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ABSTRACT
Optimization of join queries based on average selectivities is sub-
optimal in highly correlated databases. In such databases, relations
are naturally divided into partitions, each partition having substan-
tially different statistical characteristics. It is very compelling to
discover such data partitions during query optimization and cre-
ate multiple plans for a given query, one plan being optimal for a
particular combination of data partitions. This scenario calls for
the sharing of state among plans, so that common intermediate re-
sults are not recomputed. We study this problem in a setting with
a routing-based query execution engine based on eddies [1]. Ed-
dies naturally encapsulate horizontal partitioning and maximal state
sharing across multiple plans. We define the notion of aconditional
join plan, a novel representation of the search space that enables
us to address the problem in a principled way. We present a low-
overhead greedy algorithm that uses statistical summaries based on
graphical models. Experimental results suggest an order of mag-
nitude faster execution time over traditional optimization for high
correlations, while maintaining the same performance for low cor-
relations.

1. INTRODUCTION
Traditional query optimizers pick one execution plan per query,

based on first-order statistics about the underlying data. In par-
ticular, a join order is determined based on join selectivities that
are computed over a relation as a whole. However, real-world
databases often contain skewed data with complex correlations, and
first-order statistics are not sufficiently powerful to capture the un-
derlying statistical properties of the data. Indeed, one can get bet-
ter join selectivity estimates by modeling data correlations [6, 13].
However, the presence of data correlations does not only make se-
lectivity estimation harder–it also offers opportunities for more ef-
fective query optimization.

When data correlations are present, the input relations are natu-
rally divided into partitions, each partition having completely dif-
ferent statistical characteristics. It is then very attractive to create
multiple plansper query, each plan being optimized for a different
combination of data partitions. Consider for example the join query
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R 1 S 1 T 1 U . Assume thatS is naturally partitioned into two
partitions,S = S1 ∪ S2, whereS1 (similarly, S2) has a low selec-
tivity when it joins withR (T ), and a high selectivity when it joins
with T (R). A possible optimization process may decide to parti-
tion S into S1 andS2, and pick the plans(R 1 S1) 1 (T 1 U)
and((T 1 U) 1 S2) 1 R. The combined cost of the two resulting
plans can be smaller than the cost of any possible monolithic plan.

With the introduction of partitioning, query optimization con-
sists of two tasks: Determining the partitions of the input relations,
and creating a plan for each combination of partitions. Unfortu-
nately, the two problems are inter-dependent. A partitioning of the
relations is optimal only with respect to already chosen join plans.
A partitioning is query-plan specific, because it is evaluated against
the selectivities of the joins in the join plans; it is not merely a set of
clusters based on the statistical properties of the data. Conversely, a
collection of join plans is optimal only with respect to a certain par-
titioning. This inter-dependence yields a much larger optimization
space than the one considered by traditional query optimizers.

Further, an optimization process that results in multiple plans
per query naturally raises the issue of sharing state among the con-
stituent plans at execution time. Identical intermediate tuples should
not be constructed multiple times from different plans during query
execution. In the example above, the intermediate relationT 1 U
is required in both plans. This relation should not be constructed
twice; rather, it should be shared between the two plans.

This paper presents the first study of horizontal partitioning dur-
ing query processing withmaximalsharing of intermediate results.
In particular, the contributions of this paper are the following: First,
we offer a more formal study of the general problem than hitherto.
We introduce the notion ofconditional join plans(CJPs), a repre-
sentation of the search space resulting from horizontal partitioning
that captures both the partitioning and join order aspects. We de-
fine recursive cost formulas for CJPs, and are thus able to define
query optimization as a search problem in a suitable space. In ad-
dition, we show how to estimate correlated join selectivities using
low-overhead summaries based on graphical models. Then, we fo-
cus on the case of query execution with eddies [1] and symmetric
hash joins. This case is particularly interesting, because sharing is
maximal; an intermediate tuple that is used by different join plans
is computed only once. We show how query execution with ed-
dies restricts the search space, and we provide a low-overhead gre-
edy algorithm for this space. Our algorithm can achieve an order
of magnitude better execution time than the best monolithic plans
in databases with high correlations, while being on par with tradi-
tional query optimization for uniform data.

The rest of this paper is organized as follows. Section 2 reviews
related work and eddies. Section 3 defines conditional join plans
and how to estimate their cost, including the estimation of corre-
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(a) Running example query and the join plans chosen by a (i) a traditional query optimizer,
(ii) selectivity-based partitioning [18], (iii) query mesh [17], and (iv) our approach.
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Figure 1: A 3-join query R 1 S 1 T 1 U used as a running example throughout the paper.

lated selectivities. Section 4 describes how maximal sharing of in-
termediate results restricts the search space, and provides a greedy
search algorithm. Section 5 presents experimental results. Finally,
Section 6 concludes and offers research directions.

2. BACKGROUND

2.1 Related work
Horizontal partitioning of relations has been considered in many

settings, especially in parallel and distributed databases [10]. Prior
work has addressed horizontal partitioning for selection queries [7],
and explored heuristic solutions in the adaptive setting [2]. The
works most relevant to ours are selectivity-based partitioning [18]
and query mesh [16, 17]. We discuss the points that differentiate
our work from these.

In selectivity-based partitioning [18], an iterative algorithm can
partitiononerelation of a join query intok partitions and construct
k left-deepjoin plans, one for each partition. Our work does not
have these limitations. In particular, we allow for bushy plans and
the partitioning of multiple, both base and intermediate, relations.
In addition, state sharing among the resulting plans is not consid-
ered in [18]. The plans are executed independently, so intermediate
results that are common are computed multiple times, as opposed
to exactly once which is the case in our work.

Query mesh [16, 17] allows the partitioning of multiple rela-
tions. However, intermediate results are always recomputed and
never stored, in a similar manner to SteMs [19]. This has two im-
plications: First, bushy plans are not allowed, resulting in missed
opportunities for certain queries. Second and more important, the
join plan followed depends on the arrival order of the input tuples
(see [9], Section 6.2). In some cases, although query mesh will try
to partition the input relations, the chosen partitioning is not obeyed
by the execution engine, due to the tuple arrival order. Our work
does not suffer from these limitations, as intermediate results are
stored and shared. A discussion of the benefits of storing interme-
diate results as opposed to recomputing them can be found in the
literature [8].

We illustrate the advantages of our more general problem setting
with an example. Assume the following schema and join query:

R(A, X), S(A, Y, B), T (B, Z, C), U(W, C)

select * from R,S,T,U
where R.A = S.A and S.B = T.B and T.C = U.C

Figure 1(a) shows this query, which is used as a running example
throughout the paper. RelationsS andT are naturally divided into
two partitions each.S1 has low selectivity,s1, when joining withR
and high selectivity,s2, when joining withT . T1 has low selectivity
when joining withU , and high selectivity when joining withS. It
is then attractive to first joinS1 with R, and first joinT1 with U .

The plans generated by the methods discussed above are shown
in Figure 1(a).(i) The best monolithic plan is the bushy plan that
first joins R with S, andT with U . (ii) Selectivity-based parti-
tioning (SBP) can only partition one relation and is forced to use
left-deep plans. Since the query is symmetric, the choice between
S andT does not matter. So, assuming thatS is partitioned, the re-
sulting plans are((R 1 S1) 1 T ) 1 U and((S2 1 T ) 1 U) 1 R.
(iii) Query mesh (QM) can partition both relations, but can only use
left-deep plans. This results in three plans((R 1 S1) 1 T ) 1 U ,
((S2 1 T2) 1 U) 1 R, and((T1 1 U) 1 S2) 1 R. This parti-
tioning is only possible if the order of arrival of the input relations
can be fully controlled. Unfortunately, this assumption is imprac-
tical, both in a streaming setting, and in a more traditional setting.
If we assume that the relations arrive at equal rates, the accumu-
lated state at the joins forces query mesh to follow the sub-optimal
plan ((R 1 S) 1 T ) 1 U for a large subset of subsequent in-
put tuples, regardless the partition in which they belong (see [9],
Section 6.2).(iv) Finally, our approach (called HPE—Horizontal
Partitioning with Eddies) allows bushy trees and can partition mul-
tiple relations. It results in the four plans shown in the lower-right
part of Figure 1(a).

Figure 1(b) shows the number of intermediate tuples generated
by the various methods when the selectivity ratio,s2/s1, varies
from 1 to 1000. The large selectivity,s2 is fixed at 0.01. All num-
bers are normalized by the number of intermediate tuples generated
by our approach (HPE). Selectivity-based partitioning can achieve
only a modest benefit compared to the best monolithic plan, be-
cause it can only partition one relation and is forced to use left-
deep trees. For query mesh, we present numbers for the best (bc)
and the worst case (wc). In the best case, it is assumed that the
order of arrival of the input tuples can be controlled so that the cho-
sen partitioning can be enforced. This yields the same number of
intermediate tuples as our approach. In the worst case, query mesh
is forced by the arrival order to follow one sub-optimal plan for a
large subset of input tuples. Note that Figure 1(b) shows a lower
bound of the intermediate tuples generated by query mesh in this
case. Our approach yields the lowest number of intermediate tuples
because it does not suffer from the limitations described above.
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2.2 Partitioning with eddies
Eddies with symmetric hash joins [1, 8] provide a framework

that naturally encapsulates horizontal partitioning and state shar-
ing, making it an ideal framework for exploiting data correlations
through horizontal partitioning. With eddies, fixed query plans are
no longer constructed. Instead, the operators that are involved in
the query are connected with a central router (the eddy), and query
execution proceeds by routing the tuples through the operators. The
eddy makes a routing decision for each individual tuple. This en-
ables multiple plans to be executed simultaneously for the same
query, each plan operating on a different subset of (base or inter-
mediate) tuples. These multiple plans are not created explicitly;
rather, they are implied by theeddy routing policy. Note that al-
though eddies were introduced as a way to achieve adaptivity in a
streaming environment, we do not use them as such. We assume
a more traditional setting, where the data is static. This eliminates
the adaptivity overhead of eddies.

Consider the join queryR 1 S 1 T 1 U and the execution
of the query using an eddy, as shown in Figure 2. Tuples from
relationsR andU each have only one possible destination:R 1 S
andT 1 U , respectively. However,S tuples can be routed to either
R 1 S or S 1 T , andT tuples can be routed to eitherT 1 U
or S 1 T . The eddy can use a predicate on one of the relation
attributes to distinguish the routing destinations. In Figure 2, the
eddy uses the predicateφS (e.g.,φS = (S.Y > 5)) to routeS
tuples. Tuples fromS that satisfyφS are routed toR 1 S, yielding
partition S1. Tuples fromS that do not satisfyφS are routed to
S 1 T , yielding partitionS2.

In Figure 2 the intermediate results, as stored in the hash tables
of the symmetric hash joins, are shown. While allR (U ) tuples
are stored in the joinR 1 S (T 1 U ), the relationsS andT are
partitioned. TheS1 (T1) partition is stored inR 1 S (T 1 U ),
and theS2 andT2 are stored inS 1 T . Thus, the intermediate
results created areRS1, S2T2, andT1U . TheRS1 andT1U tuples
are stored inS 1 T (their only routing destination). The state of
S 1 T is then as shown in Figure 2. The subsequent routing of
intermediate results in the combined execution of the four plans
shown in Figure 1(a). The state captured in the joins at the end
of query execution is shown in Figure 2. Note that the relations
RS1 and T1U that are common in multiple plans are computed
only once. Eddies provide maximal sharing of intermediate results
at execution time, with no extra optimization time overhead.

3. CONDITIONAL JOIN PLANS
Traditional query optimization is realized as search for the “best”

join plan in a suitable search space. The search space can be con-
strained (e.g., to exclude bushy trees), and the search algorithm
can be either exhaustive or greedy, among other possibilities. To
achieve a similar search framework for our optimization problem,
we need a new representation of the search space that is capable of
capturing both the partitioning and the join orders for each partition
combination. Conditional join plans offer such a representation.
We begin with defining CJPs, and then discuss how to estimate
their cost.

3.1 Definition of CJPs
Before defining CJPs formally, we provide an example CJP using

the running example. Thequery graphof a query has the relations
as its nodes and the eligible joins as its edges. We annotate each
edge with the predicate of the corresponding join. For our example,
the query graph isQ({R, S, T, U},J ), where the set of edges is
J = {1RS , 1ST , 1TU}. The Cartesian productU = R × S ×

Figure 2: Query execution using an eddy with symmetric hash
joins. The routing policy directs tuples from partition S1 to
R 1 S, tuples from S2 to S 1 T , tuples from T1 to T 1 U , and
tuples from T2 to S 1 T . The result is four different plans that
execute simultaneously sharing all common state.

T × U in our example has the following schema:

U(R.A, R.X, S.A, S.Y, S.B, T.B, T.Z, T.C, U.C, U.W).

Let usconceptuallyview the queryQ as a selection query over the
Cartesian productU . Then a join between two relations is a pred-
icate defined overU . For example, the join predicate1RS is the
predicate1RS= (R.A = S.A) defined over the relationU . Be-
sides join predicates, we also define decision predicates. An exam-
ple decision predicate isφS = (S.Y > 5), where we subscript the
name of the predicate with the name of the relation that contains the
attribute. A CJP is a directed, rooted tree that contains join and de-
cision predicates as its nodes. Decision nodes model relation splits,
and the orders of the join nodes at each path from the root to a leaf
model the join plans for each combination of partitions. One pos-
sible CJP for the running example is depicted in Figure 3. The CJP
can be interpreted as a conditional selection plan [7] on the Carte-
sian productU . Tuples fromU flow from the root to the leaves of
the CJP. A tuplerstu first visits the nodeφS . If φS(rstu) = T, it
follows the upper outgoing edge of the node, otherwise it follows
the lower edge. LetS1 = σφS=T(S) andS2 = σφS=F(S). Then
tuples fromR × S1 × T × U follow the upper edge ofφS , and
tuples fromR×S2×T ×U follow the lower edge ofφS . After all
the decision nodes have been visited, the four resulting partitions
of U areU1 = R × S1 × T1 × U , U2 = R × S1 × T2 × U ,
U3 = R×S2 ×T1 ×U , andU4 = R×S2 ×T2 ×U . Tuples from
different partitions follow different orders of the join nodes. For
example, tuples fromU1 follow the order1RS , 1TU , 1ST (sub-
planP11). When a tuple ofU visits a join node, it either satisfies
the predicate and continues to the next node, or it does not satisfy

Figure 3: A CJP for the query R 1 S 1 T 1 U with two
decision predicatesφS , φT . The two φT predicates in the sub-
plansP1 and P2 can have different valuesφT1

and φT2
.
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the predicate and is discarded. Consider a tuple of the partitionU1,
rs1 t1u that visits the join node1RS in the sub-planP11. The tu-
ple is evaluated against the predicate1RS= (R.A = S.A), and it
will continue to the next node,1TU only if 1RS (rs1 t1u) = T.
Observe that the tuples that pass the predicate1RS are the tu-
ples of the relationR 1 S1 × T1 × U , so the joinR 1 S is
executed first. The join predicate order followed byU1 tuples is
(R 1 S1) 1 (T1 1 U). In fact, the CJP models the partition-
ing and the forest of join trees corresponding to HPE as shown in
Figure 1(a).

More formally, given a query graphQ({R1, . . . , Rn},J ) and a
setF of decision predicate values, a conditional join planP (Q) is
a directed, rooted tree that contains two kinds of nodes. Adecision

node→ φX

ր
→
ց

contains ann-ary predicateφX ∈ F , defined

over the Cartesian productU = R1 × · · · × Rn. A decision predi-
cate splits the relationU into n disjoint partitions that cover the re-
lation. A join node→1XY → contains a predicate fromJ , defined
overU , with only one outgoing edge. A join predicate discards the
tuples of the Cartesian product that do not satisfy it. A CJPP (Q)
is valid for the queryQ if every path from the root to a leaf contains
every join predicate inJ exactly once. This means that the correct
query result is produced. To simplify our discussion, we also re-
quire that a join node does not precede a decision node in any path
from the root to a leaf.

A CJPP (Q) can easily be converted to a forest of join plans,
each join plan operating on a certain combination of data partitions.
Consider the tree formed by the decision predicates ofF (e.g., the
full binary tree formed byφS andφT in Figure 3). Each leaf of
this tree defines a particular combination of relation partitions that
can be discovered with a tree traversal, and leads to a particular
sub-plan (P11–P22 in the figure) that contains only join nodes. For
example, the sub-planP11 uses the relation partitionsR, S1, T1,
andU . After discovering the partitions, each order of join predi-
cates in a sub-plan can be de-linearized to form the corresponding
join plan. This transformation defines the “semantics” of a CJP,
i.e., the way it is executed by a query processor.

Finally, we define aCJP structureP (Q,F) as a CJP whose deci-
sion predicates are not assigned values, but are viewed as variables
of the CJP. A CJP can be derived from a CJP structure when we
assign values to all the predicates inF . These values can be nor-
mal predicate values or one of the following two special values (for
chain query graphs): the always-true predicateφtrue and the always-
false predicateφfalse. If the predicate of a decision nodeφ = φtrue,
all U tuples follow the upper sub-plan of the node, and ifφ = φfalse,
all U tuples follow the lower sub-plan. For general query graphs,
we can similarly define special predicates that direct the incoming
tuples to exactly one particular outgoing edge. We denote byF(P )
the assigned values of the decision predicates of the concrete CJP
P .

3.2 Cost estimation basics
In order to define the cost of a conditional join plan, we need

to make several decisions. First, to be able to formally analyze the
query optimization problem, and to keep the cost formulas tractable,
we use the number of intermediate tuples as the cost metric. Al-
though simple, this metric is known to be quite effective, and it
mirrors disk or CPU-based cost functions in many scenarios [4].

Second, we need to incorporate the cost of partitioning into the
cost metric. To simplify our cost formulas, we ignore the partition-
ing cost for now. Instead, we impose a constraint on the number of
predicates that can be used, termed thepartitioning budget. Taking

into account the cost of partitioning is an easy extension to our cost
model.

Third, we need to decide whether the cost of a CJP includes the
size of an intermediate result common to multiple plans once or
multiple times. This in turn depends on the query processor that
will execute the CJP. As discussed previously, a CJPP (Q) can be
transformed into a forest of join plans. Let us denote by‖P‖NS

the total number of intermediate tuples generated by these plans
and by‖P‖S the number of intermediate tuples when duplicate tu-
ples are counted only once.1 Then‖P‖NS is the cost of the CJPP
when intermediate results are not shared during query execution,
and‖P‖S is the cost ofP when maximal sharing of intermediate
results occurs.

It is easy to compute‖P‖NS in a naive way. The CJP is trans-
formed to a forest of join plans, and the cardinalities of the inter-
mediate results they produce are computed as usual. In order to
compute‖P‖S in a similar way, we need to note the intermedi-
ate results that are added to the total cost, and only count them
once. For example, consider the cost estimation of the CJP in Fig-
ure 3. A traversal of the binary tree of decision predicates finds
the predicate assignments2 that hold in each leaf of the tree (the
sub-plansP11–P22). These assignments define the relation parti-
tions. For example, inP11, the assignment of the decision pred-
icates isΦ = (φS = T, φT = T), which defines the partitions
S1 = σφS

(S) andT1 = σφT
(T ). The corresponding join plan

is (R 1 S1) 1 (T1 1 U), whose cost is|RS1| + |T1U |. Using
our notation for join and decision predicates, the cost|RS1| can be
written asPr(1RS , φS)|R||S|, where

Pr(1RS , φS) =
|σ1RS∧φS

(R × S × T × U)|

|R||S||T ||U |
=

|RS1|

|RS|
. (1)

Apart from being costly, this cost estimation procedure defeats
the purpose of constructing CJPs in the first place. Since the CJP
needs to be translated to a forest of join plans when its cost needs
to be computed, search could as well proceed in the space of join
plan forests. Instead, we propose a cost function that is recursive in
the structure of CJPs. Before covering recursive cost estimation in
Section 3.4, we show how the required probabilities as the one in
Equation 1 can be estimated.

3.3 Estimation of joint selectivities
To estimate joint selectivities, we need a statistical model of the

database that captures correlations. Existing techniques [6, 13] en-
able trade-offs between the storage requirements and the correla-
tions that are captured, typically using the notion of graphical mod-
els [14]. Unfortunately, these techniques cannot be used unmodi-
fied in our setting, as they do not support arbitrary joins. One pro-
posal [6] is designed with only selection queries in mind, and an-
other [13] supports only key-foreign key joins. However, it is not
hard to extend the notion of statistical relational models described
in [12] to work correctly with arbitrary joins. The downside is that
all possible joins must be known prior to building the statistical
model.

We use an undirected graphical model (also called a Markov net-
work) to estimate joint selectivities. A Markov network is defined
by its structure and the probability distributions that need to be kept.

1The subscriptNS stands for “no sharing,” and the subscriptS
stands for “sharing.”
2We distinguish between a predicate value and a predicate assign-
ment. The former is a functionU → {T, F}, while the latter is a
value from{T, F}. Further, when there is no confusion, we abbre-
viate the assignmentφ = T asφ, and the assignmentφ = F as
¬φ.
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The structure is an undirected graph with random variables as its
nodes. The edge set of the graph encodes the conditional indepen-
dencies that the model implies. Although these can be discovered
automatically using a training set, we have chosen a fixed structure
that captures the necessary correlations in minimal space. After the
structure is defined, a probability distribution for each clique of the
graph has to be computed and stored.

The model construction algorithm takes as argument theuniver-
sal query graph, the query graph that captures all possible joins in
the database. The random variables that serve as the nodes of the
Markov network are (1) thedescriptive attributesof the database
and (2) thejoin indicators. The descriptive attributes are the at-
tributes that are used to partition the relations during query pro-
cessing. The join indicators are binary random variables that cap-
ture the events that two relations join. A join indicator exists for
each edge in the universal query graph. We choose to place an
edge in the graph only between a join indicator and the descrip-
tive attributes of the relations whose join it represents. The model
is represented internally as a junction tree [14], which allows for
efficient computation of joint probabilities.

Assume that our example query defines the universal query graph,
and that the descriptive attributes areR.X, S.Y, T.Z, U.W. The join
indicators areJRS , JST , JTU , defined asJRS = (R.A = S.A),
JST = (S.B = T.B), andJTU = (T.C = U.C). Figure 4
shows the Markov network.

Figure 4: Markov network for the example database.

The probability distributions that need to be stored are the max-
imal cliques of the Markov network. In our example, we need
the distributionsP (X,JRS), P (Y,JRS), P (Y,JST ), etc. All of
these distributions can be stored as one-dimensional distributions,
and they can be computed without first constructing the Cartesian
product. For example, the probability distributionP (Y,JRS) can
be maintained as two one-dimensional distributions:P (Y,JRS =
T) andP (Y,JRS = F). We can computeP (Y,JRS = T) as
C(Y,JRS=T)

|R||S|
, whereC(Y,JRS = T) is the result of the query

select Y, count(*) from R,S
where R.A = S.A group by Y.

Then, we can computeP (Y,JRS = F) as

P (Y,JRS = F) =
|R|C(Y) − C(Y,JRS = T)

|R||S|
,

whereC(Y) is the result of the query

select Y, count(*) from S group by Y.

Given the constructed Markov network in a form of a junction tree,
we can efficiently compute arbitrary joint probabilities of decision
and join predicates. For example, the probability of Equation 1
is the probability that both predicates1RS , andφS are true. To
compute it, we need to form the marginal distribution ofJRS andX
which can be done with standard inference algorithms like message
passing [6,14].

3.4 Recursive cost estimation
We define a recursive cost function, COSTNS, for ‖P‖NS. For

‖P‖S, we have a recursive cost function that is correct for a re-
stricted space of CJPs, discussed in Section 4. COSTNS takes two
sets as arguments, both initially empty:Φ, a set of predicate as-
signments that hold in the current node under evaluation, andM,

the set of the intermediate results that have already been produced.
The setM contains elements of the formm = (R, Ξ), whereR
is a set of relations, andΞ is a set of join predicates. The cost of a
planP is defined as the cost of its root node:

COSTNS(P ) = COSTNS(root(P ), ∅, ∅)

To define the cost of a node COSTNS(n, Φ,M), we need to distin-
guish between decision and join nodes. The cost of a decision node

n =→ φ
ր n′

ց n′′ is

COSTNS(n, Φ,M) = COSTNS(n
′, Φ ∪ {φ},M)+

COSTNS(n
′′, Φ ∪ {¬φ},M). (2)

Observe that a decision node does not add to the cost since we
ignore the cost of partitioning. A decision node is used only to
update the setΦ. When the cost function recurses to the upper
(lower) noden′ (n′′), the assignmentφ = T (φ = F) has been
added to the setΦ.

To compute the cost of a join noden =→1ij→ n′, we need to
consider four cases:

1. The join node represents a join between the two base rela-
tionsRi andRj .

2. The join node represents a join between an intermediate re-
lation that containsRi and the base relationRj .

3. The join node represents a join between an intermediate re-
lation that containsRj and the base relationRi.

4. The join node represents a join between two intermediate re-
lation, one containingRi and the other containingRj .

The argument setM is used to make the distinction. Assume two
elements ofM, m1 = (R1, Ξ1) andm2 = (R2, Ξ2), such that
Ri ∈ R1 andRj ∈ R2. If both these elements exist, we are in
case 4 above; if onlym1 exists, we are in case 2; if onlym2 exists,
we are in case 3; if none ofm1 andm2 exist, we are in case 1. In
case 1, we calculate the cost of a join node that represents the join
between two base relationsRi,Rj :

COSTNS(n, Φ,M) = Pr(1ij ,
^

φ∈Φ
↓{Ri,Rj}

φ)|Ri||Rj |+

COSTNS(n
′, Φ,M∪ {({Ri, Rj}, {1ij})}) (3)

The node adds to the total cost the cardinality of the Cartesian prod-
uct |Ri×Rj | weighted by the probability of the conjunction of1ij ,
the join predicate under evaluation, and the decision predicate as-
signments in the setΨ = Φ↓{Ri,Rj}. The setΨ contains the deci-
sion predicate assignments that have been seen so far,Φ, restricted
to those that involve attributes ofRi andRj . In general, ifX is
a set of relations,Φ↓X denotes the restriction ofΦ to X , i.e., the
predicate assignments inΦ that contain only attributes of relations
in X . The cost contribution of the noden is exactly the number
of intermediate tuples of the joinRi 1 Rj , whenRi andRj are
partitioned by the decision predicate assignments inΦ↓{Ri,Rj}.

For example, consider the cost of the node1RS in P12 of Fig-
ure 3. Since we have seen the decision nodesφS, φT and followed
the edges that lead toP12, the assignment of decision predicates
currently valid, as set by the cost calculation of the decision nodes,
is Φ = {φS = T, φT = F}. Decision nodes do not add elements
to the setM, soM = ∅ and we are in case 1. The setΦ↓R,S is
Φ↓R,S = {φS ,¬φT }

↓R,S = {φS}. The contribution to the total
cost is thenPr(1RS , φS)|R||S|. In addition to adding the size of
an intermediate result to the total cost, the noden in Equation 3
adds to the setM the elementm = ({Ri, Rj}, {1ij}), which
represents the intermediate relationRi 1 Rj .
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In case 2, we joinRj with an intermediate resultR1 that contains
Ri and the join predicates inΞ1:

COSTNS(n, Φ,M) =

Pr(1ij ,
^

ξ∈Ξ1

ξ,
^

φ∈Φ
↓R1∪{Rj}

φ)|Rj |
Y

R∈R1

|R|+ (4)

COSTNS(n
′, Φ,M− {m1} ∪ {(R1 ∪ {Rj}, Ξ1 ∪ {1ij})})

The cost contribution of the noden is now the size of the inter-
mediate resultR1 1 Rj , when the relations are partitioned by the
predicates inΦ↓R1∪{Rj}.

Consider the calculation of the cost of1ST in P12. The ar-
guments of the cost function areΦ = {φS,¬φT } and M =
{({R, S}, {1RS})}. Since there is an element inM that con-
tains relationS, but there is no element that contains relationT ,
we are in case 2. The cost contribution of1ST is Pr(1ST , 1RS

, φS ,¬φT )|T ||R||S| = |RS1T2|. In addition, an element for the
intermediate relationRST will be added toM. Case 3 is symmet-
ric to case 2 and can be dealt with similarly. Finally, in case 4 we
join the intermediate relationsR1 andR2:

COSTNS(n, Φ,M) =

Pr(1ij ,
^

ξ∈Ξ1∪Ξ2

ξ,
^

φ∈Φ↓R1∪R2

φ)
Y

R∈R1∪R2

|R|+ (5)

COSTNS(n
′, Φ,M− {m1, m2} ∪ {(R1 ∪R2, Ξ1 ∪ Ξ2 ∪ {1ij})})

For example, consider the cost computation for the node1ST

in P11. This is the sub-plan that represents the bushy join tree.
The cost function has already evaluated the nodes1RS and1TU .
When it reaches1ST it is called with argumentsΦ = {φS , φT }
andM = {({R, S}, {1RS}), ({T, U}, {1TU})}. The cost con-
tribution of 1ST is Pr(1ST , 1RS , 1TU , φS, φT )|R||S||T ||U | =
|RS1T1U |. The recursion of the cost function ends at the leaves of
the CJP, or at the second-last join node if we do not want to include
the size of the query result in the cost estimate. By the definition of
the cost function COSTNS, the following lemma holds.

Lemma 1. For any validP (Q), COSTNS(P ) = ‖P‖NS.

4. THE EDDY CJP SPACE

4.1 Eddy restrictions
The routing nature of query execution with eddies imposes con-

straints on the possible partitions as well as on the join plans that
can be executed. This in turn imposes restrictions on the CJPs that
can be considered during query optimization. Consider for example
the valid CJP for our example query in Figure 6.

Figure 6: A CJP that is not eddy-compliant.

This CJP is equivalent to the join plans((R 1 S1) 1 T ) 1 U ,
((T 1 U) 1 S2) 1 R. If we were to execute this query with
an eddy, we need to make a routing decision forT tuples using a
predicate,φS , on relationS. If φS = T, T needs to be joined with
R 1 S1, while if φS = F, T needs to be joined withU . There
is no possible routing that can achieve this. The routing decisions
for T tuples can only be made using a predicate onT , φT . The
restrictions on the possible CJPs is the price paid for state sharing
provided by eddies.

The constraints imposed by eddies affect the CJP search space as
follows. Given a queryQ, we can construct auniqueCJP structure
Pe(Q,Fe), called theeddy CJP structure. Any CJP valid forQ
that can be executed using an eddy (called aneddy-compliantCJP)
can be derived from the eddy CJP structure by assigning values to
the predicates inFe. Hence, the eddy CJP structure determines the
eddy CJP spacefor this query. Appendix A details an algorithm
that, given a query, constructs the unique eddy CJP structure. Fig-
ure 7 shows the eddy CJP structure for our example.

Figure 7: The eddy CJP structure for our running example.
Note that the predicateφT must have a unique value.

For example, assume that we are given a partitioning budget of
c = 1 and we decide to use the predicateφS = (S.Y > 5).
Then, all the eddy-compliant CJPs can be derived from the eddy
CJP structure of Figure 7 by assigning values toφT andφST from
the set{φtrue, φfalse}, as defined in Section 3.1. These values must
be honored across sub-plans. For example, assume that we choose
φT = φtrue. Then we must use the join order(R 1 S1) 1 (T 1 U)
for partitionS1 and the join order((T 1 U) 1 S2) 1 R for parti-
tion S2. Note thatφST is not defined in theφT = φtrue sub-plans
because the intermediate resultST is never formed in these sub-
plans.

Since eddies provide maximal sharing, the recursive cost func-
tion COSTNS from Section 3.4 does not estimate the cost of an eddy-
compliant CJP correctly. Fortunately, we can define a recursive cost
function COSTEddy that estimates the cost of an eddy-compliant CJP
with sharing accounted for. Only one change is needed to COSTNS:
Instead of including the decision predicates of the setΦ↓X , where
X is the set of relations relevant to the join node under consider-
ation, in Equations 3- 5, we simply include all the decision predi-
cates inΦ. The following holds.

Lemma 2. If P is eddy-compliant,COSTEddy(P ) = ‖P‖S.

PROOF. See Appendix B.

Denote the eddy CJP structure for a queryQ by Pe(Q,Fe). We
can now formally state the problem we are solving.

Horizontal paritioning with eddies. Given a queryQ and a par-
titioning budgetc, find the plan

P ∗(Q) = arg min
|F(P )|≤c,F(P )⊂Fe

[COSTEddy(P (Q))]

that is valid forQ and is eddy-compliant.

Put differently, query optimization has to partition the predicate
variablesFe of the eddy CJP structure into two disjoint sets: The
first set of size at mostc contains predicates that are assigned nor-
mal predicate values (e.g.,S.Y > 5), and the second set, of size
at least|Fe| − c contains predicates that are assigned values from
the set{φtrue, φfalse}. The choice of the two sets and the choice of
values should yield the minimum cost. Once the predicates inFe

have been assigned values, it is trivial to construct an eddy routing
policy that executes the resulting concrete CJP.
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Figure 5: The effect of varying the correlation parameterr in a 3-join query when all the joins have the same selectivity.

4.2 Greedy search
While possible, it is computationally infeasible to exhaustively

search the eddy space. We propose an algorithm that starts from
the best monolithic plan for a query and gradually builds an eddy-
compliant CJP. At each step, the algorithm cycles over all the deci-
sion predicates on attributes that have not been used yet, and picks
the one that yields the best cost when used to split the plan into two
sub-plans. This is done greedily: when the algorithm introduces a
split, it assumes that no future splits will occur, but rather that the
best monolithic plans (under the eddy constraints) will be used for
the sub-plans. The algorithm stops if it has introduced the maxi-
mum numberc of decision predicates allowed, or if no further cost
improvement can be achieved.

The gradual construction of the CJP has three advantages. First,
the complete eddy CJP structure does not need to be stored. Sec-
ond, the sizes of the CJPs whose costs will be evaluated are con-
trollable; a CJP with more thanc decision predicates is never gen-
erated. Finally, the cost of the final CJP is guaranteed to be less
or equal to the cost of the best monolithic plan. However, since
there is no backtracking, the algorithm can obviously get stuck in
local minima; an initial choice for a locally optimal decision predi-
cate can lead the algorithm to assume that no cost improvement can
be made by further splitting. Appendix C provides the details and
pseudocode for the greedy search algorithm, as well a discussion
of its cost as compared to the cost of exhaustive search.

5. EXPERIMENTAL RESULTS
We have implemented eddies, symmetric hash joins and the gre-

edy horizontal partitioning scheme in PostgreSQL, reusing the ed-
dies code from the TelegraphCQ project [3] (see Appendix D for
additional details). We compare our greedy horizontal partition-
ing algorithm (termed GHP) with the best monolithic plan (BMP),
found by an exhaustive enumeration of all possible plans. Both
methods use the same junction tree-based selectivity estimation
code. To ensure fairness of comparison, the resulting plans of both
methods are translated into an eddy routing policy and executed
with eddies and SHJs. Note that executing a monolithic plan us-
ing eddies takes at most double the time than executing it using the
vanilla PostgreSQL executor in our experiments.

The quality of the best monolithic plan depends only on the se-
lectivities of the participating joins, while the quality of a CJP de-
pends on both the average selectivities and the correlations. We
study the effect of these parameters in Section 5.1. The optimiza-
tion time is affected by the size of the statistical model, which is
studied in Section 5.2. Finally, we study how our greedy algorithm
scales in Section 5.3. We use synthetic data in order to be able
to control three parameters: the number of tuples, the selectivity
of the joins, and the data correlation. Appendix E covers the data

generation in detail.

5.1 The effect of data correlation
We start with varying the data correlation parameterr in a 4-

relation join query. Each relation has104 tuples, and all the de-
scriptive attributes (one per relation) take values from the domain
{0, 1, . . . , 9}. The data is generated using a correlation coefficient
r which takes values in[0.1, 0.9]. The selectivities of all joins are
fixed at 0.001. This means that there are no substantial optimization
opportunities for this query in the traditional sense. However, when
the data is naturally partitioned into subsets due to high correlation,
the execution time of the query can be reduced using horizontal par-
titioning. This means that horizontal partitioning can be beneficial
in situations where traditional optimization falls short.

Figure 5(a) shows the total execution time in msecs (in loga-
rithmic scale) of the best monolithic plan of and the CJP found
by the greedy horizontal partitioning algorithm. In non-correlated
data (r ∈ [0.1, 0.4]), the two plans yield the same execution time.
As the data becomes more correlated (r ≥ 0.5), the CJP becomes
faster than the monolithic plan. Atr = 0.9, we observe a 90%
reduction of the total execution time.

To understand the performance difference better, Figure 5(b) ex-
amines the number of intermediate tuples generated. While high
correlations cause the best monolithic plan to produce more inter-
mediate tuples, the opposite is true for horizontal partitioning. The
number of intermediate tuples is zero whenr = 0.9. Figure 5(c)
shows the portion of the execution time devoted to intermediate tu-
ples only. The benefits of horizontal partitioning are apparent: the
execution time quickly drops to zero afterr reaches 0.4, whereas
the execution time of the best monolithic plan stays fairly constant.

The execution time savings of the query come at the cost of an
increased optimization time. The greedy horizontal partitioning al-
gorithm finished after 2 iterations in all cases. Even so, there is
an order of magnitude increase compared to the optimization time
of exhaustive monolithic optimization. However, the benefits of
partitioning during query processing outweigh the increase in opti-
mization time. The optimization time can be reduced if we reduce
the buckets of the descriptive attribute histograms (currently 10),
but with an expected degradation in accuracy, and thus a possible
increase of query execution time.

We also experimented with a query with different join selectivi-
ties, set to10−2, 10−3, and10−4. As expected, the total execution
cost is lower than in the previous case for both methods. Tradi-
tional query optimization can produce less intermediate tuples than
before, but the effect of the data correlation remains the same. We
omit the graphs due to lack of space.

5.2 The effect of the number of buckets
We vary the domain size of the descriptive attributes for the same
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Figure 8: The effect of the number of histogram buckets.

query, fixing the correlation parameter at 0.6. Since we have one
bucket per domain value, this is equivalent to varying the number of
buckets in the constructed histograms. A large domain size means
more detailed statistics and thus more opportunities for horizon-
tal partitioning, but it makes the search in the junction tree more
expensive. Figure 8(a) shows the execution time for intermediate
tuples for GHP and BMP when the number of buckets varies from
2 to 32 (both axes in logarithmic scale). The execution time for
intermediate tuples of GHP is equal to that of the best monolithic
plan when there is only 2 buckets, and it improves over the best
monolithic plan by two orders of magnitude when there 32 buck-
ets. Figure 8(b) shows the optimization time. Both methods are
affected equally by the increase in the number of buckets. The op-
timization time of GHP is one order of magnitude worse than that
of traditional query optimization.

Note that with more than 16 buckets, the optimization time ex-
ceeds the execution time for intermediate tuples in our setting. How-
ever, if the size of the database was larger (e.g., each relation con-
tains108 tuples), the execution time would vary from104 to 108 in
Figure 8(a), while the optimization time would not be affected. In
most settings, achieving up to two orders of magnitude faster ex-
ecution is more significant than an one order of magnitude slower
optimization. However, a wrong choice of parameters can lead to
high optimization times for horizontal partitioning.

5.3 Scaling the number of relations
Finally, we study the performance of GHP when the number of

relations in the query varies from 4 to 7. The correlation parameter
is fixed at 0.5, the selectivity of all the joins is fixed at 0.001, and the
domain size of the descriptive attributes is fixed at 4. At the same
time, we vary the number of iterations of the GHP algorithm from
1 to 4. The execution time devoted to intermediate tuples is shown
in Figure 9(a), and the optimization time is shown in Figure 9(b).
As the number of joins in the query grows, it is very beneficial to
increase the number of iterations of the greedy algorithm. In par-
ticular, for seven relations, four iterations of the greedy algorithm
can reduce the execution time of intermediate tuples by two orders
of magnitude when compared to one iteration.

6. CONCLUSIONS AND FUTURE WORK
Data correlations provide opportunities for more effective query

optimization by partitioning relations. We first present a principled
way to approach the problem of horizontal partitioning as search
in the space of conditional join plans. CJPs provide an intuitive
way to think about the problem, and recursive cost formulas for
CJPs can be defined. Further, we show how to efficiently estimate
correlated selectivities using a statistical model with low storage
overhead. Then, we show how the sharing of intermediate results
that is inherent in eddies restricts the space of possible CJPs. A
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Figure 9: Varying the number of relations and GHP iterations.

greedy search with controlled iterations in this space is proposed
that can achieve an one order of magnitude better execution time
for highly correlated databases, while performing on par with the
best monolithic plan at low correlations.

This work opens several lines of research that we plan to pursue.
First, a problem that remains open is whether shared computation is
always beneficial. Second, it would be interesting to explore multi-
query optimization in this environment, where multiple queries are
optimized together to produce many join plans that share computa-
tion. Finally, we would like to explore the parallel query processing
case where the optimization metric is throughput..
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APPENDIX

A. THE EDDY CJP STRUCTURE
We show how, given a queryQ, we can construct a unique eddy

CJP structurePe(Q,Fe). We assume the chain query graph:

Q({R1, . . . , Rn}, {1i,i+1 |i = 1, . . . , n − 1})

The generalization to tree query graphs is straightforward if we
considern-ary instead of binary decision predicates. The construc-
tion proceeds in two steps. First, theeddy skeleton routing policy
πe(Q,Fe) of a query is constructed. Then, usingπe, the eddy CJP
structurePe(Q,Fe) is constructed.

An eddy routing policyπ is a map from relation schemas to join
operators. The eddy skeleton routing policy is the most general
routing policy possible, and it is unique for a given queryQ. For its
construction, we start withπe(Q,Fe) = ∅. For each base relation
Ri, i = 2, . . . , n−1 in the query, we add toπe(Q,Fe) the element

Ri 7→ φi
ր 1i−1,i

ց 1i,i+1
.

For each intermediate relationRiRi+1 · · ·Ri+k, we add toπe(Q,Fe)
the element

RiRi+1 · · ·Ri+k 7→ φi,...,i+k
ր 1i−1,i

ց 1i+k,i+k+1
,

until no intermediate relation is left. Note that the assumption we
follow in this section is that if a tuple satisfies a decision predicate,
it will be routed to the leftmost possible join in the chain query
graph. The eddy skeleton routing policy for our running example
is

πe(Q,Fe) = {S 7→ φS
ր 1RS

ց 1ST
, T 7→ φT

ր 1ST

ց 1TU
,

ST 7→ φST
ր 1RS

ց 1TU
}.

Given the eddy skeleton routing policyπe(Q,Fe), we construct
the eddy CJP structurePe(Q,Fe). The algorithm first produces
the full binary tree of base predicatesφi. This will result in a bi-
nary tree with2n−2 leaves. Each leaf of this tree corresponds to
a full {T, F}-assignment of all the base predicatesφ2, . . . , φn−1,
and leads to a sub-plan containing join nodes and possibly decision
nodes that contain predicates on intermediate relations. Denote
each of these sub-plans byP (φ2, . . . , φn−1). The CJP structure for
our example query is shown again in Figure 10. It is rotated (rota-
tions do not affect correctness or the results of cost calculation), in
order to conform to the assumption we made above. The sub-plans
are denoted byP (φS, φT ), andP1 = P (T, T), P2 = P (T, F),
etc.

Figure 10: The eddy CJP structure for our running example.

The first step of the algorithm is to decide which decision nodes
over intermediate relations will be placed in which sub-plans. For

example, in Figure 10, the decision nodeφST is placed only in the
sub-planP3. Essentially, a decision nodeφi,i+1 should only be
placed in the sub-plans in which the intermediate resultRiRi+1

is formed. These are the sub-plans in which bothRi and Ri+1

are routed to1i,i+1 and produceRiRi+1. Under our formaliza-
tion, routingRi to 1i,i+1 means thatφi = F, and routingRi+1

to 1i,i+1 means thatφi+1 = T. So, the decision nodeφi,i+1 is
placed in the sub-plansP (φ2, . . . , φi = F, φi+1 = T, . . . , φn−1).

Having placed the level-2 decision nodes, the same procedure
can place the level-3 nodes, and continue until all the decision
nodes present in the eddy skeleton routing policy have been placed.
The generalized rule is: The decision predicateφi,...,i+k is in-
cluded in a sub-planP iff

1. φi = F andφi+1,...,i+k is included inP andφi+1,...,i+k =
T, or

2. φi,...,i+k−1 is included inP andφi,...,i+k−1 = F andφi+k =
T.

The final step is to place all the join nodes at every leaf of the
formed tree of the decision nodes. A partial order of the join nodes
is defined by the predicate assignments that hold at each leaf.

1. If φi = T, then1i−1,i≺1i,i+1, else1i,i+1≺1i−1,i.

2. If φi,...,i+k = T, then1i−1,i≺1k,k+1, else1k,k+1≺1i−1,i.

The partial order produced is transformed toany equivalent total
order, and the join nodes are placed using the resulting total or-
der. For example, consider the sub-planP1 of Figure 10. Since
φS = φT = T, the partial order is1RS≺1ST≺1TU which is
a total order. For the sub-planP31, φS = F andφT = T. This
will produce the partial order1ST≺1RS , 1ST≺1TU . Hence,
the assignments ofφS and φT alone cannot produce a total or-
der. In the this sub-plan,S andT tuples are routed to1ST pro-
ducing the intermediate resultST . This intermediate result can be
routed to either1RS or 1TU . One more predicate, the interme-
diate predicateφST , is needed to make the routing deterministic.
Since inP31, φST = T, using the second rule, we get the con-
straint1RS≺1TU , which makes the partial order total. Finally,
consider the sub-planP2. Here, the constraints imposed byφS and
φT are1RS≺1ST and1TU≺1ST , which do not form a total or-
der. However, this does not matter.P3 represents the bushy plan
(R 1 S) 1 (T 1 U), and the cost estimation function will pro-
duce the same result regardless of the relative order of1RS and
1TU .

B. PROOF OF LEMMA 2
We need to prove that ifP is an eddy-compliant CJP, then the

cost function COSTEddy(P ) computes‖P‖S correctly. ‖P‖S is the
sum of sizes of intermediate relations, where each intermediate re-
lation is added to the cost only once. Consider the cost‖P‖S of the
CJP of Figure 3

‖P‖S = |RS1|+|T1U |+|S2T2|+|RS1T2|+|S2T1U |+|S2T2U |,

and the cost calculated by the cost function COSTNS(P ):

COSTNS(P ) = 2|RS1| + 2|T1U | + |S2T2|+

|RS1T2| + |S2T1U | + |S2T2U |.

While the terms added by COSTNS(P ) are correct, some terms are
added multiple times. The cost function COSTEddy is derived from
the cost function COSTNS with a simple modification: In every joint
probability, instead of including only the decision predicate assign-
ments that are relevant to the join predicates, we include all the de-
cision predicate assignments from the root to the current node. The
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cost formula for decision nodes in Equation 2 remains the same.
For completeness, the cost function for a join noden =→1ij→ n′

is presented below for cases 1, 2, and 4:

COSTEddy(n, Φ,M) = Pr(1ij ,
^

φ∈Φ

φ)|Ri||Rj |+

COSTEddy(n
′, Φ,M∪ {({Ri, Rj}, {1ij})}).

COSTEddy(n, Φ,M) = Pr(1ij ,
^

ξ∈Ξ1

ξ,
^

φ∈Φ

φ)|Rj |
Y

R∈R1

|R|+

COSTEddy(n
′, Φ,M− {m1} ∪ {(R1 ∪ {Rj}, Ξ1 ∪ {1ij})}).

COSTEddy(n, Φ,M) = Pr(1ij ,
^

ξ∈Ξ1∪Ξ2

ξ,
^

φ∈Φ

φ)
Y

R∈R1∪R2

|R|+

COSTEddy(n
′, Φ,M−{m1, m2} ∪ {(R1 ∪ R2, Ξ1 ∪ Ξ2 ∪ {1ij})}).

This modification does not alter the relation partitions. Since all
the decision predicates that are relevant to the join predicates are
included in the probabilities in both cost functions, the partition
sizes that are added as terms to the cost are the same. What is
different is the weight of these terms. The extra decision predicates
included in COSTEddy(P ) weight the partition sizes. For example,
consider the cost contribution of the node1RS of the sub-planP11

in Figure 3:

Pr(1RS= T, φS = T, φT = T)|R||S| = |RS1|
|T1|

|T |
.

While the cost function COSTNS(P ) adds to the total cost the whole
size of the intermediate result|RS1|, the cost function COSTEddy(P )

weights it by |T1|
|T |

. When the cost function COSTEddy(P ) evaluates
the cost of the node1RS in P12, it adds to the cost the term

Pr(1RS= T, φS = T, φT = F)|R||S| = |RS1|
|T2|

|T |
.

Added together, these terms result to the size|RS1| being included
only once to the total cost.

The total cost of a CJP consists of sizes of intermediate rela-
tions |X |. An intermediate relationX encompasses both a certain
schema, and certain partitions of relations. The schema is pro-
duced by the join predicates, and the partitions are produced by
the decision predicates. It is obvious that the terms produced by
COSTEddy(P ) are the same as the ones produced by COSTNS(P ),
since the extra decision predicates added are exactly the ones that
do not change the partitions. The difference is that in COSTEddy(P )
some terms are weighted. We only need to show that these weights
in multiple appearances of the same term will add to one:

Lemma 3. If P is an eddy-compliant CJP, then if the cost of an in-
termediate relationX appears inCOSTEddy(P ), it appears exactly
one time.

PROOF. We assume the chain query graph

Q({R1, . . . , Rn}, {1i,i+1 |i = 1, . . . , n − 1}).

A generalization to tree query graphs is straightforward if we as-
sumen-ary instead of binary decision predicates. Consider an in-
termediate relationX that involves the relationsRi, . . . , Ri+k in
some partitioned form. Our proof is constructed as an induction
over the cardinality of the intermediate relation card(X ) = k + 1.
Specifically, we will show the following:

Basis An intermediate resultX with card(X ) = 2 is included in
the cost one or zero times.

Induction step If all intermediate resultsX with card(X ) ≤ k are
included in the cost one or zero times, then all intermediate
resultsY with card(Y) = k + 1 are included in the cost one
or zero times.

We begin with the basis of the induction. Consider an interme-
diate relationX of cardinality 2, that involves the relationsRi and
Ri+1, possibly in some partitioned form. We distinguish between
three cases: (a)i = 1, (b), i = n − 1, and (c)i 6= 1 ∧ i 6= n − 1.
Consider first case (a). Then,X involves the relationsR1 andR2

and is formed only when the join11,2 is at the first level of the
join tree. For the eddy CJP, this means thatX is only formed in
the sub-plans withφ2 = T (see Appendix A). As already dis-
cussed, a leaf of the tree of decision predicates is equivalent with
an assignment of{T, F}-values to all the decision predicatesF(P )
in the CJP. The join11,2 is at the first level only at the sub-plans
with φ2 = T, regardless of the values of the rest of the decision
predicates. However, note that the CJPP (Q) is derived from the
eddy CJP structurePe, and may contain only a subset of the free
predicates inFe (F(P ) ⊂ Fe). Hence some predicates fromFe

(including φ2) may not appear in the decision node tree. So, we
distinguish between three sub-cases: (i)φ2 ∈ F(P ) (meaning that
φ2 is a part ofP ), (ii) φ2 = φtrue (meaning that only the upper
sub-plan ofφ2 in the eddy CJP structure is included inP ), and (iii)
φ2 = φfalse (meaning that only the lower sub-plan ofφ2 in the eddy
CJP structure is part ofP ). In case (iii),X will never be formed
(R2 is routed to12,3), so|X | will not be included in the final cost.
In case (ii)X is formed at every sub-plan. Hence, the total cost
contribution will be

X

φ∈{T,F}

Pr(11,2,
^

φ∈F(P )

φ)|R1||R2| = |R1 1 R2|.

Finally, in case (i),X is formed only in the sub-plans withφ2 = T.
Then, the cost contribution will be

X

φ∈{T,F}

Pr(11,2, φ2,
^

φ∈F(P )−{φ2}

φ)|R1||R2| = |R1 1 σφ2
(R2)|.

So, in any case,|X | is included with weight 1 in the cost, ether
in the form |R1R2| or in the form|R1R

1
2|. This concludes case

(a) of the induction basis. Case (b) is handled similarly. For case
(c) (i 6= 1, n − 1), an intermediate relationX that containsRi

andRi+1 will be created only in the sub-plans withφi = F and
φi+1 = T. Again, we distinguish between three cases:

1. φi, φi+1 6∈ F(P ) which has the following subcases

(a) φi = φfalse andφi+1 = φfalse. Then, there are not sub-
plans in whichX is formed, so|X | does not appear in
the total cost.

(b) φi = φfalse andφi+1 = φtrue.
(c) φi = φtrue andφi+1 = φfalse. Then,|X | does not appear

in the total cost.
(d) φi = φtrue andφi+1 = φtrue. Then,|X | does not appear

in the total cost.

2. φi ∈ F(P ), φi+1 6∈ F(P ). The caseφi 6∈ F(P ), φi+1 ∈
F(P ) is dual. We have the following subcases:

(a) φi+1 = φfalse. Then, |X | does not appear in the total
cost.

(b) φi+1 = φtrue.

3. φi, φi+1 ∈ F(P ). Then,X is formed only in the sub-plans
with φi = F andφi+1 = T.

We need to prove that in cases 1(b), 2(b), and 3,|X | appears exactly
once in the total cost. In case 1(b),X is formed in every sub-plan.
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The contribution to the total cost is
X

φ∈{T,F}

Pr(1i,i+1,
^

φ∈F(P )

φ)|Ri||Ri+1| = |Ri 1 Ri+1|

In case 2(b),X is only formed in the sub-plans withφi = F. The
contribution to the total cost is

X

φ∈{T,F}

Pr(1i,i+1,¬φi,
^

F(P )−{φi}

φ)|Ri||Ri+1| =

|σ¬φi
(Ri) 1 Ri+1|.

In case and 3,X is only formed in the sub-plans withφi = F and
φi+1 = T. The contribution to the total cost is

X

φ∈{T,F}

Pr(1i,i+1,¬φi, φi+1,
^

F(P )−{φi,φi+1}

φ)|Ri||Ri+1| =

|σ¬φi
(Ri) 1 σφi+1

(Ri+1)|

So, |X | is always weighted by a factor of 0 or 1 in the total cost.
This concludes the basis step.

For the induction step, consider the intermediate relationX of
cardinalityk+1, that contains the relationsRi, . . . , Ri+k. This in-
termediate relation will be formed from a join node1j,j+1 that will
join the intermediate relationsX1, X2, which contain the relations
Ri, . . . , Rj andRj+1, . . . , Ri+k respectively. Since card(X1) ≤
k and card(X2) ≤ k, we know that|X1| and |X2| either do not
appear in the total cost, or they appear with a factor of 1. Note that
multiple intermediate results that contain the relationsRi, . . . , Ri+k

can appear in the total cost, produced by all the joins1j,j+1 with
j = i, . . . , i+k−1. However, these intermediate relations contain
different partitions of the relations, and are thus different for the
purposes of this proof. We can therefore focus on a particular value
of j. Similarly to the base step, we have the following cases:

1. Either|X1| or |X2| do not appear in the total cost. Then,|X |
does not appear in the total cost.

2. Both|X1| and|X2| appear in the total cost. Then,X is formed
at the sub-plans withφ1 = φi,...,j = F, andφ2 = φj+1,...,i+k =
T. This has again the following sub-cases:

(a) φ1, φ2 6∈ F(P ), φ1 = φfalse, andφ2 = φtrue.
(b) φ1, φ2 ∈ F(P ).
(c) φ1 ∈ F(P ), φ2 6∈ F(P ), andφ2 = φtrue.
(d) φ2 ∈ F(P ), φ1 6∈ F(P ), andφ1 = φfalse.

We need to prove that|X | appears with a factor of 1 in the total cost
in cases 2(a)–2(c) (case 2(d) is dual to case 2(c)). The fact thatX1

andX2 are formed implies an assignment of all the base decision
predicatesφi, . . . , φi+k, as well as an assignment of all the deci-
sion predicates on the intermediate relations that formX1 andX2.
Let us callFj the set of these assigned decision predicates andAj

the particular assignment. This assignment creates the partitions of
the relationsRi, . . . , Ri+k particular toX1 andX2, but does not
introduce factors in their cost (from the induction hypothesis). Let
us denote byΞ1(Ξ2) the conjunction of join predicates inX1(X2),
and by|R| the size of the Cartesian productRi × · · · ×Ri+k. For
the case 2(a) above, the cost contribution is

X

φ∈{T,F}

Pr(1j,j+1, Ξ1, Ξ2,
^

φ∈F(P )−Fj

φ,Aj)|R| = |X1 1 X2|.

In case 2(b),X appears only in the subplans withφ1 = F and
φ2 = T. The cost contribution is

X

φ∈{T,F}

Pr(1j,j+1, Ξ1, Ξ2,
^

φ∈F(P )−Fj−{φ1,φ2}

φ,Aj ,¬φ1, φ2)|R|

= |σ¬φ1
(X1) 1 σφ2

(X2)|.

Finally, for case 2(c), the cost contribution is
X

φ∈{T,F}

Pr(1j,j+1, Ξ1, Ξ2,
^

φ∈F(P )−Fj−{φ1}

φ,Aj ,¬φ1)|R| =

|σ¬φ1
(X1) 1 X2|.

So,|X | will appear in the total cost with a factor of 0 or 1.

C. GREEDY ALGORITHM DETAILS
Pseudocode for our greedy algorithm is given in Algorithm 1.

Initially (in function GREEDY-HPE), a traditional query optimizer
is invoked to find the best monolithic plan for the query. We use
the KBZ polynomial-time algorithm in our implementation [15].
This plan corresponds to a{φfalse, φtrue}-value for each predicate
in the set of predicates of the eddy skeleton routing policy,Fe.
Then, the recursive function GREEDY-HPE-REC is called. It takes
the following arguments:F is the set of predicates fromFe that
have not been given values;B is the set of bound predicates by the
algorithm (i.e., predicates that are already part of the CJP and are
assigned a value not from{φtrue, φfalse}); A is an set of predicate
values from{φtrue, φfalse} for all the predicates inF ; C is a{T, F}
assignment for the predicates inB, valid in thecurrent sub-plan;
Cmin is the cost of the best CJP found so far;c is the partitioning
budget. The initial values for these arguments can be seen in line 5
of Algorithm 1.

The function GREEDY-HPE-REC examines all the free predi-
cates inF . For each possible value of every free predicateφ, it
evaluates the cost of the CJP that uses onlyφ as a decision pred-
icate, and the upper and lower join orders honor the eddy restric-
tions. If it finds that such a predicateφ∗ improves the total cost,
it introduces it to the CJP, and recurses to the two sub-plans. The
recursion finishes if such a predicate was not found, or ifc decision
predicates have already been used.

Algorithm 1 Greedy Horizontal Partitioning with Eddies, initial-
ization and main algorithm
1: function GREEDY-HPE(Q)
2: ConvertQ to the eddy skeleton routing policyπe(Q,F)
3: Find the optimal planP ∗ for the query, and its costC∗

4: Find the assignmentA∗(Fe) that corresponds to the planP ∗

5: return GREEDY-HPE-REC(F ,∅, A∗, ∅, C∗, c)
6: function GREEDY-HPE-REC(F ,B,A,C,Cmin,c)
7: φ∗ = null; C∗ = Cmin ; P ∗ =null
8: for φ ∈ F do
9: for all possible valuesA ≤ v for φ do

10: A′ = A[F − {φ}]
11: Aφ = A′ ∪ {φ = φtrue} ∪ C
12: A¬φ = A′ ∪ {φ = φfalse} ∪ C
13: if LEGAL(Aφ) ∧ LEGAL(A¬φ) then
14: Pφ = PLAN(Aφ)
15: P¬φ = PLAN(A¬φ)

16: P =→ φ
ր Pφ

ց P¬φ

17: C = COST(P )
18: if C ≤ C∗ then
19: C∗ = C; P ∗ = P ; φ∗ = φ

20: if φ∗ = null ∨ c = 0 then return PLAN(A ∪ C)

21: P1 = GREEDY-HPE-REC(F − {φ∗},B ∪ {φ∗},A[F −
{φ∗}], C ∪ {φ∗ = T}, C∗, c − 1)

22: P2 = GREEDY-HPE-REC(F − {φ∗},B ∪ {φ∗},A[F −
{φ∗}], C ∪ {φ∗ = F}, C∗, c − 1)

23: return → φ∗ ր P1

ց P2

We can measure the cost of the greedy and exhaustive algorithms
as the number ofjoin plans that will be evaluated. For simplicity,
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Figure 11: Number of join plans considered by the exhaustive
and greedy search in the eddy CJP space.

we assume that the decision predicates in a CJP form a complete bi-
nary tree. This is true for chain queries when no decision predicates
on intermediate results are used, but not true in the general case.
Under this assumption, if a CJP containsk decision predicates, we
need to payC(k) = 2k in order to evaluate its cost. Assume
that the eddy CJP structure contains|Fe| = m binary decision
predicates. This number can be easily calculated using the query
graph and the number of joins in the queryn. For chain queries,

m =
n(n − 1)

2
= Θ(n2), while for star queriesm = Θ(n3).

The exhaustive algorithm needs to partition the setFe of m de-
cision predicates into two sets: a setF1 of predicates that will be
a part of the CJP, and a setF2 of predicates that will be assigned
values fromφtrue, φfalse. The sizes of the sets, given the partitioning
budgetc are|F1| = c and|F2| = m − c. For each combination
of these sets, and for each combination of values of the decision
predicates, the algorithm needs to evaluate the cost of a CJP of size
c. Assuming that the domain size of all descriptive attributes isd,
the cost of the exhaustive algorithm is

EXHAUSTIVE(m,c) =

„

m
c

«

dc2m−cC(c)

For the greedy algorithm, consider the case wherec−i iterations
have already been executed, and there arei iterations left. Then, the
size of the argumentF is |F| = m − c + i. The greedy algorithm
will for every predicate and every predicate value in that set, eval-
uate the cost of a CJP with one decision predicate. Then, it will
recurse withi − 1 iterations left:

GREEDY(m, i) = d(m − c + i)C(1) + 2GREEDY(m, i − 1)

Since initially there arec iterations left, we are interested in the
cost GREEDY(m,c). When there is no restriction in the number
of partitions (c = m), the cost of both algorithms grows super-
exponentially with respect ton. However, consider the case where
we restrict the partitions to the number of joins in the query,c = n,
allowing essentially one decision predicate for each base relation.
The number of join plans evaluated by the exhaustive and greedy
algorithms are shown in Figure 11(a) forn = 3 to n = 10 joins in
the query. While the cost of exhaustive grows asΘ(2n2

), the cost
of the greedy search grows asΘ(2n). Even restricting to a fixed
number of partitions (c = 1) cannot alleviate the super-exponential
growth of the exhaustive algorithm. The cost of the greedy algo-
rithm for fixed iterations and iterations equal to the number of joins
is shown in Figure 11(b) forn = 10 to n = 30 joins. While the
growth is exponential, it can be kept reasonable with fixed itera-
tions at the cost of CJPs of reduced quality.

D. IMPLEMENTATION DETAILS
Our prototype is based on the PostgreSQL codebase, and uses

the eddy implementation described in [5]. Specifically, we have
created two new PostgreSQL operators: the eddy and the SteM op-
erator. The SteM is a main memory hash table that stores base or
intermediate tuples and has an insert/probe interface. A join is exe-
cuted using two SteMs. The eddy operator performs the routing, via
an internal routing policy structure. The routing policy structure is
a mapping from a tuple signature to zero or more operators. We are
using the routing policy as the search space representation, which
is equivalent to using CJPs. All our additions in the PostgreSQL
code are in the execution engine, and in fact we have completely
bypassed the PostgreSQL optimizer. The construction of the junc-
tion tree is done outside the PostgreSQL code, with a simple JDBC
program. The junction tree is read into memory when PostgreSQL
starts. A more careful implementation would reuse the PostgreSQL
catalog and optimizer, and subsequently have better optimization
performance.

E. DATA GENERATION
We generate synthetic data for a join queryR1 1 · · · 1 Rn, si-

multaneously controlling three parameters: the number of tuples in
each relation,N , the selectivities of the join operatorss1, . . . , sn,
and the Pearson correlation coefficient,r. The latter controls the
degree of correlation in the database and takes values in[−1, 1]: if
r = 0, the database should be fairly uniform; if|r| = 1, an almost
perfect partitioning scheme of the relations should exist. The data
generation algorithm takes as input the desired parameter values
N, {s1, . . . , sn}, r, as well as the Markov network of the database.

Consider the example query and its Markov network shown in
Figure 4. The variables that are connected in the Markov network
(e.g.,X andJRS) have a correlation coefficent with absolute value
equal tor. In order to simulate a perfect paritioning for high corre-
lations, we flip the sign of the correlation coefficient at every edge
of the graph. For example, the correlation coefficient betweenX
andJRS is equal tor, the correlation coefficient betweenJRS

andY is equal to−r, etc. Variables that are not adjacent in the
graph are correlated only indirectly. Under certain assumptions,
the correlation coefficient between two variablesA andB is equal
to (−r)k, wherek is the number of edges in the path betweenA
andB. For example, the correlation coefficient ofX andJST is
−r3. This procedure gives the correlation matrixR = [rij ] whose
entries are the correlation coefficients between every pair of ran-
dom variables. Then, the method described by Fackler [11] is used
to create aN × 7, [0, 1]-valued matrixD = [dij ] that conforms
to the correlation matrixR. Each column of the matrixD is used
to generate a random variable. For descriptive attributes, the[0, 1]
valuedij is scaled accordingly to the attribute’s domain. For join
indicators, the valueT is chosen ifdij > 0.5, and the valueF is
chosen otherwise. Finally, each value of a join indicatorjij is used
to create two values of the join attributes for the relations. The
values should be equal ifjij = T, and not equal otherwise. In
addition, the domain of the join attributes is chosen so that the se-
lectivity of the join is equal to the input given to the data generation
algorithm.
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