Sharing-Aware Horizontal Partitioning for Exploiting
Correlations During Query Processing

Kostas Tzoumas Amol Deshpande Christian S. Jensen
Aalborg University University of Maryland Aarhus University
Denmark College Park, MD, USA Denmark
kostas@cs.aau.dk amol@cs.umd.edu csj@cs.au.dk
ABSTRACT R S X T X U. Assume thas is naturally partitioned into two

Optimization of join queries based on average selectivities is sub- partitions,§ = 51 U Sz, whereS (similarly, S3) has a low selec-
optimal in highly correlated databases. In such databases, relation§“{'ty when it joins V‘."thR (T.)' .and. a high selectivity whgn Itjoins .
are naturally divided into partitions, each partition having substan- V_V'th T_(R)' A possible opt|r_n|zat|on process may decide to parti-
tially different statistical characteristics. It is very compelling to tion S'into 51 and Sz, and pick the plansR P 51) M (T ™ U).
discover such data partitions during query optimization and cre- and((T' X U) M 5) X R. The combined cost O.f the two rgsqltlng
ate multiple plans for a given query, one plan being optimal for a plans can be smaller than the cost of any possible monolithic plan.

particular combination of data partitions. This scenario calls for .W'th the |ntrod'uct|on Of partltlonlng,. query optlmlzatlon con-
the sharing of state among plans, so that common intermediate re-SISts of tw_o tasks: Determining the p_artl_tlons of the_ !nput relations,
sults are not recomputed. We study this problem in a setting with and creating a plan for each. combination of partitions. .Unfortu-
a routing-based query execution engine based on eddies [1]. Ed_nate!y, thf—‘ two _problems are inter-dependent. A partltlor_1|r_19 of the
dies naturally encapsulate horizontal partitioning and maximal state relatlo_n_s IS op_tlmal only with res_p_ect to alrea(_jy_ chosen join pla_ns.
sharing across multiple plans. We define the notionazfraditional A partitioning is query-plan specific, because it is evaluated against

join plan, a novel representation of the search space that enablesthe selectivities of the joins in the join plans; it is not merely a set of

us to address the problem in a principled way. We present a low- clusters based on the statistical properties of the data. Conversely, a
overhead greedy algorithm that uses statistical summaries based O'IEQ||E(_3tI0n of_10|_n plans is optimal o_nIy with respect to a cer_tal_n par-
graphical models. Experimental results suggest an order of mag- ttioning. This |nter-depe_ndence ylelds_a_l much larger o_ptl_mlzatlon
nitude faster execution time over traditional optimization for high SP2ce than the one considered by traditional query optimizers.

correlations, while maintaining the same performance for low cor- P urther, an optimization process that results in multiple plans
relations. per query naturally raises the issue of sharing state among the con-

stituent plans at execution time. Identical intermediate tuples should

not be constructed multiple times from different plans during query
1. INTRODUCTION execution. In the example above, the intermediate relafion U

Traditional query optimizers pick one execution plan per query, is required in both plans. This relation should not be constructed
based on first-order statistics about the underlying data. In par- twice; rather, it should be shared between the two plans.
ticular, a join order is determined based on join selectivities that ~ This paper presents the first study of horizontal partitioning dur-
are computed over a relation as a whole. However, real-world ing query processing witmaximalsharing of intermediate results.
databases often contain skewed data with complex correlations, andn particular, the contributions of this paper are the following: First,
first-order statistics are not sufficiently powerful to capture the un- We offer a more formal study of the general problem than hitherto.
derlying statistical properties of the data. Indeed, one can get bet-We introduce the notion afonditional join plans(CJPs), a repre-
ter join selectivity estimates by modeling data correlations [6,13]. sentation of the search space resulting from horizontal partitioning
However, the presence of data correlations does not only make sethat captures both the partitioning and join order aspects. We de-
lectivity estimation harder—it also offers opportunities for more ef- fine recursive cost formulas for CJPs, and are thus able to define
fective query optimization. query optimization as a search problem in a suitable space. In ad-
When data correlations are present, the input relations are natu-dition, we show how to estimate correlated join selectivities using

rally divided into partitions, each partition having completely dif- low-overhead summaries based on graphical models. Then, we fo-
ferent statistical characteristics. It is then very attractive to create Cus on the case of query execution with eddies [1] and symmetric
multiple plansper query, each plan being optimized for a different hash joins. This case is particularly interesting, because sharing is
combination of data partitions. Consider for example the join query maximal; an intermediate tuple that is used by different join plans

is computed only once. We show how query execution with ed-
Permission to make digital or hard copies of all or part of this work for dies rEStr'.Cts the Se?‘rCh space, and we .prOVIde a Iow_-overhead gre-
personal or classroom use is granted without fee provided that copies are€dY algorithm for this space. Our algorithm can achieve an order
not made or distributed for profit or commercial advantage and that copies Of magnitude better execution time than the best monolithic plans
bear this notice and the full citation on the first page. To copy otherwise, to in databases with high correlations, while being on par with tradi-
republish, to post on servers or to redistribute to lists, requires prior specific tional query optimization for uniform data.

permission and/or a fee. Articles from this volume were presented at The The rest of this paper is organized as follows. Section 2 reviews

ggtlhomé?;gzg%?:' Conference on Very Large Data Bases, September 13'17‘related work and eddies. Section 3 defines conditional join plans
Proceedings of the VLDB Endowmew). 3, No. 1 and how to estimate their cost, including the estimation of corre-

Copyright 2010 VLDB Endowment 2150-8097/10/095.10.00.

542

> > > > > § 108
N
NN 8 NV NN s
i > U > R X U > R > R % 102
Tora T > U e T > U > s 8
VAN N AN AN\ AN 8 ot
'R S, S, T R S, S, T, T, U =
(ii) Plans created by SBP ! (iii) Plans created by QM =
Dashed lines indicate ~_ tttttotnoteomoomoomtemoomoodlooeooeno oo 10°
selectivity s, solid lines! > H > > »«(iv) Plans created by HPE: 2
indicate selectivity s,. 1 PN ‘ AN AN AN e | % ot b Best monolithic EIE?S ——
! > > ooy ** R ** R PN S QM (wc, lower bound) —4—]
s,>>s, | ¥ 2 CQmMbg v
VANVAN H »4/\7_ ></\U »{\S > > g Lt | HPE —e—
RI=IS|=Sj=n : R S T U 11 ~ T A o VANRVAN EWT 10 100 1000
ITISITI=IU=N 4) Best monolithic plan | | RS, S, T, T, U RS, T, U sy/s;

(a) Running example query and the join plans chosen by a (i)di&ital query optimizer(b) Intermediate tuples generated (nor-
(ii) selectivity-based partitioning [18], (iii) query mesh [17], and (iv) our approach. mdized).

Figure 1: A 3-join query R X S X T' X U used as a running example throughout the paper.
lated selectivities. Section 4 describes how maximal sharing of in- Figure 1(a) shows this query, which is used as a running example

termediate results restricts the search space, and provides a greedghroughout the paper. Relatio§sandT are naturally divided into
search algorithm. Section 5 presents experimental results. Finally,two partitions eachS; has low selectivitys;, when joining withR

Section 6 concludes and offers research directions. and high selectivitysz, when joining withT". T; has low selectivity
when joining withU, and high selectivity when joining witl. It
2 BACKGROUND is then attractive to first joir; with R, and first joinT; with U.

The plans generated by the methods discussed above are shown
in Figure 1(a).(i) The best monolithic plan is the bushy plan that
2.1 Related work first joins R with S, and T with U. (i) Selectivity-based parti-
Horizontal partitioning of relations has been considered in many tioning (SBP) can only partition one relation and is forced to use
settings, especially in parallel and distributed databases [10]. Priorleft-deep plans. Since the query is symmetric, the choice between
work has addressed horizontal partitioning for selection queries [7], S andT" does not matter. So, assuming tl§ais partitioned, the re-
and explored heuristic solutions in the adaptive setting [2]. The sulting plansar@¢(R X S1) X T) X U and((S2 X T) X U) X R.
works most relevant to ours are selectivity-based partitioning [18] (iii) Query mesh (QM) can partition both relations, but can only use
and query mesh [16, 17]. We discuss the points that differentiate left-deep plans. This results in three pldi& X S1) X T) X U,
our work from these. ((S2 X T3) XU) X R,and((Th X U) X S3) X R. This parti-
In selectivity-based partitioning [18], an iterative algorithm can tioning is only possible if the order of arrival of the input relations
partitiononerelation of a join query intd& partitions and construct ~ can be fully controlled. Unfortunately, this assumption is imprac-
k left-deepjoin plans, one for each partition. Our work does not tical, both in a streaming setting, and in a more traditional setting.
have these limitations. In particular, we allow for bushy plans and If we assume that the relations arrive at equal rates, the accumu-
the partitioning of multiple, both base and intermediate, relations. lated state at the joins forces query mesh to follow the sub-optimal
In addition, state sharing among the resulting plans is not consid- plan ((R X S) X T) X U for a large subset of subsequent in-
ered in [18]. The plans are executed independently, so intermediateput tuples, regardless the partition in which they belong (see [9],
results that are common are computed multiple times, as opposedSection 6.2).(iv) Finally, our approach (called HPE—Horizontal
to exactly once which is the case in our work. Partitioning with Eddies) allows bushy trees and can partition mul-
Query mesh [16, 17] allows the partitioning of multiple rela- tiple relations. It results in the four plans shown in the lower-right
tions. However, intermediate results are always recomputed andpart of Figure 1(a).
never stored, in a similar manner to SteMs [19]. This has two im- Figure 1(b) shows the number of intermediate tuples generated
plications: First, bushy plans are not allowed, resulting in missed by the various methods when the selectivity ratie/s:, varies
opportunities for certain queries. Second and more important, the from 1 to 1000. The large selectivity, is fixed at 0.01. All num-
join plan followed depends on the arrival order of the input tuples bers are normalized by the number of intermediate tuples generated
(see [9], Section 6.2). In some cases, although query mesh will try by our approach (HPE). Selectivity-based partitioning can achieve
to partition the input relations, the chosen partitioning is not obeyed only a modest benefit compared to the best monolithic plan, be-
by the execution engine, due to the tuple arrival order. Our work cause it can only partition one relation and is forced to use left-
does not suffer from these limitations, as intermediate results aredeep trees. For query mesh, we present numbers for the best (bc)
stored and shared. A discussion of the benefits of storing interme-and the worst case (wc). In the best case, it is assumed that the
diate results as opposed to recomputing them can be found in theorder of arrival of the input tuples can be controlled so that the cho-
literature [8]. sen partitioning can be enforced. This yields the same number of
We illustrate the advantages of our more general problem setting intermediate tuples as our approach. In the worst case, query mesh
with an example. Assume the following schema and join query: is forced by the arrival order to follow one sub-optimal plan for a
large subset of input tuples. Note that Figure 1(b) shows a lower
R(A,X),S(A,Y, B), T(B,Z,C),UW,C) bound of the intermediate tuples generated by query mesh in this
case. Our approach yields the lowest number of intermediate tuples

select » fromR, S, T,U because it does not suffer from the limitations described above.

where RA=S.A and SB=T.B and T.C =U.C

543

2.2 Partitioning with eddies R e
))) o) Ra sa || ly routing policy |
Eddies with symmetric hash joins [1, 8] provide a framework s, || ‘
_that natu_rally enc_apsulates horizontal partitioning and state shar- s R | Isumul| S,=0.(S)
ing, making it an ideal framework for exploiting data correlations ! (ST s=¢ (S)
through horizontal partitioning. With eddies, fixed query plans are \ 3 Tf: gﬁ:’?r)
no longer constructed. Instead, the operators that are involved in| S, Séb g_b TZ:olT(T)
the query are connected with a central router (the eddy), and query 2 2 |l
- - RS, TU ||
execution proceeds by routing the tuples through the operators. The| T, / bS ey
eddy makes a routing decision for each individual tuple. This en- S, = rasr
ables multiple plans to be executed simultaneously for the same - Te ve | Ti=rany
query, each plan operating on a different subset of (base or inter- —2 T, U |l gz; st
mediate) tuples. These multiple plans are not created explicitly; [, (RS)T, 2027 "
rather, they are implied by theddy routing policy Note that al- output ST, o

though eddies were introduced as a way to achieve adaptivity in a

streaming environment, we do not use them as such. We assume

a more traditional setting, where the data is static. This eliminates Figure 2: Query execution using an eddy with symmetric hash

the adaptivity overhead of eddies. joins. The routing policy directs tuples from partition S; to
Consider the join quen®® X S X 7' X U and the execution ~ R S, tuples from S to S X T', tuples from 73 to 7' X U, and

of the query using an eddy, as shown in Figure 2. Tuples from tuples from 7> to S X T'. The result is four different plans that

relationsRk andU each have only one possible destinatiix S execute simultaneously sharing all common state.
andT X U, respectively. Howevel tuples can be routed to either
R X SorS X T, andT tuples can be routed to eith@r X U T x U in our example has the following schema:

or S X T. The eddy can use a predicate on one of the relation
attributes to distinguish the routing destinations. In Figure 2, the URARX,SASY,S.B,T.B,T.Z,T.C,UC,UW).
eddy uses the predicates (e.g.,¢s = (S.Y > 5)) to route S
tuples. Tuples fron$ that satisfyps are routed tak X S, yielding
ganTor;iilla";r; EI:rstitfiIJOan'f that do not satisfy.s are routed to icate defined ovet{. For example, the join predicatérs is the

In Figure 2 the intermediate results, as stored in the hash tablesp.red'c.at.@qRS:. (R-A = 5.4) de.f'ned over the rellatlobl. Be-
of the symmetric hash joins, are shown. While RI(U) tuples sides join predicates, we also define decision predicates. An exam-

are stored in the joilR X S (T' X U), the relationsS andT are ple decision pred_icate isjs = (8.Y >5), where we subscript t_he
partitioned. TheS, (T1) partition is stored ink X S (T X T) name of the predicate with the name of the relation that contains the

and theS, and T, are stored inS X T. Thus, the intermediate attribute. A CJP is a directed, rooted tree that contains join and de-

results created aBS,, S2T», andT,U. The RS; andT: U tuples cision predicates as its nodes. Decision nodes model relation splits,
are stored inS X T (tﬁeir oﬁly routing destination). The state of and the orders of the join nodes at each path from the root to a leaf

S X T is then as shown in Figure 2. The subsequent routing of model the join plans f_or each compinatiqn of _partitions. One pos-
intermediate results in the combined execution of the four plans sible C‘].P for the running exa'.”?p'e IS deplqted in Figure 3. The CJP
shown in Figure 1(a). The state captured in the joins at the end can be interpreted as a conditional selection plan [7] on the Carte-
of query execution is shown in Figure 2. Note that the relations sian product{. Tuples fromi{ flow from the root to the leaves of

RS, and T, U that are common in multiple plans are computed ;hﬁ C‘]Pt'hA tuplerstu ft'rSI. V'S'tzthe ?C:geés- (;f ¢St(t:‘9tu). = .-tr'f't”
only once. Eddies provide maximal sharing of intermediate results ollows th€ uUpper outgoing edge of theé node, otherwise It 10flows

C . LS the lower edge. Leb) = o4,—7(S) and Sz = o44—¢(S). Then
at execution time, with no extra optimization time overhead. ¢s ¢s
P tuples fromR x S; x T x U follow the upper edge obs, and

tuples fromR x Sz x T' x U follow the lower edge obs. After all
3. CONDITIONAL JOIN PLANS the decision nodes have been visited, the four resulting partitions

Traditional query optimization is realized as search for the “best” of fareth = Rx S x Ty x U, U = Rx 5 x Tz x U,
join plan in a suitable search space. The search space can be cor{f{?’ = Ex 5 x Tix U, andZ_/{4 = B x 5 xTy x U.‘ Tuples from
strained (e.g., to exclude bushy trees), and the search algorithmdlf'ferent partitions follow different orders of the join nodes. For
can be either exhaustive or greedy, among other possibilities. To example, tuples frort; follow the orderXgs, Xry, Mst (Sub-
achieve a similar search framework for our optimization problem, plan P“).' When a tupl_e ol visits a join node, it glther satlsﬂes_
we need a new representation of the search space that is capable C}Pe predicate and continues to the next node, or it does not satisfy
capturing both the partitioning and the join orders for each partition
combination. Conditional join plans offer such a representation.
We begin with defining CJPs, and then discuss how to estimate
their cost.

3.1 Definition of CJPs

Before defining CJPs formally, we provide an example CJP using
the running example. Thguery graphof a query has the relations
as its nodes and the eligible joins as its edges. We annotate each]
edge with the predicate of the corresponding join. For our example, Figure 3: A CJP for the query & X S X T X U with two
the query graph |Q({]—27 S, T, []}7 ‘_7)’ where the set of edges is decision predicatesps, ¢r. The two ¢ predicates in the sub-
J = {Xrs,Xsr,Xry}. The Cartesian produét = R x S x plans P, and P» can have different valuespr, and ¢r,.

Let usconceptuallyiew the queryQ as a selection query over the
Cartesian produd?. Then a join between two relations is a pred-

>« —» P> d —> Prd

RS Y ST

>« - —> P dq

RS ST U

>« —» Prd —> P d

U ST RS

P, —> P, —» bd

RS

544

the predicate and is discarded. Consider a tuple of the jpariti,
rs; t; u that visits the join nod&izs in the sub-planP;;. The tu-
ple is evaluated against the predicates= (R.A = S.A), and it
will continue to the next nodedry only if Xrs (rsit;u) = T.
Observe that the tuples that pass the preditate are the tu-
ples of the relationR X S; x Ty x U, so the joinR X S is
executed first. The join predicate order followed dgy tuples is
(R ™ S1) M (Ty X U). In fact, the CIP models the partition-
ing and the forest of join trees corresponding to HPE as shown in
Figure 1(a).

More formally, given a query grap@({R1,...,Rn},J) and a
setF of decision predicate values, a conditional join pR(Q) is
a directed, rooted tree that contains two kinds of nodededision

/

node— ¢x — contains am-ary predicatepx € F, defined

over the Cartesian produbt = R; x --- X R,. A decision predi-
cate splits the relatiotf into n disjoint partitions that cover the re-
lation. Ajoin node— N xy — contains a predicate frogf, defined
overl, with only one outgoing edge. A join predicate discards the
tuples of the Cartesian product that do not satisfy it. A @)

is valid for the queng if every path from the root to a leaf contains
every join predicate i exactly once. This means that the correct
query result is produced. To simplify our discussion, we also re-

into account the cost of partitioning is an easy extension to our cost
model.

Third, we need to decide whether the cost of a CJP includes the
size of an intermediate result common to multiple plans once or
multiple times. This in turn depends on the query processor that
will execute the CJP. As discussed previously, a €JB) can be
transformed into a forest of join plans. Let us denote||B}|ns
the total number of intermediate tuples generated by these plans
and by|| P||s the number of intermediate tuples when duplicate tu-
ples are counted only onéeThen || P||ns is the cost of the CIP
when intermediate results are not shared during query execution,
and|| P||s is the cost ofP when maximal sharing of intermediate
results occurs.

It is easy to computd P||ns in a naive way. The CJP is trans-
formed to a forest of join plans, and the cardinalities of the inter-
mediate results they produce are computed as usual. In order to
compute||P||s in a similar way, we need to note the intermedi-
ate results that are added to the total cost, and only count them
once. For example, consider the cost estimation of the CJP in Fig-
ure 3. A traversal of the binary tree of decision predicates finds
the predicate assignmeftthat hold in each leaf of the tree (the
sub-plansP;1—P»2). These assignments define the relation parti-
tions. For example, i1, the assignment of the decision pred-
icates is® = (¢s = T,¢r = T), which defines the partitions

quire that a join node does not precede a decision node in any pathS; = ¢4,(S) andTi = o4, (T). The corresponding join plan

from the root to a leaf.

A CJP P(Q) can easily be converted to a forest of join plans,
each join plan operating on a certain combination of data partitions.
Consider the tree formed by the decision predicate® ¢¢.g., the
full binary tree formed by)s and ¢ in Figure 3). Each leaf of
this tree defines a particular combination of relation partitions that

can be discovered with a tree traversal, and leads to a particular

sub-plan P11—P>2 in the figure) that contains only join nodes. For
example, the sub-pla#;; uses the relation partition®, S1, 11,
andU. After discovering the partitions, each order of join predi-

cates in a sub-plan can be de-linearized to form the corresponding

join plan. This transformation defines the “semantics” of a CJP,
i.e., the way it is executed by a query processor.
Finally, we define &££JP structureP(Q, F) as a CJP whose deci-

sion predicates are not assigned values, but are viewed as variable

is (R M S1) X (Th X U), whose cost i$RS1| + |T1U|. Using
our notation for join and decision predicates, the ¢&5; | can be
written asPr(Xrs, ¢5)|R||S|, where

|UNRS/\¢S(R xS xT x U)l _ |R81|
|R[[S[IT|U| |RS|

Apart from being costly, this cost estimation procedure defeats
the purpose of constructing CJPs in the first place. Since the CJP
needs to be translated to a forest of join plans when its cost needs
to be computed, search could as well proceed in the space of join
plan forests. Instead, we propose a cost function that is recursive in
the structure of CJPs. Before covering recursive cost estimation in
Section 3.4, we show how the required probabilities as the one in
SEquation 1 can be estimated.

Pr(Xgs, ¢s) = 1)

of the CJP. A CJP can be derived from a CJP structure when we 3.3 Estimation of joint selectivities

assign values to all the predicates/n These values can be nor-
mal predicate values or one of the following two special values (for
chain query graphs): the always-true predicate and the always-
false predicateraise. If the predicate of a decision node= ¢uye,

all i/ tuples follow the upper sub-plan of the node, and # ¢raise,

all ¢ tuples follow the lower sub-plan. For general query graphs,
we can similarly define special predicates that direct the incoming
tuples to exactly one particular outgoing edge. We denot€ @)

the assigned values of the decision predicates of the concrete CJ
P.

3.2 Cost estimation basics
In order to define the cost of a conditional join plan, we need

To estimate joint selectivities, we need a statistical model of the
database that captures correlations. Existing techniques [6, 13] en-
able trade-offs between the storage requirements and the correla-
tions that are captured, typically using the notion of graphical mod-
els [14]. Unfortunately, these techniques cannot be used unmodi-
fied in our setting, as they do not support arbitrary joins. One pro-
posal [6] is designed with only selection queries in mind, and an-

I5)ther [13] supports only key-foreign key joins. However, it is not

hard to extend the notion of statistical relational models described
in [12] to work correctly with arbitrary joins. The downside is that
all possible joins must be known prior to building the statistical
model.

We use an undirected graphical model (also called a Markov net-

to make several decisions. First, to be able to formally analyze the work) to estimate joint selectivities. A Markov network is defined
query optimization problem, and to keep the cost formulas tractable, by its structure and the probability distributions that need to be kept.
we use the number of intermediate tuples as the cost metric. Al-
though simple, this metric is known to be quite effective, and it
mirrors disk or CPU-based cost functions in many scenarios [4].

The subscriptNS stands for “no sharing,” and the subscript
stands for “sharing.”

2
: PSP We distinguish between a predicate value and a predicate assign-
Second, we need to incorporate the cost of partitioning into the ment. The former is a functiol — {T,F}, while the latter is a

cost metric. To simplify our cost formulas, we ignore the partition- yajye from{T, F}. Further, when there is no confusion, we abbre-
ing cost for now. Instead, we impose a constraint on the number of viate the assignment = T as¢, and the assignment = F as
predicates that can be used, termedgpheitioning budget Taking —g.

545

The structure is an undirected graph with random variabletsas i

nodes. The edge set of the graph encodes the conditional indepen
dencies that the model implies. Although these can be discovered
automatically using a training set, we have chosen a fixed structure

that captures the necessary correlations in minimal space. After the

structure is defined, a probability distribution for each clique of the
graph has to be computed and stored.

The model construction algorithm takes as argumentittieer-
sal query graphthe query graph that captures all possible joins in
the database. The random variables that serve as the nodes of th
Markov network are (1) thelescriptive attribute®f the database
and (2) thejoin indicators. The descriptive attributes are the at-
tributes that are used to partition the relations during query pro-
cessing. The join indicators are binary random variables that cap-
ture the events that two relations join. A join indicator exists for

the set of the intermediate results that have already been produced.
The setM contains elements of the form = (R, E), whereR

is a set of relations, arf is a set of join predicates. The cost of a
plan P is defined as the cost of its root node:

CosTus(P) = CosTns(root(P), ®, #)

To define the cost of a nodedSTvs(n, ®, M), we need to distin-
guish between decision and join nodes. The cost of a decision node
_ /o
@ = ¢ \ n’
CosTws(n, @, M) = CosTns(n', ® U {¢}, M)+
CosTys(n”, @ U {-¢}, M). (2

Observe that a decision node does not add to the cost since we

is

each edge in the universal query graph. We choose to place anignore the cost of partitioning. A decision node is used only to

edge in the graph only between a join indicator and the descrip-
tive attributes of the relations whose join it represents. The model
is represented internally as a junction tree [14], which allows for
efficient computation of joint probabilities.

Assume that our example query defines the universal query graph
and that the descriptive attributes &eX, S.Y, T.Z, UW. The join
indicators are7rs, Jst, Jru, defined ag/rs = (R.A = S.A),

Jst = (S.B = T.B), andJrv = (T.C = U.C). Figure 4
shows the Markov network.

Al D——W

Figure 4: Markov network for the example database.

The probability distributions that need to be stored are the max-
imal cliques of the Markov network. In our example, we need
the distributionsP(X, Jrs), P(Y,Jrs), P(Y,Jst), etc. All of
these distributions can be stored as one-dimensional distributions,
and they can be computed without first constructing the Cartesian
product. For example, the probability distributiét(Y, Jrs) can
be maintained as two one-dimensional distributiaR§Y, Jrs =
T) and P(Y, Jrs = F). We can computeP(Y, Jrs = T) as
%ITSS‘:T), whereC(Y, Jrs = T) is the result of the query
select Y, count(*) fromR, S
where R.A=S.A group by Y.

Then, we can computB(Y, Jrs = F) as

_|RIC(Y) = C(Y,Trs =T)

P =0 = RIS

I

whereC(Y) is the result of the query

select Y, count(*) fromS group by Y.

Given the constructed Markov network in a form of a junction tree,
we can efficiently compute arbitrary joint probabilities of decision
and join predicates. For example, the probability of Equation 1
is the probability that both predicatészs, and¢s are true. To
compute it, we need to form the marginal distributioffs andX
which can be done with standard inference algorithms like message
passing [6, 14].

3.4 Recursive cost estimation

We define a recursive cost function0€Tys, for || P||ns. For
||P|ls, we have a recursive cost function that is correct for a re-
stricted space of CJPs, discussed in Section ds¥s takes two
sets as arguments, both initially empt®, a set of predicate as-
signments that hold in the current node under evaluation,/ahd

546

update the se. When the cost function recurses to the upper
(lower) noden’ (n”’), the assignmenp = T (¢ = F) has been
added to the seb.
To compute the cost of a join node=—X;;— n’, we need to
consider four cases:
1. The join node represents a join between the two base rela-
tions R; andR;.
2. The join node represents a join between an intermediate re-
lation that containg?; and the base relatiaR;.
3. The join node represents a join between an intermediate re-
lation that containg?; and the base relatioR;.
4. The join node represents a join between two intermediate re-
lation, one containind?; and the other containing; .
The argument set is used to make the distinction. Assume two
elements ofM, m1 = (R1,=Z1) andmz = (R2, Z2), such that
R; € R1 andR; € Ro. If both these elements exist, we are in
case 4 above; if onlyn; exists, we are in case 2; if oniy» exists,
we are in case 3; if none ofi; andm. exist, we are in case 1. In
case 1, we calculate the cost of a join node that represents the join
between two base relatiod®;,R;:

CosTs(n, ®, M) =Pr(Xy;, /\ ¢)|Ril|R;|+
(pE(I,l{Ri’Rj}
CosTs(n’, @, MU {({Rs, R;}, {™i;})}) ®)

The node adds to the total cost the cardinality of the Cartesian prod-
uct|R; x R;| weighted by the probability of the conjunctiontef;,
the join predicate under evaluation, and the decision predicate as-
signments in the sab = ®!{%:%i} The set¥ contains the deci-
sion predicate assignments that have been seen sb, fastricted
to those that involve attributes @t; and R;. In general, ifX is
a set of relations®'* denotes the restriction @ to X, i.e., the
predicate assignments dnthat contain only attributes of relations
in X. The cost contribution of the node is exactly the number
of intermediate tuples of the joiR; X R;, whenR; and R; are
partitioned by the decision predicate assignments'iffti i}

For example, consider the cost of the nodgs in P2 of Fig-
ure 3. Since we have seen the decision naflgs)r and followed
the edges that lead tB2, the assignment of decision predicates
currently valid, as set by the cost calculation of the decision nodes,
is® = {¢s = T, ¢ = F}. Decision nodes do not add elements
to the setM, soM = () and we are in case 1. The sBt™® is
OIS = (s, =} % = {¢s}. The contribution to the total
cost is therPr(Xrgs, ¢s)|R||S|. In addition to adding the size of
an intermediate result to the total cost, the nadm Equation 3
adds to the set\ the elementn = ({R;, R;}, {Xi;}). which
represents the intermediate relatiBnX R;.

In case 2, we joirR; with an intermediate resuR ; that contains The constraints imposed by eddies affect the CJP search space as
R; and the join predicates i : follows. Given a queng®, we can construct aniqueCJP structure
P.(Q,F.), called theeddy CJP structure Any CJP valid forQ
CosTs(n, &, M) = that can be executed using an eddy (calleedaty-complianCJP)

Pr(X;;, /\ I3 /\ ®)|R;| H |R|+ @) can be d.erived.from the eddy CJP structure by assigning yalues to
cez, LR{U{R:} RER the predicates itF.. Hence, the eddy CJP structure determines the
= ped* ™1 J 1
, _ eddy CJP spac#or this query. Appendix A details an algorithm
CosTs(n', &, M — {ma} U{(R1 U{R;},E1 U {X;})}) that, given a query, constructs the unique eddy CJP structure. Fig-

The cost contribution of the node is now the size of the inter- ure 7 shows the eddy CJP structure for our example.

mediate resuliR; X R;, when the relations are partitioned by the
predicates inp! ®1V {1},

Consider the calculation of the cost Bfsr in P1». The ar-
guments of the cost function a® = {¢s,—¢r} and M =
{({R, S},{Xrs})}. Since there is an element j that con-
tains relationS, but there is no element that contains relation
we are in case 2. The cost contributionbdfr is Pr(Xsr, Xrs
,¢s,¢7)|T||R||S| = |RS1Tz|. In addition, an element for the
intermediate relatio® ST will be added taM. Case 3 is symmet-
ric to case 2 and can be dealt with similarly. Finally, in case 4 we

— P, —> PA,

— ><ST — ><TU

— A, = PA

>« — P, — P,

>« — ra, — P

join the intermediate relatior®; andR: Figure 7: The eddy CJP structure for our running example.
CosTs(n, &, M) = Note that the predicate ¢+ must have a unique value.

For example, assume that we are given a partitioning budget of
Pr(bij, /\ 3 /\ ¢) H | B[+ ®) ¢ = 1 and we decide to use the predicate = (S.Y > 5).

LES1US: geplTiUR2 RERIUR: Then, all the eddy-compliant CJPs can be derived from the eddy

COSTNs(n’, O, M — {m1,m2} U{(R1 UR2,E1 UZ2 U {X;; H}) CJP structure of Figure 7 by assigning valuegtoand¢ st from
the set{ puue, Praise}, as defined in Section 3.1. These values must

~ For example, consider the cost computation for the rigde be honored across sub-plans. For example, assume that we choose
in Pi;. This is the sub-plan that represents the bushy join tree. b1 = duue. Then we must use the join ord@R X Sy) & (T X U)

The co.st function ha§ glready eva}luated the nodgs andXry . for partition S1 and the join ordef(7" X U) X S3) X R for parti-

When it reachesdsr it is called with argument® = {¢s, ¢} tion S2. Note thatpst is not defined in thedr = ¢uue SUb-plans
andM = {({R, S}, {Xrs}), {T, U}, {Mrv})}. The costcon- pacayse the intermediate resSif is never formed in these sub-
tribution of X7 is Pr(Xsr, Xrs, Xrv, ¢s, o) |R||S||T||U| = plans.

|RS1T1U|. The recursion of the cost function ends at the leaves of = gjnce eddies provide maximal sharing, the recursive cost func-

the CJP, or at the second-last join node if we do not want to include {jon, cosTysfrom Section 3.4 does not estimate the cost of an eddy-
the size of the query resultin the cost estimate. By the definition of ¢ompliant CIP correctly. Fortunately, we can define a recursive cost
the cost function ©STus, the following lemma holds. function CosTeaqythat estimates the cost of an eddy-compliant CJP
with sharing accounted for. Only one change is neededts1(s:
Instead of including the decision predicates of thedset, where

X is the set of relations relevant to the join node under consider-
4. THE EDDY CJP SPACE ation, in Equations 3- 5, we simply include all the decision predi-

cates in®. The following holds.

Lemma 1. For any valid P(Q), CosTks(P) = ||P||ns.

4.1 Eddy restrictions

The routing nature of query execution with eddies imposes con-
straints on the possible partitions as well as on the join plans that PROOF. See Appendix B.
can be executed. This in turn imposes restrictions on the CJPs that
can be considered during query optimization. Consider for example
the valid CJP for our example query in Figure 6.

Lemma 2. If P is eddy-compliantCOSTeday(P) = || P||s.

Denote the eddy CJP structure for a quérpy P.(Q, F.). We
can now formally state the problem we are solving.

Horizontal paritioning with eddies. Given a queryQ and a par-

P, —> P, —> b, titioning budgetc, find the plan
RxSxTxU P*(Q) = arg min [COSTeday(P(Q))]
Py o P e Py |F(P)|<c,F(P)CFe
Figure 6: A CJP that is not eddy-compliant. that is valid forQ and is eddy-compliant.
This CJP is equivalent to the join plag&R X S1) X T) X U, Put differently, query optimization has to partition the predicate

((T' WM U) X S2) X R. If we were to execute this query with variablesF. of the eddy CJP structure into two disjoint sets: The
an eddy, we need to make a routing decisionfatuples using a first set of size at most contains predicates that are assigned nor-
predicategs, on relationS. If ¢s = T, T needs to be joined with mal predicate values (e.gS.Y > 5), and the second set, of size
R X Si, while if s = F, T needs to be joined with/. There at least|.F.| — c contains predicates that are assigned values from
is no possible routing that can achieve this. The routing decisions the set{ ¢wue, ¢rase}. The choice of the two sets and the choice of
for T tuples can only be made using a predicateélgnyr. The values should yield the minimum cost. Once the predicate&.in
restrictions on the possible CJPs is the price paid for state sharinghave been assigned values, it is trivial to construct an eddy routing
provided by eddies. policy that executes the resulting concrete CJP.

547

- m’(; 7 Q/g 3 '3105 T T T T T T
[8) 72} 1 Q
) %6 TE 3 E10' |]
é $ 5 g 8 F }-;]
o = 35] € 10° FH/-\I—I/.\I/:
£ 24 o2 E £10°"]
- 0 E %] c 4
H | g2 83 1 E ot _
10" FGHP —m— 7 = SEw0 Forp —u— {1 Ewfew = 3
[BMP —eo— | Q Q9 BMP —e— o BMP —e— |
100 1 1 1 1 1 1 1 E 0 m E 100 1 1 1 1 1 1 O 100 1 1 1 1 1 1 1
0.10.20.30.40.50.60.70.80.9 0.10.20.30.40.50.60.70.80.9 0.10.20.30.40.50.60.70.80.9 0.10.20.30.40.50.60.70.80.9
Correlation parameter Correlation parameter Correlation parameter Correlation parameter
(a) Total execution time. (b) Intermediate tuples gendic) Execution time for interme- (d) Optimization time.

ated. diate tuples.

Figure 5: The effect of varying the correlation parameterr in a 3-join query when all the joins have the same selectivity.

4.2 Greedy search generation in detail.

While possible, it is computationally infeasible to exhaustively .
search the eddy space. We propose an algorithm that starts from@-1 1€ effect of data correlation
the best monolithic plan for a query and gradually builds an eddy- We start with varying the data correlation parameten a 4-
compliant CJP. At each step, the algorithm cycles over all the deci- relation join query. Each relation hd$* tuples, and all the de-
sion predicates on attributes that have not been used yet, and pickscriptive attributes (one per relation) take values from the domain
the one that yields the best cost when used to split the plan into two {0, 1, ..., 9}. The data is generated using a correlation coefficient
sub-plans. This is done greedily: when the algorithm introduces a r which takes values if0.1, 0.9]. The selectivities of all joins are
split, it assumes that no future splits will occur, but rather that the fixed at 0.001. This means that there are no substantial optimization
best monolithic plans (under the eddy constraints) will be used for opportunities for this query in the traditional sense. However, when
the sub-plans. The algorithm stops if it has introduced the maxi- the data is naturally partitioned into subsets due to high correlation,
mum numbetk of decision predicates allowed, or if no further cost the execution time of the query can be reduced using horizontal par-
improvement can be achieved. titioning. This means that horizontal partitioning can be beneficial
The gradual construction of the CJP has three advantages. Firstjn situations where traditional optimization falls short.
the complete eddy CJP structure does not need to be stored. Sec- Figure 5(a) shows the total execution time in msecs (in loga-
ond, the sizes of the CJPs whose costs will be evaluated are con+ithmic scale) of the best monolithic plan of and the CJP found
trollable; a CJP with more thandecision predicates is never gen- by the greedy horizontal partitioning algorithm. In non-correlated
erated. Finally, the cost of the final CJP is guaranteed to be lessdata ¢ € [0.1, 0.4]), the two plans yield the same execution time.
or equal to the cost of the best monolithic plan. However, since As the data becomes more correlated> 0.5), the CJP becomes
there is no backtracking, the algorithm can obviously get stuck in faster than the monolithic plan. At = 0.9, we observe a 90%
local minima; an initial choice for a locally optimal decision predi- reduction of the total execution time.
cate can lead the algorithm to assume that no cost improvement can To understand the performance difference better, Figure 5(b) ex-
be made by further splitting. Appendix C provides the details and amines the number of intermediate tuples generated. While high
pseudocode for the greedy search algorithm, as well a discussioncorrelations cause the best monolithic plan to produce more inter-
of its cost as compared to the cost of exhaustive search. mediate tuples, the opposite is true for horizontal partitioning. The
number of intermediate tuples is zero when= 0.9. Figure 5(c)
shows the portion of the execution time devoted to intermediate tu-

5. EXPERIMENTAL RESULTS ples only. The benefits of horizontal partitioning are apparent: the

We have implemented eddies, symmetric hash joins and the gre-€xecution time quickly drops to zero aftereaches 0.4, whereas
edy horizontal partitioning scheme in PostgreSQL, reusing the ed- the executlon.tlme. of the pest monolithic plan stays fairly constant.
dies code from the TelegraphCQ project [3] (see Appendix D for The execution time savings of the query come at the cost of an
additional details). We compare our greedy horizontal partition- increased optimization time. The greedy horizontal partitioning al-
ing algorithm (termed GHP) with the best monolithic plan (BMP), dorithm finished after 2 iterations in all cases. Even so, there is
found by an exhaustive enumeration of all possible plans. Both @n order of magnitude increase compared to the optimization time
methods use the same junction tree-based selectivity estimation0f exhaustive monolithic optimization. However, the benefits of
code. To ensure fairmess of comparison, the resulting plans of bothPartitioning during query processing outweigh the increase in opti-
methods are translated into an eddy routing policy and executed Mization time. The optimization time can be reduced if we reduce
with eddies and SHJs. Note that executing a monolithic plan us- the buckets of the descriptive attribute histograms (currently 10),
ing eddies takes at most double the time than executing it using thebut with an expected degradation in accuracy, and thus a possible
vanilla PostgreSQL executor in our experiments. increase of query execution time. o o -

The quality of the best monolithic plan depends only on the se- We also experimented with a query with different join selectivi-
lectivities of the participating joins, while the quality of a CJP de- ties, settal0™>,107%, and10™". As expected, the total execution
pends on both the average selectivities and the correlations. WeCOSt is lower than in the previous case for both methods. Tradi-
study the effect of these parameters in Section 5.1. The optimiza-tional query optimization can produce less intermediate tuples than
tion time is affected by the size of the statistical model, which is Pefore, but the effect of the data correlation remains the same. We
studied in Section 5.2. Finally, we study how our greedy algorithm ©mit the graphs due to lack of space.
scales in Section 5.3. We use synthetic data in order to be able
to control three parameters: the number of tuples, the selectivity 9-2 1 Ne effect of the number of buckets

of the joins, and the data correlation. Appendix E covers the data We vary the domain size of the descriptive attributes for the same

548

T T
GHP —=—
4 [BMP —e—

Optimization time (msec)

intermediate tuples (msec)
Execution time devoted to
intermediate tuples (msec)

Execution time devoted to

2 4 8 16 32 2 4 8 16 32
Number of buckets Number of buckets Relations in query Relations in query
(a) Execution time for interme- (b) Optimization time. (a) Execution time for interme- (b) Optimization time.
diate tuples. diate tuples.

Figure 8: The effect of the number of histogram buckets. Figure 9: Varying the number of relations and GHP iterations.

query, fixing the correlation parameter at 0.6. Since we have one 9réedy search with controlled iterations in this space is proposed
bucket per domain value, this is equivalent to varying the number of that can achieve an one order of magnitude better execution time
buckets in the constructed histograms. A large domain size meansfor highly correlated databases, while performing on par with the
more detailed statistics and thus more opportunities for horizon- Pest monolithic plan at low correlations.
tal partitioning, but it makes the search in the junction tree more _ This work opens several lines of research that we plan to pursue.
expensive. Figure 8(a) shows the execution time for intermediate First, a problem thatremains open is whether shared computation is
tuples for GHP and BMP when the number of buckets varies from always beneficial. Second, it would be interesting to explore multi-
2 to 32 (both axes in logarithmic scale). The execution time for qugry_optimization in this environmer_n,_where multiple queries are
intermediate tuples of GHP is equal to that of the best monolithic OPtimized together to produce many join plans that share computa-
plan when there is only 2 buckets, and it improves over the best tion. Finally, we would like to explore the parallel query processing
monolithic plan by two orders of magnitude when there 32 buck- case where the optimization metric is throughput..
ets. Figure 8(b) shows the optimization time. Both methods are
affected equally by the increase in the number of buckets. The op-7. REFERENCES
timization time of GHP is one order of magnitude worse than that [1] R. Avnurand J. M. Hellerstein. Eddies: Continuously adaptive query
of traditional query optimization. processing. IISIGMOD, pp. 261-272, 2000.

Note that with more than 16 buckets, the optimization time ex- [2] P. Bizarro, S. Babu, D. J. DeWitt, and J. Widom. Content-based
ceeds the execution time for intermediate tuples in our setting. How- __ routing: Different plans for different data. MLDB, 2005.

ever, if the size of the database was larger (e.g., each relation con- [3] S: Chandrasekaran, et al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. GiDR, 2003.

i 8 ion ti 4 8
ta}lnle tuples)., the execm'?” t!me \.NOU|d vary frar” to 10” in [4] S. Cluet, and G. Moerkotte. On the complexity of generating optimal
Figure 8(:_:1), while t_he_optlmlzatlon time would not pe affected. In left-deep processing trees with cross productCT, 1995.
most settings, achieving up to two orders of magnitude faster ex- [5] A. Deshpande. An initial study of overheads of eddBESMOD
ecution is more significant than an one order of magnitude slower Record 33(1):44-49, 2004.
optimization. However, a wrong choice of parameters can lead to [6] A. Deshpande, M. N. Garofalakis, and R. Rastogi. Independence is
high optimization times for horizontal partitioning. good: Dependency-based histogram synopses for high-dimensional

.) data. InSIGMOD, pp. 199-210, 2001.
5.3 Scallng the number of relations [7] A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting

. correlated attributes in acquisitional query processingCDE,
Finally, we study the performance of GHP when the number of pp. 143-154, 2005.

relations in the query varies from 4 to 7. The correlation parameter [8] A. Deshpande and J. M. Hellerstein. Lifting the burden of history

is fixed at 0.5, the selectivity of all the joins is fixed at 0.001, and the from adaptive query processing. ViLDB, pp. 948-959, 2004

domain size of the descriptive attributes is fixed at 4. At the same [9] A. Deshpande, Z. G. Ives, and V. Raman. Adaptive query processing.
time, we vary the number of iterations of the GHP algorithm from Foundations and Trends in Databases, 1(1):1-140, 2007.

1to 4. The execution time devoted to intermediate tuples is shown [10] D. J. DeWitt and J. Gray. Parallel database systems: The future of

in Figure 9(a), and the optimization time is shown in Figure 9(b). high performance database syste@&CM, 35(6):85-98, 1992.

As the number of joins in the query grows, it is very beneficial to [11] P. L. Fackler. Generating correlated multidimensional variates.
increase the number of iterations of the greedy algorithm. In par- Available at http://www4.ncsu.edu/"pfackler/randcorr.ps.

ticular, for seven relations, four iterations of the greedy algorithm [12] L. Getoor.Learning Statistical Models from Relational DafhD

d th tion ti fint diate tuples by t d thesis, Stanford University, 2001.
can reduce the execution ime ot intermediate tuples by two oraers [13] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using

of magnitude when compared to one iteration. probabilistic models. ISIGMOD, pp. 461-472, 2001.
[14] D. Koller, and N. Friedman. Probabilistic graphical models. MIT
6. CONCLUSIONS AND FUTURE WORK Press, 2009.

Dat lati id tunities f ffecti [15] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of
ata correlations provide opportunities for more effective query nonrecursive queries. MLDB, pp. 128137, 1986.

optimization by partitioning relatlons..We first prefs.,en.t a principled [16] R. V. Nehme, E. A. Rundensteiner, and E. Bertino. Self-tuning query
way to approach the problem of horizontal partitioning as search mesh for adaptive multi-route query processingEDBT, 2009.

in the space of conditional join plans. CJPs provide an intuitive [17] R. V. Nehme, K. Works, E. A. Rundensteiner, and E. Bertino. Query
way to think about the problem, and recursive cost formulas for mesh: Multi-route query processing technoloBy/.LDB, 2(2), 20009.
CJPs can be defined. Further, we show how to efficiently estimate [18] N. Polyzotis. Selectivity-based partitioning: a divide-and-union
correlated selectivities using a statistical model with low storage paradigm for effective query optimization. GiIKM, 2005.

overhead. Then, we show how the sharing of intermediate results[19] V- Raman, A. Deshpande, and J. M. Hellerstein. Using state modules
that is inherent in eddies restricts the space of possible CJPs. A oradaptive query processing. IGDE, pp. 353-, 2003.

549

APPENDIX
A. THE EDDY CJP STRUCTURE

We show how, given a querg, we can construct a unique eddy
CJP structurd’. (Q, F.). We assume the chain query graph:

Q({Ry,..., R}, {Miipa1 i=1,...,n —1})

The generalization to tree query graphs is straightforward if we
considem-ary instead of binary decision predicates. The construc-
tion proceeds in two steps. First, thddy skeleton routing policy
me(Q, Fe) of a query is constructed. Then, using, the eddy CJP
structureP. (Q, F.) is constructed.

An eddy routing policyr is a map from relation schemas to join
operators. The eddy skeleton routing policy is the most general
routing policy possible, and it is unique for a given quéyFor its
construction, we start with.(Q, F.) = (. For each base relation
R;,i=2,...,n—1inthe query, we add te.(Q, F.) the element

S M
N M1

For each intermediate relatid®y Ri41 - - - Riyx, We add tar. (Q, Fe)
the element

R; — ¢;

S M1

RiRit1 - Rivk — @i, itk N Mo sphar
i+k,i

until no intermediate relation is left. Note that the assumption we
follow in this section is that if a tuple satisfies a decision predicate,
it will be routed to the leftmost possible join in the chain query
graph. The eddy skeleton routing policy for our running example
is

me(QF) =S os [Tor (T
ST0—>¢ST< ngj).

Given the eddy skeleton routing poliey (Q, F.), we construct
the eddy CJP structurg.(Q, F.). The algorithm first produces
the full binary tree of base predicateés. This will result in a bi-
nary tree with2" =2 leaves. Each leaf of this tree corresponds to
a full {T, F}-assignment of all the base predicates. .., ¢n_1,

example, in Figure 10, the decision nogler is placed only in the
sub-planPs. Essentially, a decision nodg; ;41 should only be
placed in the sub-plans in which the intermediate refylR; 1
is formed. These are the sub-plans in which b&thand R;+1
are routed toX; ;1 and produceR; R;+1. Under our formaliza-
tion, routing R, to X, ;41 means thaty, = F, and routingR;+1
to X; ;41 means thaty;11 = T. So, the decision node; ;11 is
placed in the sub-planB(¢2,...,¢i = F,¢ix1 =T,..., pn—1).
Having placed the level-2 decision nodes, the same procedure
can place the level-3 nodes, and continue until all the decision
nodes present in the eddy skeleton routing policy have been placed.
cluded in a sub-plar® iff
1. ¢; = Fand@iy1,... i+k isincluded inP and¢;i1,...i+k
T, or

2. ¢i,....i+k—1isincluded inP and¢;.... ;+x—1 = Fando;
T.

The final step is to place all the join nodes at every leaf of the
formed tree of the decision nodes. A partial order of the join nodes
is defined by the predicate assignments that hold at each leaf.

1. If d)l =T, thenNi,17i<l>4i,i+1, eIseNi,iH {Nifl’i.
2.

The partial order produced is transformedatoy equivalent total
order, and the join nodes are placed using the resulting total or-
der. For example, consider the sub-pl&n of Figure 10. Since
¢s = ¢r = T, the partial order i8drs<Xsr<Xry which is

a total order. For the sub-plafs:, ¢s = Fand¢r = T. This
will produce the partial ordeKsr<Xgrs, Xgr <M. Hence,
the assignments aps and ¢ alone cannot produce a total or-
der. In the this sub-plan$ and T tuples are routed t&sr pro-
ducing the intermediate resuitl". This intermediate result can be
routed to eitheXrs or X7, One more predicate, the interme-
diate predicatesr, is needed to make the routing deterministic.
Since inPs1, ¢s = T, using the second rule, we get the con-
straint X rs <X7rr, which makes the partial order total. Finally,
consider the sub-plaf,. Here, the constraints imposed by and
¢ areXpgs<MXgr andXry <Xsr, which do not form a total or-
der. However, this does not matteP; represents the bushy plan
R X S) X (T X U), and the cost estimation function will pro-

itk =1, thenNi,LHNk’kH, elseNk,kH <Xi—1,.

yeeny

and leads to a sub-plan containing join nodes and possibly decisiongyce the same result regardless of the relative ordetgf and
nodes that contain predicates on intermediate relations. Denotey,,;.

each of these sub-plans B¢, . . ., ¢n—1). The CJIP structure for
our example query is shown again in Figure 10. It is rotated (rota-
tions do not affect correctness or the results of cost calculation), in

B. PROOF OF LEMMA 2

order to conform to the assumption we made above. The sub-plans We need to prove that i is an eddy-compliant CJP, then the

are denoted byP(¢s, ¢7), and P, = P(T,T), P = P(T,F),
etc.

ra, —> Pa,

><w [><sr

— P, —> P,

— P, > P

>a, —>

[PN

Figure 10: The eddy CJP structure for our running example.

cost function @STeqay(P) computed| P||s correctly. || P||s is the

sum of sizes of intermediate relations, where each intermediate re-
lation is added to the cost only once. Consider the [(&4fs of the

CJP of Figure 3

[Plls = [RS1[+|ThU |+ |S2 12|+ RS T2 | +[S Th U |+ [S2 T2 U,
and the cost calculated by the cost functionGs(P):
CosTns(P) = 2|RS1| + 2|ThU| + |S2T2|+
|[RS1T5| + |S2ThU| + |S2 12U .

While the terms added by @sTns(P) are correct, some terms are
added multiple times. The cost functioro€Teqqy is derived from

the cost function ©sTys with a simple modification: In every joint
probability, instead of including only the decision predicate assign-

The first step of the algorithm is to decide which decision nodes ments that are relevant to the join predicates, we include all the de-
over intermediate relations will be placed in which sub-plans. For cision predicate assignments from the root to the current node. The

550

cost formula for decision nodes in Equation 2 remains the same.
For completeness, the cost function for a join nade —X;;— n’
is presented below for cases 1, 2, and 4:

COSTeaa(n, &, M) = Pr(iy;, /\ ¢)|Ril|R;|+
PP
CosTeday(n’, ®, M U {({Rs, R;}, {M¥:; })}).

COSTEddy(n7(I:'7M) :Pr([X]ij7 /\ 57 /\ ¢)|R]| H |R|+

£EE] ¢ ReRy
CoSTeday(n', @, M — {m1} U {(R1 U {R;},Z1 U {X;; D}).

A Ao 11

EEE1UEy 9D RER1UR-
COSTeday(n', ®, M — {m1,m2} U {(R1 UR2,Z1 UE2 U {X;;})}).

COSTEddy(’rL7 @,M) = Pr(|><lij, |R|+

Induction step If all intermediate result&” with card ') < k are
included in the cost one or zero times, then all intermediate
results) with card)’) = k + 1 are included in the cost one
or zero times.

We begin with the basis of the induction. Consider an interme-
diate relation’ of cardinality 2, that involves the relatiord®; and
R;+1, possibly in some partitioned form. We distinguish between
three cases: (@)= 1,(b),i =n—1,and (c)i Z1 A7 #n — 1.
Consider first case (a). Thea; involves the relationg?; and R»
and is formed only when the join - is at the first level of the
join tree. For the eddy CJP, this means thats only formed in
the sub-plans withpy, = T (see Appendix A). As already dis-
cussed, a leaf of the tree of decision predicates is equivalent with
an assignment ofT, F}-values to all the decision predicaté$P)
in the CJP. The joim, » is at the first level only at the sub-plans
with ¢2 = T, regardless of the values of the rest of the decision
predicates. However, note that the CBPQ) is derived from the

This modification does not alter the relation partitions. Since all eddy CJP structur@., and may contain only a subset of the free
the decision predicates that are relevant to the join predicates arepredicates inf. (F(P) C F.). Hence some predicates fraff,
included in the probabilities in both cost functions, the partition (including ¢2) may not appear in the decision node tree. So, we
sizes that are added as terms to the cost are the same. What iglistinguish between three sub-casesi)e F(P) (meaning that
different is the weight of these terms. The extra decision predicates ¢, is a part of P), (i) ¢2 = ¢we (Meaning that only the upper
included in @S Teqay(P) weight the partition sizes. For example, sub-plan ofps in the eddy CJP structure is included), and (iii)
consider the cost contribution of the node.s of the sub-planP:; ¢2 = ¢raise (Meaning that only the lower sub-planf in the eddy

in Figure 3: CJP structure is part aP). In case (iii), X will never be formed
(Rz is routed toX3 3), so|X'| will not be included in the final cost.

In case (ii)X is formed at every sub-plan. Hence, the total cost
contribution will be

ST P}, N 9)Ri||Re| = [Ry X Ral.

oe{T,F} PEF(P)

173
T

While the cost function ©sTns(P) adds to the total cost the whole
size of the intermediate res{iR.S: |, the cost function ©STeday(P)
weights it by%. When the cost function G@sTeqqy(P) evaluates
the cost of the nod& rs in Pi2, it adds to the cost the term

T3]

T
Added together, these terms result to the &€ | being included
only once to the total cost. So, in any case|X| is included with weight 1 in the cost, ether
The total cost of a CJP consists of sizes of intermediate rela- in the form|R; Re| or in the form|R; R3|. This concludes case
tions|X|. An intermediate relatiork encompasses both a certain (a) of the induction basis. Case (b) is handled similarly. For case
schema, and certain partitions of relations. The schema is pro-(c) (i # 1,n — 1), an intermediate relatio®’ that containsR;
duced by the join predicates, and the partitions are produced byand R;; will be created only in the sub-plans with = F and
the decision predicates. It is obvious that the terms produced by ¢;+1 = T. Again, we distinguish between three cases:

COSTeday(P) are the same as the ones produced lmsGis(P), 1. ¢, éis1 & F(P) which has the following subcases
since the extra decision predicates added are exactly the ones that
(@) ¢i = drase@nNdpir1 = drase. Then, there are not sub-

do not change the partitions. The difference is that @5@Gdqy(P) ’ .] X
some terms are weighted. We only need to show that these weights Frlarlstml Wh'EhX is formed, solX’| does not appear in
e total cost.

Pr(Mrs=T,ds =T,¢r = T)|R||S| = |RS1|

Finally, in case (i) X is formed only in the sub-plans with, = T.
Then, the cost contribution will be

> Pr(Xuis, ¢, N\ OIRi[R:| = |Ri Mo, (Rs)|.

pe{T,F} peF(P)—{¢2}

PI'(MRS: T7¢S = T7¢T = F)|R||S| = |RSl|

in multiple appearances of the same term will add to one:

Lemma 3. If P is an eddy-compliant CJP, then if the cost of an in-
termediate relationt appears inCosTeqay(P), it appears exactly
one time.

PROOF We assume the chain query graph
Q({Rh ey RTL}? {Mi”i‘f’l |7‘ = 17 sy — 1})

A generalization to tree query graphs is straightforward if we as-
sumen-ary instead of binary decision predicates. Consider an in-
termediate relatiodt’ that involves the relation®;, ..., R4+« in
some partitioned form. Our proof is constructed as an induction
over the cardinality of the intermediate relation dagtd = k + 1.
Specifically, we will show the following:

Basis An intermediate resul®” with card X’) = 2 is included in
the cost one or zero times.

551

(b) ¢z = ¢false and¢i+1 = ¢true-
(€) ¢i = dwue andep; 11 = Prase Then,|X| does not appear
in the total cost.
(d) ¢ = duue andepis1 = due. Then,|X| does not appear
in the total cost.
2. ¢; € F(P),pit1 & F(P). The casep; & F(P),pi+1 €
F(P) is dual. We have the following subcases:
(@) ¢i+1 = o¢rasee Then,|X| does not appear in the total
cost.

(b) ¢i+l = ¢true-
3. ¢i,pit1 € F(P). Then,X is formed only in the sub-plans
with ¢Z =F and¢i+1 =T.

We need to prove thatin cases 1(b), 2(b), and3,appears exactly
once in the total cost. In case 1(&,is formed in every sub-plan.

The contribution to the total cost is

> Pr(Mis, N @)RillRia| = R X Riga
SE(TF} seF(P)

In case 2(b)X is only formed in the sub-plans with; = F. The
contribution to the total cost is

z Pr(Xiit1, i,
¢e{T,F} F(P)—{¢i}

|o—p; (Ri) M Riyal.

In case and 3Y is only formed in the sub-plans with; = F and
¢i+1 = T. The contribution to the total cost is

Z Pr(Xi it1, 2¢i, Pit1, /\ &) | Ril|Rit1| =

¢e{T,F} F(P)—{di,Pit1}
|O-“¢7'L (Rl) N O¢it1 (Ri+1)|

So, |X| is always weighted by a factor of 0 or 1 in the total cost.
This concludes the basis step.

For the induction step, consider the intermediate relafionf
cardinalityk + 1, that contains the relatiorf3;, . . . , R;+x. Thisin-
termediate relation will be formed from a join nokte ;1 that will
join the intermediate relation¥;, X>, which contain the relations
R;,...,R; andRj41,..., Riy respectively. Since cafd;) <
k and cardX>) < k, we know that|/X;| and|X-| either do not

&) Ril|Riv1| =

appear in the total cost, or they appear with a factor of 1. Note that

multiple intermediate results that contain the relatifns. . . , R; 1«
can appear in the total cost, produced by all the joihg41 with
j=1,...,i+k—1. However, these intermediate relations contain
different partitions of the relations, and are thus different for the

Finally, for case 2(c), the cost contribution is

> Pr(My,41,51, B, A ¢, Aj,~$1)|R| =

$e{T.F} $EF(P)—F;—{61}
|-y (A1) X Xa.

So,|X| will appear in the total cost with a factor of 0 or 1.

C. GREEDY ALGORITHM DETAILS

P<=udocode for our greedy algorithm is given in Algorithm 1.
Initially (in function GREEDY-HPE), a traditional query optimizer
is invoked to find the best monolithic plan for the query. We use
the KBZ polynomial-time algorithm in our implementation [15].
This plan corresponds to @braise, dwrue }-value for each predicate
in the set of predicates of the eddy skeleton routing poli€y,
Then, the recursive functionf&EDY-HPE-RECIs called. It takes
the following argumentsZF is the set of predicates frof. that
have not been given values;is the set of bound predicates by the
algorithm (i.e., predicates that are already part of the CJP and are
assigned a value not froftpuue, ¢raise}); A is an set of predicate
values from{ ¢uue, ¢raise} for all the predicates itF; C is a{T, F}
assignment for the predicates i valid in thecurrent sub-plan
Cmin is the cost of the best CJP found so fais the partitioning
budget. The initial values for these arguments can be seenin line 5
of Algorithm 1.

The function GREEDY-HPE-REC examines all the free predi-
cates inF. For each possible value of every free predicatet
evaluates the cost of the CJP that uses @hbs a decision pred-
icate, and the upper and lower join orders honor the eddy restric-
tions. If it finds that such a predicate improves the total cost,

|

purposes of this proof. We can therefore focus on a particular value it introduces it to the CJP, and recurses to the two sub-plans. The

of j. Similarly to the base step, we have the following cases:
1. Either|X1| or | X2| do not appear in the total cost. The#;|
does not appear in the total cost.
2. Both|X4| and|X-2| appear in the total cost. Thefr,is formed
atthe sub-plans with; = ¢;,...; = F,and¢2 = ¢j11,....i16 =
T. This has again the following sub-cases:
(@) ¢1,¢2 & F(P), p1 = draiser aNdp2 = rre.
(0) ¢1,¢2 € F(P).
(©) ¢1 € F(P), p2 € F(P), andepa = Purue-
(d) ¢2 € .7:(P), ¢1 g .7:(P), and¢1 = ¢false-
We need to prove tha®’| appears with a factor of 1 in the total cost
in cases 2(a)-2(c) (case 2(d) is dual to case 2(c)). The fac&that

and X, are formed implies an assignment of all the base decision

predicatesy;, . . ., ¢+, as well as an assignment of all the deci-
sion predicates on the intermediate relations that fatnand X.
Let us callF; the set of these assigned decision predicates4nd

the particular assignment. This assignment creates the partitions of15:

the relationsR;, . . ., R, particular toX; and X», but does not
introduce factors in their cost (from the induction hypothesis). Let
us denote byE; (Z2) the conjunction of join predicates i (X2),

and by|R| the size of the Cartesian produgt x - - - X R;;x. For

the case 2(a) above, the cost contribution is

Z Pr(™j,j41,E1, Z2, /\ 0, A)|R| = | X1 X As|.
pe{T,F} PEF(P)—F;

In case 2(b),X appears only in the subplans with = F and
¢2 = T. The cost contribution is

Z Pr(Mj, 41,51, B,
$€{T.F} GEF(P)=Fj— {142}

= |0-py (X1) M g, (A2)].

¢, Aj, —¢1, $2)|R|

552

recursion finishes if such a predicate was not found, edécision
predicates have already been used.

Algorithm 1 Greedy Horizontal Partitioning with Eddies, initial-
ization and main algorithm

1: function GREEDY-HPE(Q)
2: ConvertQ to the eddy skeleton routing poliey. (Q, F)

3: Find the optimal plarP* for the query, and its cogt™
4: Find the assignmentl* (F.) that corresponds to the pldn*
5: return GREEDY-HPE-REC(F, 0, A*, 0, C*, c)

6: function GREEDY-HPE-REC(F,B,A,C,Crmin,C)

7. ¢* =null; C* = Cpyin; P* =null

8: for ¢ € Fdo

9: for all possible valuest < v for ¢ do

10: A" = A[F — {¢}]

11 A(b - A/ U {¢ - ¢true} @] C

12: Ay =A"U{¢ = drase} UC

13: if LEGAL(Ag4) A LEGAL(A-4) then

14: Py = PLAN(Ay)

Py =PLAN(Ay)

. _ /P

16: P=—¢ N Pj;

17: C = CosT(P)

18: if C < C* then

19: C*=C,P*=P;¢* = ¢

20: if ¢* = null v ¢ = 0 then return PLAN(A U C)

21: P = GREEDY-HPEREQF — {¢*},B U {¢*}, A[F —
{¢*},Cu{g* =T} C*,c-1)

22: P, = GREEDY-HPE-REQF — {¢*},B U {¢*}, A[F —
{7}, cu{g* = F/}1,0;0— 1)
. * 1

23: return — ¢ o p

We can measure the cost of the greedy and exhaustive algorithms
as the number ojoin plansthat will be evaluated. For simplicity,

10" —————— 10" ——— D. IMPLEMENTATION DETAILS
160 Greedy,c=n —&— 13 Greedy,c=n —&— .

107 Exhaustive.c=n —e— g4 107 | Greedyc=10 —v— Our prototype is based on the PostgreSQL codebase, and uses
B oMo TSNS 4 B 02 ves the eddy implementation described in [5]. Specifically, we have
% 100 | P T% 101 created two new PostgreSQL operators: the eddy and the SteM op-
3 101 / E z 1010 erator. The SteM is a main memory hash table that stores base or
é 10%° E ‘_é’u , intermeQiate tuples and has an insert/probe interface. Ajoin. is exe-
S 10 E o 10 cuted using two SteMs. The eddy operator performs the routing, via
3 1% E 3 10° an intemal routing policy. structure. The routing policy structure is

102 E 107] a mapping from a tuple signature to zero or more operators. We are

1008 ; 105' ! . L using the routing policy as the search space representation, which
34567 8 910 10 15 20 25 30 is equivalent to using CJPs. All our additions in the PostgreSQL

Joins in query Joins in query code are in the execution engine, and in fact we have completely

(a) Cost of exhaustive search. (b) Cost of greedy search. bypassed the PostgreSQL optimizer. The construction of the junc-

tion tree is done outside the PostgreSQL code, with a simple JDBC
program. The junction tree is read into memory when PostgreSQL
starts. A more careful implementation would reuse the PostgreSQL
catalog and optimizer, and subsequently have better optimization
we assume that the decision predicates in a CJP form a complete biperformance.

nary tree. This is true for chain queries when no decision predicates

on intermediate results are used, but not true in the general caseE. DATA GENERATION

Under this assumption, if a CJP containdecision predicates, we
need to payC(k) = 2" in order to evaluate its cost. Assume
that the eddy CJP structure contai/s.| = m binary decision
predicates. This number can be easily calculated using the query
graph and the number of joins in the query For chain queries,

Figure 11: Number of join plans considered by the exhaustive
and greedy search in the eddy CJP space.

We generate synthetic data for a join quéty X - - - X R,,, Si-
multaneously controlling three parameters: the number of tuples in
each relation)V, the selectivities of the join operatoss, . . ., sn,
and the Pearson correlation coefficient, The latter controls the
degree of correlation in the database and takes valueslinl]: if

m= w = O(n?), while for star queriesn = O(n?). r = 0, the database should be fairly uniformj;f = 1, an almost

The exhaustive algorithm needs to partition theSebf m de- perfect partitioning scheme of the relations should exist. The data
cision predicates into two sets: a sEt of predicates that will be ~ generation algorithm takes as input the desired parameter values
a part of the CJP, and a s&% of predicates that will be assigned ~ N, {s1,...,sx}, 7, as well as the Markov network of the database.

values frompuue, draise. The sizes of the sets, given the partitioning ~ Consider the example query and its Markov network shown in
budgetc are|F1| = ¢ and|Fz2| = m — ¢. For each combination Figure 4. The variables that are connected in the Markov network
of these sets, and for each combination of values of the decision(€.9.,X andJrs) have a correlation coefficent with absolute value
predicates, the algorithm needs to evaluate the cost of a CJP of sizeéqual tor. In order to simulate a perfect paritioning for high corre-
c. Assuming that the domain size of all descriptive attributes is lations, we flip the sign of the correlation coefficient at every edge

the cost of the exhaustive algorithm is of the graph. For example, the correlation coefficient betw&en
and Jrs is equal tor, the correlation coefficient betweefirs
EXHAUSTIVE(m, ¢) = (m) d°2m°C(c) andY is equal to—r, etc. Variables that are not adjacent in the
¢ graph are correlated only indirectly. Under certain assumptions,

the correlation coefficient between two variablésind B is equal

For the greedy algorithm, consider the case wieré iterations A g)
to (—r)~, wherek is the number of edges in the path betweén

have already been executed, and there degations left. Then, the X o .
size of the argumersE is | F| = m — ¢ + i. The greedy algorithm and B. For example, the correlation coefficient &f and Jsr is

3 i .) o
will for every predicate and every predicate value in that set, eval- —" - T1hiS procedure gives the correlation matfx= [r;;] whose

uate the cost of a CJP with one decision predicate. Then, it will entries are the correlation coefficients between every pair of ran-
recurse withi — 1 iterations left: dom variables. Then, the method described by Fackler [11] is used

to create aV x 7, [0, 1]-valued matrixD = [d;;] that conforms
GREEDY(m, i) = d(m — c+3)C(1) + 2GREEDY(m,i — 1) to the correlation matriz. Each column of the matri® is used
to generate a random variable. For descriptive attributeg)thi¢
valued;; is scaled accordingly to the attribute’s domain. For join
indicators, the valud is chosen ifd;; > 0.5, and the valud~ is
chosen otherwise. Finally, each value of a join indicgigis used
to create two values of the join attributes for the relations. The
values should be equal jf; = T, and not equal otherwise. In
addition, the domain of the join attributes is chosen so that the se-
lectivity of the join is equal to the input given to the data generation
algorithm.

Since initially there are: iterations left, we are interested in the
cost GREEDY(m, ¢). When there is no restriction in the number
of partitions ¢ = m), the cost of both algorithms grows super-
exponentially with respect ta. However, consider the case where
we restrict the partitions to the number of joins in the query, n,
allowing essentially one decision predicate for each base relation.
The number of join plans evaluated by the exhaustive and greedy
algorithms are shown in Figure 11(a) fer= 3ton = 10 joins in

the query. While the cost of exhaustive grows&(éz”z), the cost

of the greedy search grows @§2™). Even restricting to a fixed
number of partitionsd = 1) ca%ot Zilleviate the super-exponential ACknOWledgementS

growth of the exhaustive algorithm. The cost of the greedy algo- This research was conducted when C. S. Jensen was a full-time Pro-
rithm for fixed iterations and iterations equal to the number of joins fessor at Aalborg University. C. S. Jensen is an Adjunct Professor

is shown in Figure 11(b) fon = 10 ton = 30 joins. While the at University of Agder, Norway.

growth is exponential, it can be kept reasonable with fixed itera-

tions at the cost of CJPs of reduced quality.

553

