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ABSTRACT
Cloud storage is an emerging infrastructure that offers Platforms as
a Service (PaaS). On such platforms, storage and compute power
are adjusted dynamically, and therefore it is important to build a
highly scalable and reliable storage that can elastically scale on-
demand with minimal startup cost.

In this paper, we propose ecStore – an elastic cloud storage sys-
tem that supports automated data partitioning and replication, load
balancing, efficient range query, and transactional access. In ec-
Store, data objects are distributed and replicated in a cluster of
commodity computer nodes located in the cloud. Users can ac-
cess data via transactions which bundle read and write operations
on multiple data items stored on possibly different cluster nodes.

The architecture of ecStore follows a stratum design that lever-
ages an underlying distributed index with a replication layer in the
middle and a transaction management layer on top. ecStore pro-
vides adaptive read consistency on replicated data. We also en-
hance the system with an effective load balancing scheme using
a self-tuning replication technique that is specially designed for
large-scale data. Furthermore, a multi-version optimistic concur-
rency control scheme matches well with the characteristics of data
in cloud storages. To validate the performance of the system, we
have conducted extensive experiments on various platforms includ-
ing a commercial cloud (Amazon’s EC2), an in-house cluster, and
PlanetLab.

1. INTRODUCTION
Cloud computing is a step towards the notion that all aspects of

computation can be organized as a utility, and it embraces paradigms
ranging from Platform as a Service (PaaS) to Software as a Ser-
vice (SaaS). As industry transits from in-house data management
to cloud-hosted management, cloud storage has become one of the
most widely acceptable infrastructure services [7].

Unfortunately, current cloud storage services are not adequate
to support applications that require guarantees on consistency es-
pecially in the presence of data updates. For example, while Ama-
zon’s Dynamo[14] supports key-value insert and lookup operations,
it does not offer range query support, and more importantly, trans-
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actional semantics for operations spanning multiple keys. More re-
cently, Google MegaStore [3] has started to provide a certain level
of transactional semantics for cloud storages.

In this paper, we deal with the consistency issue of replicated
data and load balancing problem in range-partitioned systems. While
this problem has a broad application domain ranging from tradi-
tional parallel and distributed databases to peer-to-peer range index
systems to the emerging cloud storage, we choose cloud storage as
our targeted application. Some example applications that might
embrace the use of cloud range storages are: a webshop which
wants to store listings in a sorted order based on their timestamps
so that users can query the latest ones and also needs to support
transactions such as updating user information or submitting user
orders; or a Web 2.0 photo sharing application which stores the
metadata of photos uploaded by users in date order and supports
range scan queries like “finding the highly ranked photos uploaded
within the last month”.

We propose ecStore, a highly elastic distributed storage system
with efficient range-query and transactional support that can be dy-
namically deployed in the cloud cluster. The design of ecStore is
motivated by the fact that current closed-source cloud data serv-
ing systems (such as Dynamo and Pnuts) and open-source systems
(such as HBase and Cassandra) do not support transactional se-
mantics across multiple keys. In addition, most of these systems
employ data migration to balance the storage load of the servers in
the system. However, under skewed query distributions, we also
need to balance the query execution load, which drives the design
of the load-adaptive replication technique in ecStore. This work
is part of our cloud-based data management system, named epiC
(elastic power-aware data-intensive Cloud) [2], which is designed
to support both analytical and OLTP workloads.

ecStore is designed as a stratum architecture. At the lowest
level, it employs a distributed data structure to decluster data ob-
jects across the storage nodes and facilitates parallelism to improve
system performance in terms of both throughput and response time.
While any DHT-based structure can be used, in this work, we em-
ploy BATON (BAlance Tree Overlay Network) [19] which sup-
ports efficient range query processing. In addition, BATON could
automatically repartition and redistribute the data when storage nodes
are added into or removed from the system. This function is desir-
able since a cloud storage should allow users to scale up and down
on the fly based on load and need.

In the middle tier, referred to as the replication layer, we lever-
age on the underlying distributed index structure to support replica-
tion. Here, we extend BATON to effectively support load-adaptive
replication for large-scale data. The idea of tuning the replication
process based on data popularity is common; however, most of the
previous work maintain the query access statistics on a per data ob-
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ject basis. This approach is inefficient when the amount of data
in the system is large, especially for cloud-scale databases. By the
use of self-tuning range histogram, ecStore can efficiently deal with
skewed access patterns while creating only a small number of repli-
cas and keeping the histogram maintenance cost minimal.

Finally, in the highest tier, referred to as the transaction layer,
we deploy a multi-version optimistic concurrency control scheme
over the cloud storage. While multi-versioning enhances the per-
formance of read-dominant applications, the use of optimistic con-
currency control takes advantage of emerging applications where
users typically access mutually exclusive data. In addition, the re-
covery control technique in ecStore guarantees the data durability
requirement when building a transactional cloud storage on virtual
infrastructures. While many aspects of this work have been studied
in isolation in the past, we believe that the fusion and adaptation of
these techniques in a real system has not been reported or evaluated.

In summary, the major contributions of this paper are as follows:

• We design ecStore – a highly scalable storage for elastic
computing environments which processes range queries effi-
ciently. We also support transactional access which bundles
multiple read and write operations in ecStore.

• We provide high resilience capability with replication and re-
covery control. We also enhance the load balancing function
in ecStore with a two-tier partial replication strategy, which
is adaptive with the database workload.

• We validate the prototype of ecStore on various platforms
including a commercial cloud (Amazon’s EC2), an in-house
cluster, and PlanetLab.

The paper is organized as follows. In the next section, we review
existing research work that are related to our proposal. We present
the system architecture of ecStore in Section 3. Then, in Section
4, we propose a load-adaptive replication technique for large-scale
data. In Section 5, we present the transaction management tech-
nique in ecStore. In Section 6, we study various aspects of system
performance in a real environment. We conclude in Section 7.

2. RELATED WORK

2.1 Replication in distributed and peer-to-peer
systems

A large-scale storage system with built-in replication was pro-
posed in [24] as the back-end for a commercial internet service.
In this system, the primary copy of data is responsible to handle
both read and write requests from clients. In addition, the system
only supports operations on a single data item, and the problem of
managing arbitrary transactions on multiple data items in replicated
environment has not been addressed.

In [9], a ring overlay structure named PRing is leveraged with
replication in cluster computing environment. Data resided on a
storage node is replicated on the successor nodes. The system em-
ploys pessimistic replication technique where an update needs to
be reflected on all replicas before coming to effect.

2.2 Distributed and parallel databases
In [8], a transactional distributed B+-tree is built for range query

processing in cluster environment. This distributed data structure
uses optimistic scheme to speed up the concurrency control, while
the underlying platform uses the two-phase commit protocol to en-
sure the correctness of transactions.

In [15], DeWitt and Gray present a thorough review on the tech-
niques used by various research and commercial parallel database
systems. Other related work include online load balancing in range-
partitioned systems using data migration [16] and self-tuning ap-
proach to re-organize the data in a shared-nothing system [22].

However, while traditional parallel database technologies form
the basis for the design of our system, they are not 100% fit for a
scalable storage which needs to elastically scale on-demand with
minimal overheads.

2.3 Cloud data and transaction service
Recently, data management facilities have been introduced into

cloud storage services. In [10], Brantner et al. proposed a data
management system on top of the Amazon S3 based on the client-
server model. The authors also proposed a solution for transac-
tion management in cloud databases in [20], which categorizes the
application data into three types and provides a different consis-
tency treatment for each category. However, consistency rationing
at data level instead at transaction level may incur additional meta-
data management overhead when the database size is large.

Lomet and Mokbel [23] put forward that a modern transactional
storage can be designed as a system consisting of a transactional
component and a data component, which are not tightly coupled
together as in the traditional storage. G-Store, a scalable data store
that provides transaction consistency for key groups, has been pro-
posed in [13].

Amazon has developed a highly available key-value store called
Dynamo [14] in cluster environment for its internal use. In Dy-
namo, storage nodes are organized on a ring-based distributed hash
table (DHT) and each data item is asynchronously replicated on the
successor storage nodes. The inconsistency between replicas of a
data object is nevertheless reconciled after a period of time, thereby
ensuring eventual consistency.

Compared to Dynamo, the Pnuts [12] cloud data platform from
Yahoo! provides per-record timeline consistency and supports more
expressive queries. As for the long term vision, the paper has iden-
tified the need for an extension of the consistency model to bundle
updates, which aims to provide atomic updates to multiple records.

3. SYSTEM DESIGN
Following the principle of pay-per-use model or the notion of

computing services being organized as a utility, a cloud storage sys-
tem should be able to provide dynamic scalability and allow users
to scale-out and scale-back on the fly based on the load character-
istics. This desideratum can only be achieved when storage nodes
could be easily added into or removed from the system without
manually partitioning, replicating and redistributing the data.

We do not follow the client-server model that builds a database
on top of an existing cloud storage (e.g. Amazon S3), in which
clients retrieve data pages from S3, buffer and update the pages
locally, and finally write them back to S3. Instead, we propose
to construct a scalable storage system within the cloud cluster to
achieve higher performance.

Figure 1 depicts the proposed architecture of ecStore. The stor-
age system consists of three main stratums: a distributed storage
layer, a replication layer, and a transaction management layer. The
key challenge is how to design techniques for each layer compo-
nent and make these components work together in a coherent sys-
tem. Here, we will briefly describe the design of each component.
The way these components work together is presented in Section 5.

At the bottom stratum, we use a tree-based structure, BATON[19],
as the underlying overlay to realize a scalable range-partitioned
system. In particular, ecStore organizes the storage nodes (e.g. vir-
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Figure 1: Stratum architecture of a transactional cloud storage

tual machines leased from EC2) as a balanced tree structured over-
lay and assigns a data range for each storage node. BATON has
been reported to be robust and adaptive in terms of handling node
joining and leaving, and offers efficient range query processing.

Note that only when we add (remove) storage nodes into (from)
ecStore, due to the pay-as-you-go principle, do we need to main-
tain the BATON structure. In other cases, ecStore acts as a range-
partitioned system. For example, to process an insert operation,
ecStore looks up which storage node is responsible for the data
range that covers the inserted data, and forwards the request di-
rectly to that storage node to insert the data into its local storage.
Each storage node in ecStore caches enough routing information so
that it can route a request directly to the appropriate node which is
responsible to serve the request.

BATON, unfortunately, does not provide replication and transac-
tion support, which is required for data management over the cloud
platform to provide the required reliability and correctness, while
improving efficiency. In the middle layer, we extend BATON with
a two-tier partial replication strategy to provide both data availabil-
ity and load balancing function in ecStore. The replication process
is designed to adapt with the database workload. The detailed de-
scription of the replication layer is provided in Section 4.

The top stratum of this architecture is a transaction management
module which implements a combination of multi-version and op-
timistic concurrency control scheme. In addition, we believe that
data durability is important in cloud storages. ecStore provides this
function with the recovery control technique designed to handle
different types of node failures. We shall elaborate on the transac-
tion management layer in Section 5. A summary of the techniques
used in ecStore and their advantages are presented in Appendix A.

4. LOAD-ADAPTIVE REPLICATION
In this section, we design an adaptive replication strategy in ec-

Store that is driven by the query load and update load in the system.

4.1 Replication in BATON
Existing work on replication in peer-based data management sys-

tem is not applicable to BATON directly as BATON is range based,
instead of hash-based. Here, we examine three possible approaches
to replicating data in BATON. A straightforward approach is to
replicate data on the surrounding nodes of a storage node in the
BATON tree including: parent node, children nodes, left-adjacent
node, right-adjacent node, and the nodes in the inverted routing ta-
ble. However, in this approach, the locations of replicas of a data
item are implicitly identified by the location of the primary copy.
To create or search a specific secondary copy, we first use the rout-
ing protocol to identify the node which stores the primary copy,
then follow the appropriate link from that node. Nevertheless, it is

complicated to identify the surrounding links of a failure node.
The second approach to replicating data in BATON is replicating

based on data range. In particular, if the key of a data item belongs
to a certain range we hash the range value and use the output of this
hash function to determine the identity of the storage node where
we can store the replica of that data item. However, BATON proto-
col uses the key value to start and route a search rather than identity.
Furthermore, hashing breaks the order of replicated data. Although
we can reduce the effect of hashing by replicating on range-basis,
not per data item basis, the order of replicated data is not preserved
on the BATON structure. Thus, the range query performance will
be not as effective as the basic BATON scheme.

Since the above two approaches have their own short-comings,
we propose the third approach called the shift key value scheme,
which is based on key shifting. Assume the replication level of a
data object is K. We define the shift key distance (δ) as the size
of the key’s domain (Key Range) divided by the replication level.
Given the initial key of a data object, we generate K − 1 virtual
keys for that data object as follow:

V irtualKeyi = (initialKey + i ∗ δ)%MAX KEY (1)

where i = 1 ... (K − 1) and δ = KEY RANGE/K,
In this way, different replicas of a data object will be stored in

the same BATON structure of the primary copy but associated with
their virtual keys. Hence, there are totally K copies of each certain
data object replicated in the cluster. Moreover, with the above set-
ting of the shift key distance, the replicas of a specific data object
are well distributed across the storage nodes in the cluster.

It is important to note that the initial key should also be stored
together with the replicas for verification during query processing.
In addition, if two virtual keys fall into the same range managed
by one physical storage node, the replication scheme just forwards
the later replica to the right-adjacent of that node. In summary,
by shifting the initial key to multiple virtual keys, this approach
preserves the order of replicated data. Furthermore, this technique
is efficient and elegant, and yet simple to implement.

4.2 Two-tier Partial Replication in ecStore
In the above section, we have described where to replicate a cer-

tain data object. The next key question is which data should be
replicated. A straightforward approach is to replicate all data ob-
jects in the system with the same replication level, K. However,
this may not be necessarily good. If K is large, the system storage
and the overhead to keep them consistent can be considerably high.
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Figure 2: Two-tier partial replication

Moreover, Gray et al. [18] showed that traditional replication
schemes do not scale well. The reconciliation rate grows as the
squares of the number of replicas and the dead lock rate increases as
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the cube. Additionally, in distributed and web applications databases,
the access pattern is often skewed and changes over time. Data
migration is often used in range-partitioned systems to deal with
skewed data distributions [16, 22]. However, under the skewed
query execution load, migrating hot data from one overloaded node
to another node only shuffles the hot spot throughout the system.

Therefore, we propose a two-tier replication mechanism to pro-
vide both data availability and load balancing function for ecStore.
In this scheme, each data object (e.g., the data object with key 62 as
depicted in Figure 2) is associated with two kinds of replicas - sec-
ondary and slave replicas - in addition to its primary copy. The first
tier of replication is essentially a level K replication for all data
objects, where K is typically a small number. The objective is to
maintain a minimal number of replicas, named secondary replica,
together with the primary copy for data reliability requirement.

At the second tier, popular data objects are associated with ad-
ditional replicas, called slave replicas. The purpose is to facilitate
load balancing for frequently accessed objects. When a primary
copy or secondary replica faces a flash crowd (sudden increase in
query requests), it will create slave replicas (which become associ-
ated with it) to help resolve the sudden change in the workload. In
this way, the costs of replication, including replica storage cost and
replica consistency maintenance cost, are always kept minimal.

4.3 Load-Adaptive Replication with Self-tuning
Histogram

Figure 3 shows the process to selectively replicate data ranges
that is beneficial for relieving the hot spot. While the idea of tun-
ing replication process based on data popularity is common, most
of the previous work propose to maintain the query access statis-
tics on a per data object basis. This approach is inefficient when
the amount of data in the system is large, especially for the case
of cloud storage. In this paper, we propose a new approach to ef-
fectively support load-adaptive replication for large-scale data with
low cost of access statistics maintenance.

Access frequency

key 

range1712 14

Histogram

Manager

Replication

Manager

12

14

Query 

requests

Hot range 

to replicate

Figure 3: Replication process at a storage node

In particular, we use histogram to approximately estimate the
access frequency of a data range. The boundary of a bucket forms
the two ends of a data range. When the storage node serves a range
query (an exact query can be considered as a range query whose
two ends’ value are equal), it will increase the access frequency of
all the buckets whose boundaries overlap with the query range.

Consider a storage node S which manages a whole data range
R. Suppose there are n buckets in the histogram and ri is the range
of bucket i, we have

⋃n
i=1 ri = R. Let Qi be the access frequency

of the data range corresponding to bucket range ri. Then we define
the workload Load(S) of node S as the total access frequency of
all bucket range ri.

Load(S) =

n∑
i=1

Qi (2)

Since the replication process for load balancing incurs additional
overhead to the system, it should not be activated in an ad-hoc man-
ner. Therefore, we consider an approach in which a storage node

will trigger the load balancing process whenever its Load(S) in-
creases by a threshold factor λ. In particular, we can model the
values of Load(S) of a storage node during its operation time as
a geometric series of Li = cλi where c is a constant representing
a unit amount of workload. Thus, when the Load(S) of a storage
node increases from Li to Li+1, we initiate the replication process
for load balancing.

When the load balancing process is triggered, the storage node
will choose m most popular data ranges to replicate to other lighter-
loaded nodes to relieve the amount of its overloaded load. The
replication speed, which determines how many replicas should be
populated for the chosen data range, is load-dependent. The more
load the data range observes, the more replicas created for this data
range. Note that a storage node can gather the load information of
other nodes in the system via tablet controller servers as in Pnuts
[12], or via gossip-based protocol as in Dynamo [14]. In ecStore,
we piggy-back the load information on the query processing mes-
sages and heart-beat messages sent between the storage nodes in
the system. The convergence rate of the load statistics information
is studied in detail in the technical report [1]. Based on the load
information of other nodes, the overloaded node will choose the
lightest-loaded node for replication to shed its work load.

Now, we describe how to determine the suitable range for each
bucket in the histogram. A simple method is using equi-width his-
togram. Each bucket is assigned a range approximately to the ratio
of the key range R managed by the storage node divided by the
number of bucket n. However, this method is not flexible. If we
assign a large key range for buckets, the benefit is low cost in his-
togram maintenance; but the access frequency estimation provided
by this histogram is not accurate enough, which results in high cost
in replication due to replicating a large data range containing non-
popular data objects inside. On the contrary, a small key range
for buckets guarantees the accuracy of access frequency statistics,
thus the replication process is more effective since we only need to
replicate the beneficial data ranges. However, the cost of histogram
maintenance is high in this case.

In this paper, we use a self-tuning histogram to get a higher ac-
curacy of the access frequency estimation while keeping the his-
togram maintenance cost minimal. The key idea of self-tuning his-
togram is dynamically restructuring the histogram (splitting/merging
the buckets) so that the total number of buckets in the histogram is
kept constant. In particular, all the buckets in the histogram are
initially assigned equal bucket ranges. However, during the run-
time, the buckets will diverge in the value of access frequencies
maintained by them: some buckets will have much higher access
frequencies than the others due to skewed access patterns.

In this case, we merge the consecutive buckets with similar fre-
quency into a bucket with a larger data range and split the bucket
with high access frequency into buckets with smaller data range.
During the replication process, we only choose to replicate the data
ranges maintained by small buckets because they provide more ac-
curate access frequency estimation and the cost of replicating small
data ranges is also cheaper than replicating large data ranges. The
technique for self-tuning histograms was first used in [5] to main-
tain an estimation of the data distribution in a relational table.

However, it is common that data access patterns change over
time. The slave copies of the used-to-be popular data object may
no longer serve its purpose and become redundant after a period of
time. Hence, we need to reduce the cost of maintaining unneces-
sary replicas. When a slave replica of a data range does not provide
benefit to load balancing anymore, we discard it from the system.
For each data range ri managed by the bucket i in the histogram,
we also maintain the data update frequency Ui on this data range.
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When the update frequency Ui of a range is larger than the access
frequency Qi, maintaining the replicas of such a data range only
incurs high cost of update propagations. In this case, we remove
the information of this data range from the replica list and notify
the nodes storing these replicas to discard them from the storage.

4.4 Replica Consistency Management
In cloud storages, we have to provide 24x7 data availability.

Therefore, updating all copies synchronously is not suitable due to
longer response time, especially when there are storage node fail-
ures or when storage nodes are located in distributed clouds [6].
Unlike the proposal in [9] which uses the pessimistic replication
technique (an update needs to be reflected on all replicas before
coming to effect), we employ the optimistic replication method in
ecStore. In particular, the primary copy is always updated imme-
diately, while updates to secondary (and slave) replicas can be de-
ferred. In this optimistic replication method, the single primary
copy is the data object indexed with the original key. Secondary
copies of a data object form a set of replicas indexed with the vir-
tual keys generated from the primary copy’s key.

The use of optimistic replication allows us to increase the re-
sponsiveness and availability of ecStore. However, by CAP theo-
rem [17], any distributed system faces the trade-off between avail-
ability and consistency. In this case, there is a possibility that the
modification to primary copy gets lost when this operation has not
been propagated to other secondary copies before the primary copy
crashes suddenly. In ecStore, we adopt the write-ahead logging
scheme and devise a recovery technique (cf. Section 5) to deal with
the problem of “lost updates” due to different types of node fail-
ures. Hence, ecStore guarantees that updates to the primary copy
are durable and eventually propagated to the secondary copies.

Note that ecStore provides adaptive read consistency by using
the quorum model for read operations. A read request is successful
only when it collects sufficient votes for a read quorum. If users re-
quire strict consistency (desire to access the latest version of a data
item), then they might want to configure the value of read quorum
to be equal to K, the total number of copies of that data object. In
the other extreme, users can set read quorum value to 1 to speed up
the read process at the cost of weak consistency (accessing older
versions of data).

In our replication scheme, K is normally the number of replicas,
including the primary copy and secondary replicas, for data reli-
ability requirements. A read request will collect read votes from
these copies. A write request will update primary copy first and
asynchronously propagate the effect to secondary replicas. Al-
though there could be an increasing number of replicas created
by the self-tuning replication process for load balancing, to pro-
cess a read request the system still collects votes from above K
copies. However, if any copy (among the primary copy and sec-
ondary replicas) is overloaded, that copy will redirect the read re-
quest to one of the slave replicas attached to it. A write request
is performed similarly as in the initial case with one more step: a
secondary replica is responsible to update its slave replicas asyn-
chronously. Nevertheless, this step could be executed periodically
and less frequently than the initial case, for example, sending up-
date messages to slave replicas when there is spare network band-
width. Therefore, ecStore does not need to track the exact number
of replicas corresponding to each data object.

Another notable point is that ecStore guarantees the order of
modification done by different users to be the same on each replica
in spite of the asynchronous update propagation process. As we
will discuss in Section 5, ecStore is designed as a version-based
storage system: each data object is attached with a transaction com-

mit number, which is monotonic increasing in the system. Based
on this version number, the replica of a data object can order the
updates propagated to it correctly.

In summary, ecStore adopts the notion of BASE (BAsically avail-
able, Soft state, Eventually consistency) [25] to deal with the replica
consistency issue. In this way, it does not need to implement the
two-phase commit for the refresh transactions in order to bring
replicas up-to-date as in the case of strong replica consistency.

5. TRANSACTION MANAGEMENT
Different parts of the system can choose different points in the

spectrum between BASE and ACID. Since we desire to provide
transactional semantics bundled with read/write operations in ec-
Store, we address the transaction management issue in this section.

5.1 Data in The Cloud
In general, data in cloud storages possesses two typical charac-

teristics. First, it is usually sufficient to perform operations on a re-
cent snapshot of data rather than on up-to-second most recent data
[4]. Second, the locality of data accessed by transactions: this data
tends to be independent between concurrent transactions of differ-
ent users. It is because of the fact that in web applications, users
are more likely to operate on their own data, which forms an entity
group or a key group as characterized in [3, 13].

The above characteristics of cloud data drive the design of the
concurrency control technique in ecStore. A hybrid scheme of
multi-version and optimistic concurrency control becomes a good
candidate to implement isolation and consistency for cloud-scale
databases. The essence of this approach is that multiple versions
of data can benefit the read-only transactions, while the optimistic
method protects the system from the locking overhead of update
transactions. We present more details on the rationale of combin-
ing the multi-version and optimistic scheme in Appendix B.1.

5.2 Multi-version Optimistic Concurrency Scheme
In this hybrid scheme, each transaction has a startup timestamp,

which is assigned when the transaction starts, and commit times-
tamp, which is set up during the commit process. In addition, each
data object also maintains the commit timestamp of its most recent
update transaction. When a transaction accesses a data object, the
most recent version of the data with a timestamp less than transac-
tion’s startup timestamp is returned. Thus, no locking overhead is
incurred by the read requests.

Likewise the case of traditional optimistic control methods, at
commit time each transaction is to be validated against other trans-
actions that have committed successfully during its execution time.
However, there are two main differences when we combine with
the multi-version method. First, read-only transactions run against
a consistent snapshot of the database, hence they can commit with-
out the validation phase. Second, the validation phase of update
transactions uses the version number of data objects to check for
write-write and write-read conflicts among concurrent transactions.

In particular, an update transaction is allowed to commit only if
the version of any data object observed by this transaction during
the read phase is still the same when the transaction is validated,
meaning that these data objects have not been updated by other
concurrent transactions. By using version-based validation, there
is no need to store old write-sets of committed transactions just
for the purpose of validating read-set/write-set intersections. The
version-based validation algorithm is presented in Appendix B.2.

With this protocol, ecStore provides Snapshot Isolation property,
which is a widely accepted correctness criterion and adopted by
many commercial and open-source database systems. Note that
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snapshot isolation is known to be not serializable in all executions
[11] since it does not check the read-before-write conflicts . We
discuss modifications to our protocol in Appendix B.3 to provide
stricter guarantees beyond snapshot isolation. In addition, ecStore
maintains a commit-number generator to ensure the global order of
all committed update transactions. We present the implementation
of this commit-number generator in Appendix B.4.

Now, we describe how the transaction and replication layer work
together in ecStore. Read-only transactions will access the replicas
for the load balancing purpose, so that the primary copy will not
be the bottleneck under skewed workloads. In addition, the consis-
tency of the replicated data observed by the read-only transactions
is tunable with the quorum model. Users can set the quorum param-
eter to appropriate values based on their application consistency re-
quirements. However, the update transactions are always required
to access the primary copy of data, both in the read phase and write
phase, to ensure that the updates in ecStore are well-behaved. Ad-
ditionally, ecStore uses mastership failover to handle unsuccessful
updates on the primary copy; if the primary copy fails during the
processing of an update transaction, one of the secondary copies
will be promoted to take over the mastership.

5.3 Commit Protocol
In addition to the concurrency and isolation issue as addressed

above, two other desiderata are atomicity and durability, which re-
quire that all or none of the updates of a transaction come into ef-
fect and the modifications which have been confirmed with users
should be persistent in the storage. These two issues are handled
by the commit protocol and recovery control.

In ecStore, read-only transactions access the consistent snap-
shots of the database, and hence they do not need to perform the
commit process. For update transactions, during the commit pro-
cess, the log and commit records are stored on a local dedicated
disk of the transaction coordinator and also replicated over the stor-
age nodes in the system for durability. This information is used for
the system recovery from different types of node failures. The de-
tails of the commit protocol are presented in Appendix B.5.

5.4 Recovery Control
In ecStore, a storage node can leave the system in two manners.

In the case of safe departures, a storage node will notify appropriate
nodes in the cluster, transfer any of it roles and data and safely leave
the system. No recovery process is needed for this case. However,
we need to take the case of unsafe departures into account. We
divide the unsafe departure into two types of failures with different
recovery treatment for each: short-term failure (due to software
bugs or communication failure) and permanent failure (mainly due
to hardware crashes or the virtual machine is terminated).

When a storage node rejoins the system after a short-term fail-
ure, it will check its local log store to see whether there is any log
record of committed transactions coordinated by itself that has not
been sent to other transaction participants. These log records will
be forwarded to the involving storage nodes to finish the commit
process. In this way, transactions in ecStore are durable. The ef-
fect of committed transactions are persistent even when the trans-
action coordinator fails before sending the commit commands to
other transaction participants. Another important point is that since
ecStore uses mastership failover, we also need to get the primary
copy of data on the failure storage node up-to-date. Particularly,
the secondary copy that previously is promoted to mastership will
periodically ping to check whether the primary copy has recovered
and send back the updated value to the primary copy when possible.

Now, we describe the recovery control in the case of long-term

failures. When a storage node suffers from a long-term crash, an-
other healthy node will be chosen to take care of the range index
that previously is managed by the failure node. Then the recov-
ery process proceeds in two main steps. First, the new responsible
node will recover the data in that range by copying the correspond-
ing replicated data from other nodes in the cluster. Note that we
copy back the latest version of data among the secondary copies.

Second, the new responsible node will check the transaction logs
replicated in the cluster to see whether there is any log record of
committed transactions coordinated by failure node that has not
been executed at the transaction participants. The new responsible
node will perform redo operations by forwarding the log records
to the involving storage nodes to materialize all the effects of the
committed transactions. Hence, the update transactions in ecStore
are durable even in the case of long-term crashes of storage nodes.
Note that redo operations are sufficient for the long-term failure re-
covery process since ecStore follows optimistic concurrency con-
trol scheme, which defers all updates until commit time.

6. PERFORMANCE STUDY
In this section, we present experimental results when testing ec-

Store on the commercial cloud EC2. In Appendix C, we pro-
vide additional results of the range scan latency, the effect of self-
tuning histogram, TPC-W benchmark, performance comparisons
with other systems in an in-house cluster, and the performance of
ecStore on PlanetLab. The PlanetLab environment simulates dis-
tributed clouds [6] where compute nodes are not physically close.

6.1 Experimental Setup
We deploy a prototype of ecStore and conduct experiments on

a cluster of commodity machines on Amazon EC2. Each storage
node in our system runs on a small instance of EC2. This instance is
a virtual machine with a 1.7 GHz Xeon processor, 1.7 GB memory
and 160 GB disk capacity. We use the Berkeley Database Java
Edition, which implements persistent transactional B+-tree, as the
physical data store of each storage node.

Experimental data is synthetically generated based on a social
application. A data record has a key, which is the user identity, and
contains a string representing this user’s friend list (a list of other
user ids). A write operation will update the friend list in the record
while a read operation returns this information to the users. When
two users accept as friend of each other, we execute a transaction
bundling four operations: two read operations to retrieve informa-
tion of these two users and two write operations to update their
buddy lists. The identity of a user is randomly chosen from a space
of 109 users. The system is initially bulk loaded with 10000 ∗ N
records where N is the number of storage nodes in the system.

The default system size for the experiments is 18 storage nodes.
Each data object is stored with replication level of 3. The threshold
factor (cf. Section 4.3) to trigger the replication process for load
balancing is set to 2. A workload of 1000 operations is continu-
ally submitted to each storage node in the system. A completed
operation will be immediately followed up by another operation.

6.2 Scalability
In this section, we experiment the elastic scaling property of ec-

Store in terms of system throughput and response time when testing
the system with different system sizes.

6.2.1 System throughput
Figure 4 shows the read throughput of ecStore with different

levels of read consistency. When users require strict consistency
for a read operation, the system needs to collect all replicas of a
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data record and return the most recent copy to the user. The trade-
off of high level of read consistency is the decrease in throughput.
This figure also shows that ecStore can scale well: as the number
of storage nodes increases, the aggregated read throughput also in-
creases. The system read throughput scales almost linearly when
read consistency is relaxed (by requesting a small read quorum).

In addition, the write throughput of ecStore with replication level
3 is shown in Figure 5. As expected, the pessimistic replica-
tion method is outperformed by the optimistic replication technique
adopted in ecStore.

6.2.2 System response time
Figure 6 demonstrates a good elastic scaling property of ecStore,

where more load can be handled by adding more storage nodes
to the system. In our experiment setting, the workload submitted
into the system is proportional to the system size. However, with
a larger number of nodes, the system has more capacity as well.
Therefore, the system response time for a read request with respect
to a specific read consistency is maintained nearly unchanged with
different number of storage nodes. In addition, we can observe
from Figure 6 that a query which requires better read consistency,
by requesting a larger read quorum, suffers from higher latency.

6.2.3 Transaction throughput
Figure 7 shows the transaction throughput of ecStore when the

percentage of read-only transactions (Txn mix) varies from 10% to
90%. In this experiment, each update transaction bundles two read
operations and two write operations while a read-only transaction
performs only two read operations.

The multi-version concurrency control scheme guarantees that
read-only transactions will always commit successfully without spend-
ing time to check data conflicts with other concurrent update trans-
actions. Hence, the transaction throughput regarding to each sys-
tem size increases together with the percentage of read-only trans-
actions in the workload. In addition, the transaction throughput
scales well under heavier read workload (Txn mix = 60% and 90%).

6.3 Dealing with Skewed Query Distribution
In this experiment, we examine the effect of replication on the

system load distribution and maximum load imbalance when the
query distribution is skewed. Zipfian factor is set to 1 in this test.
We also study the effect of varying replication threshold factor and
transaction restart probability under the skewed access pattern.

6.3.1 System load distribution
The load of a node is measured by the number of queries that

has been served by this node. Ideally, a certain percentage of the
number of nodes in the system is expected to serve the correspond-
ing percentage of the total system workload. However, as we can
see from Figure 8, this is not the case when the system employs no
replication. Under the skewed query distribution, the only one copy
of data will soon become the bottleneck, leading to the imbalanced
system load distribution.

A higher replication level will balance the system load distribu-
tion since the additional replicas could help to shed the workload
on the overloaded primary copy. However, the system cannot af-
ford to replicate all data records at a high replication level due to
storage cost and replica consistency maintenance cost.

This is the case where the two-tier partial replication takes its
effect. As we can see from the curve labeled ‘3-adapt’ in Figure
8, when a replication level of 3 is augmented with load-adaptive
replication, the system load is well distributed, even better than
using replication level 4. It is because the proposed load-adaptive
replication method selectively replicates more copies for the hot
data ranges to shed the workload of the overloaded node to other
under-loaded nodes. In this way, we can achieve a balanced system
load distribution while keeping the cost of replication minimal.

6.3.2 Maximum load imbalance
The maximum load imbalance is defined as the ratio between the

load of the heaviest-loaded node divided by the load of the lightest-
loaded node in the system. Figure 9 shows the maximum load im-
balance of different system sizes under the skewed access pattern.
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With our experiment set up, a larger number of nodes in the sys-
tem will also result in a higher query workload input. The situation
becomes worse when the query distribution is skewed: an increas-
ing number of queries will be directed to one hot spot. If no repli-
cation scheme is used, the system will end up with high load imbal-
ance. On the contrary, the load-adaptive replication implemented
in ecStore quickly helps to reduce more than half of the maximum
workload imbalance without the need of replicating all data in the
system at high replication level.

6.3.3 Effect of varying replication threshold
Recall that the threshold factor determines the rate at which the

system can react to changes in access patterns. Figure 10 shows the
effect of varying the threshold factor on the maximum load imbal-
ance in a system of 18 nodes with replication level 3-adaptive.

We can observe from the figure that the system has less load
imbalance when this threshold is set to small values. It is because
with a small threshold, a storage node can recognize its overloaded
state and hot query ranges faster. Consequently, it can activate the
replication process for load balancing at the right time when the
system faces a flash crowd query. However, setting a small value
for the threshold factor benefits the system only when the query
access pattern is often skewed and changes overtime. Otherwise,
constantly checking the system overloaded state and determining
which data ranges to replicate could consume CPU time and affect
the overall performance of the system.

6.3.4 Transaction restart rate
In this experiment, each transaction submits a query with range

size 100 (the start value of query range is selected with Zipfian dis-
tribution), updates ten values among them and writes back to the
system. This setting of large read-set and write-set together with
the skewed query distribution increase the probability of transac-
tion restart as shown in Figure 11.

However, we can observe the advantage of multi-version concur-
rency control. Since read-only transactions do not need to check
data conflicts with other concurrent update transactions in the sys-
tem, the transaction restart probability reduces when the transaction
mix (the ratio of read transactions over total number of transactions
in the system) increases. On the contrary, under non-versioning
scheme, each transaction needs to validate against other concurrent
transactions at the commit time. Therefore, in the case of non-
versioning scheme the transactions almost have the same restart
probability with different transaction mixes.

7. CONCLUSIONS
In this paper, we introduce ecStore – an elastic transactional

cloud storage that can be dynamically deployed on the virtual in-
frastructures. ecStore is designed as a stratum architecture which
leverages the underlying BATON[19] distributed index with two
extension functions: load-adaptive replication and multi-version
optimistic concurrency control. We have conducted extensive ex-
periments in different environments, including the commercial cloud
EC2, an in-house cluster, and PlanetLab. Experimental results show
that the proposed load-adaptive replication method can effectively
balance the system load distribution under skewed workloads.
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APPENDIX
A. TECHNIQUES USED IN ECSTORE

Table 1: Summary of techniques used in ecStore
Problem Technique Advantages of the tech-

nique
Partitioning Range partitioning Efficient range query

processing
Routing P2P with routing cache - No central router

needed
- Zero-hop routing cost

Load bal-
ancing

Data migration and
load-adaptive replica-
tion

- Data migration bal-
ances the storage load
- Replicating popular
data ranges balances the
query execution load

Replication - Shift key approach
- Two-tier partial repli-
cation
- The replication pro-
cess adapts with the
database workload
- Self-tuning range his-
togram for access fre-
quency statistics

- The order of replicated
data is preserved
- Provide both data relia-
bility and load balancing
function
- Low replica storage
cost and replica consis-
tency maintenance cost
- Low cost of access
statistics maintenance

Replica
consistency
manage-
ment

Asynchronous write +
quorum read following
CAP/BASE principle

- Low write latency
- Adaptive read consis-
tency

Transaction
manage-
ment

Multi-version opti-
mistic concurrency
control for consistency
across multiple keys

- Favor read-only trans-
actions
- No locking overhead

Recovery
control

WAL with treat-
ments for recovery
from short-term and
long-term node failures

Updates to primary
copies are durable and
eventually propagated to
secondary copies

B. TRANSACTION MANAGEMENT DETAILS

B.1 The Rationale of Multi-version Optimistic
Concurrency Scheme

It has been a consensus that locking approach may suffer from
problems such as the lock maintenance overhead and the lack of
general-purpose deadlock-free locking protocol. In addition, lock-
ing may be necessary only in the worst case. In environments with
little resource contention, transactions could be optimistically al-
lowed to execute and the possible conflicts among concurrent trans-
actions will later be validated when these transactions enter their
commit phase. With this optimistic scheme, there is no blocking
caused by the locks, and thus the system performance is improved
in query-dominant environments.

The main shortcoming of the optimistic concurrency control scheme
is that transactions may be restarted unnecessarily and even a read-
only transaction may have to abort due to data conflicts with other
transactions committed during its execution time. Generally, there
are two potential ways to reduce the data contention among the con-
current transactions in the system. One possible way is to compro-
mise the data consistency by running queries at non-repeatable read
or dirty-read isolation level. This approach, nevertheless, suffers
from a certain level of serializability violation. Another promising
way is to compromise the timeliness of the data by the use of ver-
sioning to avoid conflicts between the read-only and update trans-
actions. In this method, multiple versions of data are maintained to

allow queries to run against consistent snapshots of the database.
Hence, read-only transactions are serializable before all concurrent
update transactions and more importantly, there is no concurrency
control overhead with the read-only transactions.

B.2 Version-based Validation Algorithm

Algorithm 1 : Validation process at a participant node
Input: read-set (RS) of the validating transaction T
Input: node S where T is validated
Output: valid state of the validation process

1. valid state := true
2. for all data object O in RS(T, S) do
3. if read version(T, O) < latest version(O) then
4. valid state := false
5. if valid state = true then
6. Send vote message to the transaction coordinator
7. else
8. Send abort message to the transaction coordinator
9. return valid state

B.3 Serializable Snapshot Isolation in Distributed
Environments

In [11], it has been showed that database systems with snapshot
isolation can be enhanced to guarantee serializability by detecting
the cyclic read-write dependency in the serialization graph in run-
time and restarting one of the involving transactions. However, the
implementation of this approach in distributed environments is a
challenging task. Here, we discuss modifications to the concur-
rency control protocol in ecStore to deal with this problem.

In particular, after executing the read phase of an update trans-
action, the transaction coordinator will request the write locks at
the time of transaction validation to prepare for the write phase. If
all the locks can be obtained and the validation succeeds, then the
transaction can comfortably execute the write phase, and finally re-
lease the locks. Nevertheless, if the transaction cannot acquire all
the necessary write locks, it will re-execute the read phase and re-
quest for the locks that it could not get in the first time. That is, the
transaction keeps pre-claiming the locks until it gets all the neces-
sary locks, so that it can enter the validation phase and write phase
safely. Hence, the global serializability is guaranteed. Note that if
the database is well partitioned based on the workload so that trans-
actions spanning multiple partitions do not occur frequently, then
the distributed locks are only necessary in the worst case.

B.4 Commit-Number Generator
The benefit of multi-version optimistic concurrency control scheme

does not come for free. The challenging task when implementing
this hybrid scheme in ecStore is how to establish a global counter
to ensure a global order of all committed update transactions. In
ecStore, a certain storage node is chosen as the commit-number
generator. Typically, the first storage node in the cluster will as-
sume this role. The commit-number generator also chooses other
two storage nodes in the cluster as its standby successor. In our im-
plementation, we randomly select two nodes in the cluster that have
just sent some messages (e.g. the query processing messages) to the
commit-number generator. In case the commit-generator fails, one
of its two successors can take over the role. Moreover, the con-
tact information of the commit-number generator and its standby
successors can be easily maintained at each storage node in the
cluster. Piggy-backing this information on the periodical heartbeat
messages sent between storage nodes in the cluster is sufficient.

When an update transaction successfully validates against other
update transactions which have committed during its execution time,
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it will get a commit-number from the commit-number generator.
The commit-number generator guarantees to generate monotonic
values over the sequence of requests from the update transactions
by increasing the value of latest generated commit-number before
returning the new commit-number. Note that only update transac-
tions need to contact with the commit-number generator after suc-
cessful validation phase; hence, the commit-number generator is
not the critical point of failure. In addition, the latest generated
commit-number is replicated on storage nodes in the cluster and
also piggy-backed on the query processing messages sent among
storage nodes. In this way, each storage node can cache the recent
commit-number and use this as the start timestamp for the coming
transactions.

B.5 Commit Protocol
By adopting multi-version optimistic concurrency control, all

read-only transactions would always succeed because they only ac-
cess data in a consistent snapshot of the database. The timestamp
to identify a snapshot is the commit numbers of committed update
transactions in the system. Since optimistic concurrency control
defers update effect until commit time, we can piggy-back its con-
currency control information for validation phase on the messages
of the commit protocol as illustrated in Algorithm 2.

Algorithm 2 : Commit protocol at transaction coordinator
1. Send validation requests to participant nodes
2. Collect vote messages from the involved nodes
3. if all validation successful then
4. Generate commit number (timestamp) for the transaction
5. Store and replicate the log records and commit record
6. Send COMMIT message to the participant nodes
7. else
8. Send ABORT message to the participant nodes

A notable point in the commit algorithm is that when all the
transaction participants have positively voted, the transaction co-
ordinator will store the log records and commit records to its lo-
cal disk and also replicate these records over the storage nodes in
the cluster for durability. This information is useful for the recov-
ery process. When all the updates of a committed transaction have
been successfully propagated to other replicas, the storage node can
safely delete the log records and commit record for this transaction.
Thus, the size of the log store is not large.

Note that when deploying ecStore on virtual infrastructures such
as Amazon EC2, the storage nodes (virtual machines) do not have
dedicated disks to store the transaction log records. However, when
ecStore is set up to run directly on physical hardware (for example
an in-house cluster), installing dedicated disks for storage nodes
can help to increase the IO performance since ecStore can write
data records and log records to separate disks.

Moreover, in web applications users tend to operate on their own
data which forms an entity group and a key group as character-
ized in [3, 13]. By clever designing the key of data so that all data
related to a user have the same key prefix which is the user’s iden-
tity. Hence, data accessed by a transaction is usually clustered on a
physical machine. In this case, the commit protocol is not expen-
sive. Furthermore, there are available solutions in the literature for
improving the performance of the two-phase commit such as the
non-blocking Paxos algorithm [21].

B.6 Version Collection
We have proposed to integrate both replication and multi-version

technique into ecStore. In fact, each technique has its own pur-
pose. Replication helps to increase data availability of the sys-

tem while multi-version scheme supports higher transaction con-
currency. Therefore, a large amount of the total system storage
might be merely used for replication and multi-version purpose,
which reduces the storage utilization. Consequently, we need some
mechanisms to prune old versions of data in the system.

A practical method to trim obsolete versions of data is the use
of a version threshold. We only prune the versions whose version
timestamps are more obsolete than the threshold. The value of the
threshold affects the system in two ways. If we set the version
threshold to be too large, then the storage is not effectively utilized.
In contrast, small version thresholds might make more transactions
to be aborted because they can not access the data versions which
are in the snapshot before their start timestamps (all these obsolete
versions have been thrown away by the pruning process). Knobs
can be provided for users to tune the version threshold value.

C. ADDITIONAL EXPERIMENTAL RESULTS

C.1 Varying Size of Range Scans
In this experiment, we study the impact of varying the size of

range scans on the request latency. Consider a Web 2.0 photo shar-
ing application, e.g. Flickr, where users upload and share photos.
Examples of range scan queries in this application are: finding the
photos having the top ranking by users within the last 7 days, the
last month, the last 4 months, etc. We generate a data set represent-
ing the metadata records for 9 million photos ordered by the date
when photos are uploaded. The average record size is 200 bytes.
We distribute the data set on 18 storage nodes where each node
maintains the metadata of photos uploaded in 1000 days (there are
500 photos uploaded each day). Thus, the query “finding the top
ranking photos within the last 4 months” requires scanning about
0.7% of the sample data set.
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As shown in Figure 12, while sequentially scanning the range
could be inefficient, we can improve the request latency by utilizing
the existing replicas of the data and perform parallel range scan. In
particular, we divide the range request into smaller chunks and scan
these chunks at the same time but on different replicas. Since these
replicas are distributed on different nodes, the completion time for
scanning the whole range is improved considerably.

C.2 Effect of Self-tuning Range Histogram
We now study the effect of self-tuning range histogram in han-

dling access patterns with flash crowd queries. In the above photo
sharing application, for instance, there are more queries like “find-
ing the highly ranked photos uploaded today” where today has
some special event like the eclipse happening. In this experiment,
we test the system by continuously submitting 200 queries, 60% of
which are the flash crowd requests, to each storage node in a system
of 18 nodes. Under this access pattern, the system load distribution
is highly skewed as shown in Figure 14 when no replication-based
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load balancing technique is employed. Note that the data migration
technique would not help in this case because it only migrates the
hot data from one node to another.
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Figure 14: Load distribu-
tion without load balanc-
ing under skewed access
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We now examine the effect of the load balancing technique with
three histogram configurations: STR-10 stands for self-tuning range
histogram with 10 buckets while FIR-200 and FIR-400 stands for
fixed range histogram with 200 and 400 buckets respectively. Al-
though the memory cost for maintaining FIR-200 and FIR-400 his-
togram is much higher than STR-10 histogram, they still could not
capture the access frequency of popular queries precisely.

As a result, FIR-200 and FIR-400 populated many more records
during the replication process for load balancing than STR-10 as
depicted in Figure 13. Unfortunately, many of these records are
“false positive”, populated but do not really help much for load
balancing purpose. Note that FIR-200 could not estimate the access
frequency as accurate as FIR-400, thus it cannot afford to replicate
data at high speed as FIR-400; otherwise leading to high storage
cost and replica update cost. Therefore, FIR-200 populated less
number of records than FIR-400 in the end.

On the contrary, STR-10 can capture the hot query even when its
memory cost is much less than the other two histograms. Hence,
STR-10 can comfortably replicate the right small number of hot
queried data at high replication speed (creating more replicas each
time) to quickly balance the system load. Consequently, the query
execution load when using STR-10 is well distributed across the
system as shown in Figure 15.

C.3 TPC-W Benchmark
We now describe the results when testing ecStore on EC2 with

TPC-W benchmark, which models the on-line book store applica-
tion workload. The browsing mix, shopping mix and ordering mix
have 5%, 20% and 50% update transactions respectively. Shop-
ping mix is the most representative workload. Since we only focus
on storage system performance, we do not implement the appli-
cation server or measure the web-interaction throughput and web-
interaction response time.

Instead, we stress test the system by using a client thread at
each storage node to continuously submit transactions to the sys-
tem and then benchmark the transaction throughput and response
time. Read-only transactions perform one read operation to query
the details of a product. We implements two kinds of update trans-
actions: adding an item to a user’s shopping cart (this transaction
includes 1 write operation) and performing the order request (this
transaction bundles 1 read operation to retrieve the user’s shopping
cart and 1 write operation to the orders table). Each storage node is
bulk loaded with 10000 items and customers before the experiment.

Figure 16 illustrates that under browsing mix and shopping mix,
ecStore scales well with nearly flat transaction latency when the
system size increases. It is because the multi-version optimistic

concurrency control scheme favors read-dominant workload. As
a result, the transaction throughput shown in Figure 17 scales lin-
early under these two workloads. In contrast, there is a decline
in the transaction throughput when the ratio of update transactions
increases as in the case of ordering mix.
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Figure 16: TPCW trans-
action latency
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Figure 17: TPCW system
throughput

Note that the transaction throughput when we test with TPC-
W benchmark is higher than that of the social application in Sec-
tion 6.2.3 because the transactions in this TPC-W benchmark set-
ting bundle less number of operations than in the other experiment.
Moreover, the transactions in TPC-W benchmark have more data
locality when users update their own shopping carts and orders in-
formation, which are usually located on one storage node. Hence,
the transactions do not spread over different storage nodes in the
system.

C.4 Comparisons with Other Systems
Compared to other closed-source cloud data serving systems (such

as Dynamo and Pnuts) and open-source systems (such as HBase
and Cassandra), ecStore provides two additional features, transac-
tional semantics across multiple keys and load-adaptive replication.
The performance of the transaction management and replication
technique in ecStore are studied in previous sections.

We note that these systems have been implemented to achieve
different degrees of transaction consistency and fault tolerance.
Therefore, it is not straight forward to compare these systems just
on the performance of a single read or write operation. However,
we shall attempt to compare ecStore and Cassandra, an open-source
cloud storage that combines the idea of Bigtable and Dynamo, based
on common features such as system scalability and range query
processing. We also note that both ecStore and Cassandra (we use
version 0.6.2 in this test) are on-going projects and the results here
are based on the snapshot of the systems.

We test the two systems on an in-house cluster including 18 ma-
chines with Intel X3430 2.4 GHz processor, 8 GB of memory, 500
GB of disk capacity and gigabit ethernet. The memory buffer for
the persistent B+-tree used in ecStore and for the memtable used
in Cassandra are set to 64MB, which is the default setting in Cas-
sandra package. To support range query, Cassandra is configured
to use OrderedPartitioner. The systems are initially bulk loaded
with 144 GB of data (144 million 1KB records). Each storage node
thus maintains an average of 9 GB on disk. A workload of 1000
operations is continuously submitted to each node in the system, a
completed operation will be immediately followed up with another
operation. The record selection for each operation follows uniform
distribution.

Note that the way Cassandra and ecStore physically store data on
each storage node are different: Cassandra uses SSTable while ec-
Store uses persistent B+-tree. In particular, Cassandra buffers the
write operations in a memtable and periodically flushes the data to
the SSTable on disk with sequential IOs. ecStore also buffers the
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write operations in an in-memory B+-tree and merges out these
data to the persistent B+-tree backing store (Berkeley Database
Java Edition) after a period of time or when the buffer for the in-
memory B+-tree is full.
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Figure 18: Range scan la-
tency
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Range query. Figure 18 shows the performance of range can
query in ecStore and Cassandra when varying the size of query
range in a system of 18 nodes. We can observe that the response
time of range query in both systems increases together with the
query range size. In addition, ecStore has lower latency with range
query because the B+-tree in ecStore supports range query effi-
ciently, while in Cassandra the range query processing might need
to check multiple SSTable.

As a result, ecStore also has better range query throughput when
testing the systems with different system sizes. Figure 19 shows
this result with range query size set to 800.
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Read operation. In contrast to the results of range query perfor-
mance, Figure 20 illustrates that Cassandra has better performance
than ecStore in the case of read operations. It is because of the
fact that Cassandra uses bloom filters to speed up read operations.
The bloom filters help Cassandra efficiently identify which SSTable
contains the queried record rather than traversing a long chain of in-
termediate nodes as in the B+-tree used in ecStore. Thus, there is
a trade-off on the performance of range query and exact query in
Cassandra and ecStore, because of their different implementations
of the physical storage at each node.

Additionally, the elastic scaling property of Cassandra and ec-
Store are well demonstrated in Figure 20. The results show that the
read latency in these two systems only increases a small amount
when we increase the system size. This means that more load can
be handled by adding more storage nodes into the system.

Write operation. Both Cassandra and ecStore buffer the write
operations in the memory and immediately return the success code
to the users’ requests. After a period of time or when the reserved
memory is full, the effect of these operations will be materialized
into the on-disk data structures (SSTable for Cassandra and persis-
tent B+-tree for ecStore) with a background process. Therefore, the
write operations in Cassandra and ecStore have low latency, about
1 msec in the experiment.

We also note that the design of ecStore does not fix to use the
persistent B+-tree as its local storage at each node. Users can use
other pluggable local data stores for different application workloads
when necessary, e.g. using MySQL to handle large data objects.

C.5 Experiments on PlanetLab
In this paper, we deal with the consistency issue of replicated

data and load balancing problem in range-partitioned systems, which
can be applicable to storage nodes that are located across the wide-
area network as in distributed clouds [6]. Therefore, we also de-
ploy ecStore and conduct experiments on PlanetLab. The system
size includes 18 nodes in the US region. In this experiment, the
query workload is generated according to Zipfian distribution with
the skew factor set to 1.

Percentage of ill-queries. In this test, we measure the number
of failed queries with different queries rate ranging from 50 to 500
queries submitted to each node per second. We set the capacity
of each storage node to 100 messages in the message-processing
queue. This means that incoming messages will be dropped if the
message processing queue is currently full with 100 messages al-
ready. A query request will fail if its messages are dropped during
the query processing.

Figure 22 depicts the percentage of failed-queries with different
query rates under the skewed query distribution. It can be observed
from the figure that there is a high percentage of failure queries
when no replication is exploited. Especially, the system suffers
from the highest percentage (up to 27%) of failure queries when
there are 500 queries submitted to each node per second.
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On the contrary, the system can perform well when the replication-
based load balancing technique takes its effect. By maintaining
a replication level of three, we can reduce the percentage of ill-
queries significantly. Furthermore, the curve with key ‘1-adapt’ in
Figure 22 also shows that the load-adaptive replication reacts effec-
tively to the skewed access pattern. The system starts with no repli-
cation, then gradually creates more replicas of popular data ranges
to shed the skewed query execution to others node, thus reducing
the percentage of failed-queries.

Improved query response time. In this test, we measure the
latency of read operations in three settings: replication level 1,
‘1-adapt’ and 3. As depicted in Figure 23, the workload of the
skewed access pattern is dispersed to other replicas, which prevents
the primary copy of a data object from becoming the bottleneck.
Hence, the latency of read operations is decreased when the repli-
cation technique is employed in the system. In particular, the av-
erage query latency is significantly improved when we increase the
replication level from 1 (no-replication) to 3 (there are totally three
copies of data in the system). Especially, with the replication level
1 augmented with the load-adaptive technique, ecStore gradually
populates more replicas of the hot query ranges and improves the
query response time when compared to the case of no-replication.
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