigating the choice of 7.

We observe that the update and search performance is the best
when T takes the values around 0.15, and 7" = 0.25 gives a very
close performance to this best point. When the three measures are
combined, 7" = 0.25 gives the best overall performance. This re-
sult confirms that the value of 0.25 suggested by our analysis is a
very good choice. This choice of T value is quite different from the
threshold value, 0.67, recommended for the TSB-tree [14, 12].





