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ABSTRACT
Range queries based on L1 distance are a common type of
queries in multimedia databases containing feature vectors.
We propose a novel approach that transforms the feature
space into a new feature space such that range queries in
the original space are mapped into equivalent box queries in
the transformed space. Since box queries are axes aligned,
there are several implementational advantages that can be
exploited to speed up the retrieval of query results. For
two dimensional data the transformation is precise. For
greater than two dimensions we propose a space transfor-
mation scheme based on disjoint planer rotation, and along
with pruning query box the results are precise. Experi-
mental results with large synthetic databases and some real
databases show the effectiveness of the proposed transfor-
mation scheme. These experimental results have been cor-
roborated with appropriate mathematical models.

1. INTRODUCTION
Range queries using L1 distance measure (or its weighted

variants) are used widely in commercial multimedia
databases [15]. In this paper, we focus on the implemen-
tation of range queries in L1 space and use box queries for
optimizing this implementation.

1.1 Background
Let D be the set of d-dimensional records in the database

then the range query at point p = (p1, p2, ...pd), denoted by
r@(p1, p2 . . . pd), is defined as,

r@(p1, p2 . . . pd) =

8

<

:

q

˛

˛

˛

˛

˛

˛

q ∈ D
∧
|q1 − p1| + · · · + |qd − pd| ≤ r

9

=

;

where, qi(1 ≤ i ≤ d) is ith dimension of point q.

For efficient execution of queries in very large databases,
usually multi-dimensional index is created for these records
and queries are implemented using this index. Effectiveness
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of an index for implementing the range query is determined
by the number of pages (amount of IO) accessed in the index
tree. We will use R*-tree for optimizing implementation
of range queries, but by first transforming them into box
queries and then executing box query on R*-tree[2]. A box
query with range ri = [mini, maxi] in dimension i is defined
as follows:

b@(r1, r2, ..., rd) =

8

<

:

q

˛

˛

˛

˛

˛

˛

q ∈ D
∧
mini ≤ qi ≤ maxi for 1 ≤ i ≤ d

9

=

;

where, qi(1 ≤ i ≤ d) is ith dimension of point q.

1.2 Our Approach
Implementing range queries using indexing is a well stud-

ied problem. However, to the best of our knowledge, trans-
forming a range query into an equivalent box query and
then applying indexes for searching has not been studied
before. Our motivation for this transformation is that in
L1 space, range query is a d−dimensional hyper-diamond
while a box query is an axes aligned hyper-rectangle. This
axes alignment provides a simpler and similar interfaces of
the query box with the axes aligned bounding boxes of the
index. Thus, we propose transforming data space so that
the range query becomes axes aligned box query. Once we
find such a transformation, we can then apply any existing
indexing scheme that uses bounding boxes.

In 2-dimensional case, this transformation is easy and in-
volves simple axis alignment. We can illustrate this using
the example in Figure 1. Note that the edges of the range
query follow the line vectors 〈1, 1〉 and 〈−1, 1〉. If we align
the query space’s axes to align with these vectors 〈1, 1〉 and
〈1,−1〉 instead of the units vectors 〈1, 0〉 and 〈0, 1〉, our
query space become the space shown in Figure 2. It is in-
teresting to see that in the transformed space, the minimal
bounding box ([−2,−2], [2, 2]) precisely define our original
range query in Figure 1.

The transformation is challenging in the case where num-
ber of dimensions is greater than two. It is generally difficult
to align the query space with the axes without blowing up
the number of dimensions. We tackle this problem by trans-
forming projections of the space into two dimensions. As an
artifact of this, the bounding box no longer models the range
query correctly. We propose a novel method to alleviate this
problem.

1.3 Key Contributions
The key contributions of the paper are summarized as
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Figure 1: Range query

⇔

Figure 2: Transformed range query

follows:

• We propose a novel transformation for mapping range
queries using L1 distance to box queries. For 2-
dimensional data, the proposed transformation is pre-
cise in the sense that the box query retrieves exactly
the same results as the range query.

• For high dimensional data, we propose disjoint pla-
nar rotation for space transformation along with the
pruning box query to give precise query results.

• Based on the experimental results we show that the
proposed transformation schemes can be leveraged to
improve range query performance.

• We also provide theoretical analysis for the uniformly
distributed data which can be used to estimate the
performance improvement resulting from the proposed
transformation.

The rest of the paper is organized as follows: In section
2, we present the prior work related to this paper. Section
3 proposes a transformation method for 2-D data. These
concepts are extended for higher dimensional data in section
4. Experimental evaluation of the proposed transformation
is presented in section 5. Concluding remarks follow in the
last section.

2. RELATED WORK
The idea of transforming one data-space into some other

data-space for efficient query processing has been around
for some time. Most of these methods try to reduce the
dimensionality of the data using transformations such as
Principal Component Analysis(PCA) or Singular Value De-
composition(SVD) [1, 18, 4, 12]. Increasing data dimen-
sionality through transformations such as the ones used for
SVMs [17] is a possible way of eliminating false positives
however, increasing dimensions negatively affects the perfor-
mance of any index. Linear transformation is a well known
technique in linear algebra [11]. However, their applications
to database queries have not been studied much. The pro-
posed work focuses on using linear transformation for im-
proving page accesses for range queries.

There has been a lot of work on executing range queries
and nearest neighbor queries using database indexes. A de-
tailed discussion on these topics can be found in [8, 7]. Most
of the existing work executes range queries by measuring
distance of the query center from the minimum bounding
rectangle (MBR) at each subtree and expanding a subtree
only when certain distance criterion is satisfied [6, 3, 19, 10].

Some schemes try to incorporate distance metric (or other
distance statistics) into the index structure [5, 20, 9, 14]. For
each node, they first use the distance metric to get an esti-
mate of maximum distance of any data record in the subtree
rooted at the node. Any node that fails the distance crite-
rion is pruned. Box queries are executed by testing if the
query box overlaps with the minimum bounding rectangle
of a subtree in the index [13].

We use R*-tree [2]for our experiments. However, some
of the other indexing schemes may also be used for these
experiments. R*-tree index nodes contain minimum bound-
ing rectangles for the child nodes and both range and box
queries can be implemented using this index structure.

3. 2-D TRANSFORMATIONS
Mapping range queries in to box queries requires trans-

formations of both data space and user queries. The space
transformation is performed offline on the data, before build-
ing the index. For simplicity, we call a database built with
a transformed data a “transformed database”. The query
transformation is performed online on each query. The
transformations need to satisfy the property that the result
of the transformed query over the transformed database is
equal to, or at least an approximation of, the result of the
original query over the original database. When the two
query results are equal, we call such transformations pre-
cise transformations; otherwise, we call them approximate
transformations. Approximate transformations may intro-
duce false positives (i.e., the points that do not satisfy the
original query but do satisfy the transformed query) or false
negatives (i.e., the points that are in the original query but
are not in the transformed query). Precise transformations
have neither false positives nor false negatives. In this sec-
tion, we present transformations from range queries to box
queries for 2 dimensional (2-D) databases. We show that
our transformations are precise.

3.1 From Range Queries to Box Queries
Space Transformation: For 2 dimensional (2-D)
databases, our transformations from range queries to box
queries are accomplished by mapping each point (x, y) in
the original 2-D space to the point (x + y, x − y) in the
transformed space, which is essentially a change of axis as
shown in Figure 1. Formally, our transformation function
T : R

2 → R
2 is defined as

T (x, y) = (x + y, x − y) (1)

And the inverse transformation function T−1 : R
2 → R

2 is
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defined as,

T−1(x, y) = (
x + y

2
,
x − y

2
) (2)

This function essentially changes the two axes so that they
align perfectly with the geometric faces of range queries
in the original space. By such transformations, a range
query in the original space based on L1 distance becomes
precisely a box query in the transformed space. For any
2-D database D, which is a set of 2-D points in the orig-
inal space, the transformed database T (D) is defined by
T (D) = {T (x, y)|(x, y) ∈ D}. Note that we do not need to
store T (D) as a separate database; rather, we build an index
for T (D), which points back to the original points in D.

Query Transformation: We use r@(a, b) to denote the
range query {(x, y)||x − a| + |y − b| ≤ r}. Mathemat-
ically, r@(a, b) denotes the set of all the points that are
within range r based on L1 distance from point (a, b). Ge-
ometrically, all points in r@(a, b) form a diamond with four
end points: (a + r, b), (a − r, b), (a, b + r), (a, b − r). We
use ([a1, b1], [a2, b2]) to denote the box query {(x, y)|a1 ≤
x ≤ a2, b1 ≤ y ≤ b2}. Geometrically, all points in
([a1, b1], [a2, b2]) form a rectangle with four end points:
(a1, b1), (a2, b1), (a2, b2), (a1, b2). After space transforma-
tion, geometrically, these transformed points T (r@(a, b))
form a square with four end points: (a + r + b, a + r − b),
(a−r+b, a−r−b), (a+r+b, a−r−b), (a−r+b, a+r−b).
Thus, these transformed points are precisely the representa-
tion of a box query ([a−r+b, a−r−b], [a+r+b, a+r−b]) in
the transformed space. Geometrically, our 2-D transforma-
tion from range queries to box queries converts a diamond in
the original space to a square in the transformed space. For
example, in Figure 1, range query 2@(0, 0) in the original
space is equivalent to the box query ([−2,−2], [2, 2]) in the
transformed space.

3.2 Transformation Properties
Next, we present several important properties of our

transformation function T defined in formula 2.

Precision Property: Our Theorem 3.1 shows that both
our range to box query transformation and box to range
query transformation are precise.

Theorem 3.1. For any point (x, y) ∈ D, (x, y) satisfies
the range query r@(a, b) if and only if (iff) T (x, y) satisfies
the box query ([a + b − r, a − b − r], [a + b + r, a − b + r]).

Proof. Our proof is based on the fact that for any two
numbers u and v, |u|+ |v| ≤ r iff |u+ v| ≤ r and |u− v| ≤ r.
This fact can be easily proved by assuming u > v without
loss of generality and then considering the following three
cases: (1) u > v > 0, (2) u > 0 > v, and (3) 0 > u > v. We
omit the proof of this fact.

Based on this fact, |x − a| + |y − b| ≤ r holds iff both
|(x+y)−(a+b)| = |(x−a)+(y−b)| ≤ r and |(x−y)−(a−b)| =
|(x − a) − (y − b)| ≤ r hold. Note that (x, y) satisfies the
range query r@(a, b) iff |x−a|+|y−b| ≤ r holds, and T (x, y)
satisfies the box query ([a+b−r, a−b−r], [a+b+r, a−b+r])
iff |(x+y)− (a+b)| ≤ r and |(x−y)− (a−b)| ≤ r holds.

Distance Property: Theorem 3.2 shows that our trans-
formation function T does not preserve L1 distance, even
though it is precise. For any two points (x1, y1) and (x2, y2),
we use |(x1, y1) − (x2, y2)| to denote their L1 distance.

Theorem 3.2. For any two points (x1, y1) and (x2, y2),
|T (x1, y1) − T (x2, y2)| = |(x1, y1) − (x2, y2)| + ||x1 − x2| −
|y1 − y2||.

Proof. Our proof is based on the fact that for any two
numbers u and v, |u+v|+ |u−v| = |u|+ |v|+ ||u|−|v||. This
fact can be proved easily proved by assuming u > v without
loss of generality and then considering the following three
cases: (1) u > v > 0, (2) u > 0 > v, and (3) 0 > u > v. We
omit the proof of this fact.

Based on this fact, we have |T (x1, y1)−T (x2, y2)| = |(x1+
y1, x1 − y1) − (x2 + y2, x2 − y2)| = |(x1 + y1) − (x2 + y2)| +
|(x1 −y1)− (x2 −y2)| = |(x1 −x2)+ (y1 −y2)|+ |(x1 −x2)−
(y1 − y2)| = |x1 − x2| + |y1 − y2| + ||x1 − x2| − |y1 − y2|| =
|(x1, y1) − (x2, y2)| + ||x1 − x2| − |y1 − y2||.

We can prove a similar property for T−1.

Corollary 3.1. For any two points (x1, y1) and (x2, y2),
|T−1((x1, y1))−T−1((x2, y2))| = (|(x1, y1)−(x2, y2)|+||x1−
x2| − |y1 − y2||)/2.

Inequality Property: Although transformation function
T does not preserve L1 distance, Theorem 3.3 show an im-
portant special case where T preserves distance inequality.

Theorem 3.3. Given a point (x1, y1), an MBR repre-
sented as a rectangle B, and a point (x2, y2) on the edge
of the rectangle, if among all the points in B, (x2, y2) is the
point that is closest to (x1, y1), then T ((x2, y2)) is the closest
point in T (B) to T ((x1, y1)) and T−1((x2, y2)) is the closest
point in T−1(B) to T−1((x1, y1))

Proof. Our proof is based on the fact that for any four
non-negative numbers u, v, w, and z, if u+v ≤ w+z, u ≤ w,
and v < z, then u + v + |u− v| ≤ w + z + |w − z|. This fact
can be easily proved by considering the following three cases:
(1) u ≤ w ≤ v ≤ z, u ≤ v ≤ w ≤ z, and u ≤ v ≤ z ≤ w. We
omit the proof of this fact.

Considering any point (x3, y3) in the rectangle, because
(x2, y2) is closer to (x1, y1) than (x3, y3), we have |(x2, y2)−
(x1, y1)| ≤ |(x3, y3) − (x1, y1)|, |x2 − x1| ≤ |x3 − x1| and
|y2 − y1| ≤ |y3 − y1|. Now we need to prove |T ((x2, y2)) −
T ((x1, y1))| ≤ |T ((x3, y3)) − T ((x1, y1))|. By Theorem 3.2,
we have |T ((x2, y2)) − T ((x1, y1))| = |(x1, y1) − (x2, y2)| +
||x1−x2|−|y1−y2|| = |x1−x2|+|y1−y2|+||x1−x2|−|y1−y2||
and |T ((x3, y3))−T ((x1, y1))| = |(x1, y1)− (x3, y3)|+ ||x1 −
x3|− |y1 − y3|| = |x1 −x3|+ |y1 − y3|+ ||x1 −x3|− |y1 − y3||.
By the above fact, we have |x1 −x2|+ |y1 −y2|+ ||x1 −x2|−
|y1 − y2|| ≤ |x1 − x3|+ |y1 − y3|+ ||x1 − x3| − |y1 − y3||.

Figure 3 shows an example scenario for points (x1, y1),
(x2, y2), (x3, y3) and the rectangle.

Figure 3: Illustration for Theorem 3.3

4. MULTI-DIMENSIONAL TRANSFOR-
MATIONS
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For d = 2, range queries can be precisely transformed
into box queries. However, to the best of our knowledge, for
d > 2 we have not found any heuristics in the literature on
precise transformations. We conjuncture that such a precise
transformation may not exist because the number of faces
in a range query exceeds the number of faces in the box
query. For example, for d = 3, the range query takes the
form of a octahedron; whereas, the corresponding box query
takes the form of a cube. Since we cannot define such a
precise transformation, we develop a new type of box query
that uses the range value from the original range query to
prune the false positives in the transformed box query while
preventing the occurrence of false negatives.

In this section, we first use the 2-D transformation of Sec-
tion 3 to define an approximate transformation call disjoint
planar rotations (DPR). Second, we describe how to use the
disjoint planar rotations to map a range query in to a precise
box query. Finally, we discuss why the proposed new type
of box query out performs the original range query.

4.1 Disjoint Planar Rotations
DPR is a transformation that is derived from our two

dimensional transformation function. We transform a d di-
mensional space via this technique by transforming disjoint
planes in the database. For example, a four dimensional
point (x, y, z, w) can be transformed into (T (x, y), T (z, w)).
That is, this transformation can be visualized as a rotation
of each disjoint plane in the database’s space.

More formally, we define a d dimensional transformation
T d(p) as follows:

T d(p) =

0

@

T (p1, p2),
· · · ,
T (pd−1, pd)

1

A

when d is even (3)

T d(p) =

0

@

T (p1, p2),
· · · ,
T (pd−2, pd−1), d

1

A

when d is odd (4)

Note that in the odd case we choose to preserve the last
dimension because it does not significantly affect the perfor-
mance of the proposed box query.

Our modification to box query is based on the observation
that if we can estimate distance between the query center
and an MBR of the index tree, we can prune the branches
of the tree that do not contain any true positives. We first
prove the result proposed in theorem 3.3 for d−dimensional
data.

Theorem 4.1. Given a point c and a set of points B rep-
resenting the points from an MBR. If p is the closest point in
B to c, then T d(p) is the closest point in T d(B) to T d(c) and
(T−1)d(p) is the closest point in (T−1)d(B) to (T−1)d(c).

Proof. The proof is similar to that of theorem 3.3 and
is omitted.

Based on the theorem we propose following heuristic to elim-
inate all the false positives:
Heuristic: If an MBR M overlaps with the query box, we
find the closest point T d(p) in M to query center T d(c).

Using the inverse transformation we then calculate distance
between p and c; if it is greater than the query range then
the MBR is pruned.

Let u be the point in MBR M that is nearest to center of
the box query b. Using the above heuristic, we now formally
define pruning box query (PBQ) as,

pbq@(r1, r2, ..., rd) =

8

>

>

>

>

<

>

>

>

>

:

q

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

q ∈ D
∧
mini ≤ qi ≤ maxi for 1 ≤ i ≤ d∧
distance between (T−1)d(q) and
(T−1)d)(u)is less than the range

9

>

>

>

>

=

>

>

>

>

;

This approach not only eliminates all the false positives
but it also provides more efficient query execution. It is
important to note that we do not miss any data record with
this pruning strategy. Theorem 4.2 states this.

Theorem 4.2. For every point p that satisfies the range
query r@(p1, p2 . . . pd), p is also contained in the result of
the PBQ.

Proof. Let, if possible, there be a point p such that, p ∈
r@(c1, c2 . . . cd) but p′ is not contained in the box query,
where p′ = T d(p). This is possible, only if the MBR M
containing p′ was pruned by the box query at some point, i.e.
the estimated distance between M and p′ was less than r.
Let u′ = T d(u) be the closest point in M to c′ (c′ = T d(c)).
This implies that while u′ was the closest point to c′ in the
transformed domain, u was not the closest point to c in the
original data domain. This contradicts theorem 4.1. Hence,
such a point p does not exist. In other words, resultset
returned by the PBQ contains all the points from the one
returned by the original range query.

4.2 Analysis of performance improvement
Using DPR and pruning box queries improves the perfor-

mance of indexed queries because the transformation aligns
the index’s minimum bounding boxes’ faces with faces of the
query. In this section we provide a detailed analysis of the
range query and the PBQ performances. We first present
it for 2-dimensional queries and then generalize it for higher
dimensions.

4.2.1 Model Basics
Without loss of generality, we fix the size of all MBRs

so that we can calculate the area of MBR centroids whose
corresponding MBRs intersect with a query. From this area,
we can calculate the probability that an MBR of a certain
size will intersect with a query. For example, for 2D query
spaces, we fix an MBRs length to be 2l and breadth to be
2b. We must calculate probability that a random MBR of
certain size intersects the query space (a diamond in case of
the range query and a square for the PBQ). We analyze only
one quadrant of the 2-D plane. Analysis for other quadrants
is similar and is omitted.

Figure 4 shows the space in which an MBR of size 2l× 2b
must lie in order to intersect with the query space. We can
see from this visualization that the query faces align with the
MBR faces after transformation, and we conjuncture that
this alignment improves query performance for two reasons:
MBRs are less likely to intersect with the PBQ than the
range query, and MBRs that do intersect with PBQ have
a higher likelihood of containing a point within the query
than MBRs that intersect the range query.
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Figure 4: The MBR intersection areas in a quadrant

for range and transformed range queries

4.2.2 Analysis of Range Query
To calculate the probability of intersection for a range

query PRQ(r,l,b) with an MBR, we determine the area in
which the centroid of an MBR with length 2l and breadth
2b must lie for it to intersect with the query. As shown
in Figure 4(a), the intersection space can be divided into
four regions R1(�ADEB), R2(�OABC), R3(△BEF ) and
R4(�CBFG). The area of the intersection space can then
be calculated as,

ARQ(r,l,b) =Area of R1, R2, R3, and R4

=

Z r

0

b dx + lb

+

Z r
√

2

0

2x dx +

Z r

0

l dx

=
r2

2
+ lb + r(l + b) (5)

Hence, given the area of the data space, A, the probability
that an MBR will overlap with a range query is,

PRQ(r,l,b) =
ARQ(r,l,b)

A
(6)

4.2.3 Analysis of PBQ

To calculate the probability PB(r,l,w) of intersection of a
PBQ with an MBR, we determine the area in which the
centroid of an MBR with length 2l and breadth 2b must lie
for it to intersect with the query. As shown in Figure 4(b),
the intersection space is an extended box query with length
of 2l + r

√
2 and breadth of 2b + r

√
2. We divide the space

in to three regions
R1(�ADEB),R2(�OABC) and R3(�CBEF ). The area of
the intersection space can then be calculated as,

AB(r,l,b) =Area of R1, R2, and R3

=

Z r
√

2

2

0

(l + x) dx + lb

+

Z

r
√

2

2

0

(b + x) dx

=
r2

2
+ lb +

r
√

2
(l + b) (7)

Hence, given a the area of the data space, A, the probability
that a random MBR intersects the transformed range query
is,

PB(r,l,b) =
AB(r,l,b)

A
(8)

4.2.4 Hyperdimensional range queries

Figure 5 represents the four dimensional space as a two
dimensional grid of two dimensional slices through the four
dimensional space. In this case, the grid is a coarse grain
visualization of the effect of the wz plane on the xy planes
so each panel in the wz represents the xy plane that is fixed
at the wz panel’s coordinate. While this visualization is
coarse grained in that it does not show every point in the
range query, it illustrates how DPR transforms the range
query into a PBQ as shown in Figure 5(b), which shows
Figure 5(a)’s range query as a PBQ in a DPR transformed
space. Note that this visualization can be generalized to vi-
sualize any hyperspace as a nested series of two dimensional
grids. The above equations can be generalized to any even

(a) (b)

Figure 5: Visualizations of range and pruning box

queries relationship with MBRs in hyperspace

number of dimensions via a density function. We use this
nesting concept to find the area of centroids for any even
dimensional query. As we move away from the center of the
query in xy plane, density of points (or query space) in wz
plane decreases. We define density function as the area in
which center of an MBR must lie in order to intersect with
query space. The d-dimensional density function for range
query is denoted as ARQ(r,W,d) and that for the box query
is denoted as APBQ(r,W,d).

Consider the MBR in Figure 5(a); we first examine the
intersections of the wz projections of the MBR and query,
which is shown by the dotted lines. Note that if these pro-
jections did not intersect there would be no intersection of
query and MBR; however, since there is an intersection we
can determine if query and MBR do intersect by looking for
an intersection in the xy projection that is closest to the
origin of the range query.

Given a hyper-rectangle with widths W = 〈w1, · · · , wd〉,
the density function for the range query is recursively de-
fined as,

ARQ(r,W,0) =1

ARQ(r,W,d) =

Z r

0

AR(r−x,W,d−2)wd dx

+ ARQ(r,W,d−2)wd−1wd

+

Z r
√

2

0

AR(r−x
√

2,W,d−2)
2x dx

+

Z r

0

AR(r−x,W,d−2)wd−1 dx (9)

PRQ(r,W,d) =
ARQ(r,W,d)

A
(10)
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Figure 6: Comparison of estimated and observed

improvement for 10-dimensional data

in the original space and

APBQ(r,W,d) =1

APBQ(r,W,d) =

Z r
√

2

2

0

AB(r−x
√

2,W,d−2)
(wd−1 + x) dx

+ APBQ(r,W,d−2)wd−1wd

+

Z

r
√

2

2

0

AB(r−x
√

2,W,d−2)
(wd + x) dx (11)

PPBQ(r,W,d) =
APBQ(r,W,d)

A
(12)

in the transformed space. It can be seen that area anal-
yses for two dimensional cases are in fact special cases of
equations 9 through 11

We can see that because the density function for the PBQ
is less than the density function for the range query, when
we increase the number of dimensions, the range query has
a larger number of valid centroids that intersect it than the
PBQ.

4.2.5 Improvement estimation
Based on the equations, 9 and 11, we can estimate ex-

pected relative improvement due to the transformation as,

I(r,W, d) = PPBQ(r,W,d)/PRQ(r,W,d) (13)

and the difference as,

D(r, W, d) = PRQ(r,W,d) − PPBQ(r,W,d) (14)

When range r is considerably large compared to size of
the MBRs, the first term in equations 9 and 11 will domi-
nate and we won’t have significant improvement. However,
in most of the real world systems, query range is usually
small so that it retrieves few hundreds of records. Hence, in
general we can expect a considerable performance gain.

It should be noted that this analysis does not provide an
exact modeling of the actual trees because, first, MBRs are
not completely random in any index tree (due to the use
of heuristics) , and second, the analysis holds for MBRs of
uniform size which is generally not the case.

Figure 6 compares the estimated values of relative im-
provements (equation 13) with the observed values for a
fixed query for a ten dimensional database as the size of
the database increase. We can see that although there is
not an exact match, the trends in ratio are similar.

PBQ D = 2 R = 0.005

Level Total Empty Non-empty

Top 1.34 0.00 1.34
Middle 4.85 0.04 4.81
Bottom 144.42 0.10 144.32

RQ D = 2 R = 0.005

Level Total Empty Non-empty

Top 1.00 0.00 1.00
Middle 5.54 0.13 5.41
Bottom 153.29 3.29 150.00

PBQ D = 10 R = 0.07

Level Total Empty Non-empty

Top 36.25 22.79 13.46
Mid-h 604.14 545.11 59.03
Mid-l 6008.50 5863.13 145.37

Bottom 23627.35 23368.56 258.79

RQ D = 10 R = 0.07

Level Total Empty Non-empty

Top 52.81 33.64 19.17
Mid-h 940.16 873.98 66.18
Mid-l 9847.35 9699.43 147.92

Bottom 46404.61 46142.31 262.30

Table 1: Break down of page accesses

4.2.6 Avoiding Empty Pages
Experimentally, we can see that the reduction in area that

our model predicts for pruning box queries translates to
fewer page accesses in the index tree. Table 1 shows the
performance break down at each level of the index tree for
both range and pruning box queries for two and ten dimen-
sions and database of 100 million. The break down shows
the average number of page accesses, the average number of
empty page accesses, and the average number of non-empty
page accesses. An empty page has no children that satisfy
the query, while a non-empty page has at least one child
that satisfies the query.

We observe that both range and pruning box queries have
a similar number of non-empty page accesses, which corre-
sponds in our model to the shared centroid area that with
both queries. The number of non-empty pages access should
be similar between both query types because our trans-
formation does not change the relative distribution of the
records in the space.

We observe that the performance improvements are best
gained by reducing the number of empty page accesses.
For example, when D = 2, there are very few empty
pages, and we see a small difference in performance between
queries.However, when D = 10, empty pages make up the
majority of page accesses, and we see that the pruning box
query load approximately half the number of empty pages
than the range query, which results in a much larger perfor-
mance improvement.

5. RESULTS
In this section we present the results of applying the pro-

posed transformation on various databases. Effectiveness of
the proposed transformation is measured by comparing the
IO cost (i.e. number of index page accesses) for the pro-
posed pruning box queries with that of range queries. For
performance comparison purposes, we create R*-tree index
for the range query in the original space and R*-tree index
for the pruning box query in the transformed space.

Uniformly distributed synthetic data sets as well as a real
data set were used for the experiments. Data records were
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Figure 7: Effect on database size on page accesses

normalized to unit (hyper)cube. Page size of 4K bytes was
used for the index nodes. All results presented here are
based on averaging the I/O of one hundred random queries.
All the experiments were run on AMD Opteron 2.2.GHz
systems running GNU/Linux. The labels used for various
methods in the figures and tables are as follows: RQ - tradi-
tional range query on R*-Tree, PBQ - Pruning Box Query
on R*-Tree.

We begin with results on 2-dimensional data and then
proceed with the results for higher dimensional data. The
source code for all the programs is available at [16]

5.1 2D transformations
As explained earlier, transformation in 2-dimensional

databases is perfect, i.e., the transformed query does not
lose any useful results nor does it gather any unwanted re-
sults.

5.1.1 Effect of database size
Figure 7 shows the effect of database size on the number

of page accesses. As seen from the figure, as the database
size increases, number of page accesses for both range and
pruning box queries increases, as expected. However, rate of
increase for range query is higher than that of the pruning
box query. The performance improvement increases with
increasing database size. The relatively small improvement
is consistent with our analysis in section 4.2.6.

5.1.2 Effect of query ranges
We experimented with various query ranges keeping

database size constant (50 million records). The perfor-
mance comparison of pruning box query with range query
is shown in figure 8. Ranges in the figure are a normalized
distances. It can be seen from the figure that pruning-box
queries perform consistently better than range queries.

5.2 Higher dimensional transformation
The main challenge in transforming high dimensional

queries is that the DPR transformation tends to retrieve a
lot of false positives. We use the pruning box query to elim-
inate false positives and reduce the number of page accesses
for execution of the query. In the following subsections, we
present the results for multi-dimensional synthetic data.

5.2.1 Effect of database size
Figure 9 shows effect of database size on the query cost.

We used a database with 10 dimensional vectors. Query

Figure 8: Effect of query range on page accesses

range was kept constant. As can be seen from the figure,
as the database size increases, cost for both range and box
queries increases, as expected, but the rate of increase is
much slower for pruning box queries than for range queries.
We get more than 40% reduction in the cost for a database
size of 100 million vectors.

Figure 9: Effect of database size on page accesses

5.2.2 Effect of query ranges
Figure 10 gives the comparative performance of range

queries versus pruning box queries with increasing query
range. As seen from the figure, performance of pruning
box queries is consistently better than range queries, and
the performance difference gets wider with increasing query
ranges. This is because hyper-diamonds of the range queries
tend to intersect more with the bounding boxes than the
pruning box queries.

5.3 Performance results for real data
The experimental results described so far were carried out

on synthetic data. In this section we describe effectiveness
of the proposed approach on real data. We used GIS data
for our experiments. The data has two dimensions (co-
ordinates of points obtained through GPS) and there are
totally 108779 records (obtained from a GIS company). We
randomly selected 100 points from the database as range
query centers. For each query center, range was changed
from 0.01 to 0.05. Figure 11 shows that even for this small
database pruning box query has better performance than
the traditional range query on the R* tree.

6. CONCLUSION
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Figure 10: Effect of range on page accesses

Figure 11: Range query on GIS data

In this paper, we present a novel space transformation
technique to improve the performance of the range queries
based on L1 distance. The proposed transformation is com-
putationally easy to implement. Our theoretical analysis
suggests that performance improvement is dependent on the
relative sizes of the query ranges and the bounding box sizes
of the index. Based on the bounding box sizes of R*-tree
indexing we see performance improvement increases with
database sizes and dimensions. Our experiments with syn-
thetic as well as real data support these results.
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