
Towards the Web of Concepts: Extracting Concepts from
Large Datasets

Aditya Parameswaran
Stanford University

adityagp@cs.stanford.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

Anand Rajaraman
Kosmix Corporation

anand@kosmix.com

ABSTRACT
Concepts are sequences of words that represent real or imaginary
entities or ideas that users are interested in. As a first step towards
building a web of concepts that will form the backbone of the next
generation of search technology, we develop a novel technique to
extract concepts from large datasets. We approach the problem of
concept extraction from corpora as a market-basket problem, adapt-
ing statistical measures of support and confidence. We evaluate
our concept extraction algorithm on datasets containing data from
a large number of users (e.g., the AOL query log data set), and we
show that a high-precision concept set can be extracted.

1. INTRODUCTION
The next generation of search and discovery of information on

the Web will involve a richer understanding of the user’s intent and
a better presentation of relevant information instead of the familiar
“ten blue links” model of search results. This transformation will
create a more engaging search environment for the users, helping
them quickly find the information they need. Search engines like
Google, Yahoo! and Bing have already started displaying richer in-
formation for some search queries, including maps and weather (for
location searches), reviews and prices (for product search queries),
and profiles (for people searches). However, this information is
surfaced only for a small subset of the search queries, and, in most
other cases, the search engine provides only links to web pages.

In order to provide a richer search experience for users, Dalvi et.
al. [22] argues that web-search companies should organize search
back-end information around a web of concepts. Concepts, as in [22],
refer to entities, events and topics that are of interest to users who
are searching for information. For example, the string “Homma’s
Sushi”, representing a popular restaurant, is a concept. In addition
to concepts, the web of concepts contains meta data corresponding
to concepts (for example, hours of operation for Homma’s Sushi)
and connections between concepts (for example, “Homma’s Sushi”
is related to “Seafood Restaurants”). A web of concepts would not
only allow search engines to identify user intent better, but also to
rank content better, support more expressive queries and present
the integrated information better.

Our definition of a concept is based on its usefulness to people.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

That is, a string is a concept if a “significant” number of people say
it represents an entity, event or topic known to them. For instance,
“Flying Pigs Shoe Store” is not a concept if only one or two people
know about this store, even though this store may have a web page
where “Flying Pigs Shoe Store” appears. As we discuss later, we
also avoid “super-concepts” that have shorter equivalent concepts.
For example, “The Wizard Harry Potter” is not a concept because
“Harry Potter” is a concept identifying the same character. As we
will see, other reasons why we restrict our definition to sequences
of words that are popular and concise are scalability and precision.

At Kosmix (www.kosmix.com), we have been working on de-
signing search around a web of concepts. Our aim at Kosmix is
to automatically build a “concept page” with information for each
known concept, giving among other things useful links and a list
of related concepts. As soon as the search engine knows a user is
looking for a known concept, it can display the concept page to
help the user navigate and discover useful information.

The first step in building the Kosmix web of concepts is to extract
concepts from data sources of various kinds: web-pages, query
logs, tag datasets etc. A good source of concepts is the online user
edited encyclopedia Wikipedia (wikipedia.org), currently with
about 2.5 million articles. Since each article has been carefully se-
lected by many Wikipedia editors, the titles of these articles are
likely to correspond to what many people regard as concepts.

Even though Wikipedia can yield many concepts, we still wish
to identify additional concepts. In particular, new concepts may
arise because of current events. Also, many well known restaurants,
hotels, scientific concepts, locations, companies, and so on, do not
have Wikipedia entries. Thus, the concept extraction scheme we
present plays a vital role in building the Kosmix web of concepts.

In addition to assisting in the search back-end, extracting con-
cepts can also be very useful for other tasks, e.g., query correction,
selective indexing and tag/query suggestion [25].

In this work we develop a novel technique of extracting concepts
from datasets. We use frequency or popularity of words as an in-
herent signal to distinguish whether a sequence of words forms a
concept relative to the word sequences contained within it (sub-
concepts) and relative to the word sequences that contain it (super-
concepts). Our technique can be applied to any dataset containing
aggregated information from a large number of users, for exam-
ple, a query log or a tag dataset, or even a large web-document
crawl. Frequency information allows us to prune away the addi-
tional words in “super-concepts”, leaving only the core concept.
Since popularity of words plays a key role, it is more effective to
use a dataset with a high “density” of concepts, such a query log or
a set of tags. If we use a set of web pages for extraction then we
need to do a lot more processing to identify the popular terms.

Our work builds upon a lot of related research in the areas of

566

market-basket mining and term recognition. However, because con-
cepts are not quite frequent item-sets or terms, most existing meth-
ods do not directly apply. For example, a simple market-basket ap-
proach cannot be used to extract concepts as frequent item-sets [2],
because we wish to discard both sub-concepts and super-concepts
while only keeping the concept that we consider to be “good” (as
we will see in Sec. 2.5). For example, we wish to discard ‘Rage
against the’ or ‘Against the machine’ (sub-concepts), and ‘Rage
against the machine music’ or ‘Rage against the machine band’
(super-concepts), and keep the concept ‘Rage against the machine’(A
popular rock/metal group). Similarly, most term recognition al-
gorithms [14, 17, 19] do not consider popularity. For example, a
word-sequence ‘Ayocaria Rnfection’ (a misspelling of ‘Myocardial
Infarction’) may occur once in a document (and hence is not a con-
cept, since it is not a popular entity), but will be considered as a
term. However, we do compare our algorithm against a statistical
technique for term recognition [15] that takes popularity into ac-
count. We return to this point in Sec. 4. We do not primarily rely
on Natural Language Processing (NLP) techniques because they
would not be of use when concepts are devoid of a free-text con-
text [14, 19, 26], such as in the query log or tag dataset case.

In summary, our contributions are the following:
• We formulate the problem of concept extraction from large datasets.
• We provide a novel technique for solving the problem of con-

cept extraction, and prove the correctness of this technique un-
der some assumptions.
• We experimentally evaluate our technique against those used

for term recognition [17, 19].
• We experimentally study our technique on varying various pa-

rameters for both precision and recall.

2. CONCEPT EXTRACTION
We first define a k-gram as a ordered sequence of k words occur-

ring one after the other in text. e.g., “Mary had a little lamb” has
three 3-grams: ‘Mary had a’, ‘had a little’ and ‘a little lamb’, and
one 5-gram, which is the entire sequence of words.

2.1 Definition of a Concept
We define a concept (as in [22]) to be a k-gram that represents

a real or imaginary entity, event or idea that many users may be
interested in (i.e., is popular), and does not contain any extrane-
ous words such that excluding them would identify the same entity
(i.e., is concise). In this paper, we do not delve into any philo-
sophical discussions on the correctness of this definition, involv-
ing ourselves instead on how we may use frequency information or
popularity to give indications as to whether a sequence of words
forms a concept.

For our evaluation of automatically extracted concepts, we as-
sume all Wikipedia article titles to be concepts1, since Wikipedia
has a rigorous screening process to delete any article that “does not
indicate why [the concept] is important or significant” [1]. In ad-
dition, we use human evaluators to judge if the k-grams we extract
are concepts.

Note that enforcing the properties of popularity and conciseness
is also helpful in other ways. For instance, by restricting ourselves
to popular concepts, we exclude concepts of interest to only a small
fraction of people, and by restricting ourselves to concise concepts,
we remove duplicates in the web of concepts, thereby allowing us

1Note that there are Wikipedia articles that are not concepts, for
example ‘List of holidays by country’. These are either lists or
disambiguation pages. We exclude them from our concept set.

to keep our web of concepts smaller and more manageable.

2.2 Extraction of k-grams
Consider a large dataset C, that could be a query log, a web

document crawl, text from a set of books, etc. A pre-processing
step extracts all k-grams and annotates them with the frequency of
their occurrence in C. For example, if ‘Milky Way Galaxy’ was
a query term in dataset C, when we process this query, we would
increment the frequency of 1-grams ‘Milky’, ‘Way’ and ‘Galaxy’,
2-grams ‘Milky Way’ and ‘Way Galaxy’ and 3-gram ‘Milky Way
Galaxy’. For documents from the Web, we treat each sentence as
independent of the others and so we do not count k-grams that span
two sentences. For example, ‘This is Los Angeles. Here . . .’, we
would not increase the count of ‘Los Angeles Here’. For the web
query log, we treat each web query as an independent sentence, as
in the dataset of documents from the Web.

To prevent a blowup of k-grams being counted, we impose a cut-
off on k, i.e., that k ≤ n. Since very few concepts have greater than
4 words (as seen in Wikipedia), we stop at n = 4. In the following,
we assume that we have a k-gram set, for k ≤ 4, annotated with
frequencies of occurrence in the dataset C. A k-gram x contains
a (k–m)-gram y, where m > 0, if x can be written as w followed
by y followed by z, where w and z are sequences of words them-
selves (not both empty), e.g., ‘United Nations Security Council’ (a
4-gram) contains ‘Security Council’ (a 2-gram).

2.3 A Crucial Empirical Property of Concepts
We claim that concepts most often satisfy the following empiri-

cal property. We describe the intuition behind the claim, and then
provide some justification by examining Wikipedia concepts. We
use this claim to develop the algorithm in Sec. 2.4 and beyond.

CLAIM 1. If a given k-gram a1a2 . . . ak (k > 2) is a con-
cept, then it is not true that both of the following k–1-grams are
concepts: a1a2 . . . ak−1 and a2a3 . . . ak. If a 2-gram a1a2 is a
concept, then at least one of a1 and a2 are concepts.

The claim relates whether or not a k-gram can be a concept if
the k–1-grams that it contains are concepts. For example, “Who
framed Roger” and “Framed Roger Rabbit” do not make sense in-
dependently (i.e., are not concepts), but the Walt Disney film, “Who
framed Roger Rabbit” makes sense as a concept. In this case, both
the 2-grams contained in the 3-gram are not concepts. It is not
necessary that both the k–1-grams are not concepts, for instance,
consider 3-gram “Manhattan Experimental Theater”, which con-
tains the 2-grams “Manhattan Experimental” and “Experimental
Theater”, the latter of which is a concept.

However, for k = 2 there are examples of concepts that are
formed from two 1-gram concepts. For example, while both “Com-
puter” and “Networks” are independent concepts, “Computer Net-
works” is a concept in itself.

k Total Both k-1-grams %age ≥ One k-1-gram %age
2 2245301 1250613 55.69 2147305 95.63
3 1357852 105515 7.77 688324 50.69
4 681447 12150 1.78 202763 29.75
5 350481 1822 0.51 64630 18.44
6 166827 525 0.31 22075 13.23

Table 1: Claim Justification.
To provide some justification for the claim, we performed the

following experiment on the set of articles in Wikipedia: We as-
sume that the title of each article represents a concept as mentioned
in Sec. 1. For a given k, we took the subset of the set of Wikipedia
concepts that are k-grams, and counted how many k-grams violated
the claim above. The data is represented in Table 1. For example,

567

consider the row corresponding to 4-grams. The total number of 4-
gram concepts is 681447, out of which 12150 contain two 3-gram
concepts (12150/681447 = 1.78%). 202763 contain one or more
3-gram concepts (202763/681447 = 29.8%). While a large frac-
tion (≈ 56%) of concept 2-grams contain two concept 1-grams,
this is not true for k-gram concepts for k > 2, none of which have
> 8% that contain two k–1-gram concepts.

Note also that the number of k-gram concepts where at least 1
of the k–1-grams contained is a concept, is large for k-grams in the
range 2 . . . 5. We capture this statistic in Claim 1 by saying that we
sometimes have one of the k–1-grams as concepts. Additionally,
almost 96% of the concept 2-grams contain at least one concept
1-gram. We capture this special case in Claim 1 by saying that all
concept 2-grams contain at least one concept 1-gram.

Because Claim 1 does not always hold, our algorithm, which is
based on Claim 1, will make false negative errors, i.e., it will miss
some concepts. However, as we will see, the number of such false
negatives will be relatively small.

2.4 Procedural Overview
To extract concepts, we evaluate the k-grams annotated with fre-

quency as in Sec. 2.2, and extract the ones that we regard to be con-
cepts. We maintain a preliminary set of k-grams and we discard
the k-grams that we do not consider to be concepts. We proceed
by evaluating k-grams in the order of increasing k (in a bottom-up
fashion). If the k-gram x, for k > 2, is a concept, then Claim 1
states that at least one of the k–1-grams that x contains needs to be
discarded, since both the k–1-grams cannot be concepts. We do the
following while analyzing k-grams for a given k:
• Either we discard the k-gram, OR
• We discard some of the k–1-grams that the k-gram contains,

and keep the k-gram. The k-gram overrides the k–1-grams that
get discarded.

2.5 Indicators of a Concept
From the k-gram set above, we wish to decide which of them are

concepts. In order to make this decision, we use certain indicators.
There are three indicators that we expect k-grams that are con-

cepts to possess. Let us take a closer look at these indicators:
Indicator 1: Frequent

We expect the frequency of occurrence (as in Sec. 2.2) of a con-
cept a, also called the support Sa, to be high, i.e., Sa is large for a
to be a concept.
Indicator 2: Better than sub/super-concepts

There are two parts to this indicator: We want our concept to be
“better” than sub-concepts and “better” than super-concepts.

Firstly, we expect a concept k-gram to be better than any k–m-
grams that it contains, i.e., we want it to have high “confidence”,
as defined below. Secondly, we expect the k-gram representing the
concept to be “better” than super-concepts, i.e., there is no k+1-
gram (of all the k+1-grams that contain the k-gram) that is a better
concept than the k-gram.

However, to evaluate both the parts of this indicator, it is suffi-
cient to evaluate k-grams in increasing order of k, and ensure that
they are “better” than the k–1-grams (i.e., sub-concepts). We pro-
vide a justification that this strategy is correct in Appendix A (after
making some assumptions).

To decide if a k-gram is better than k–1-grams, we define a set
of metrics. Let the k-gram be a. If a = t1t2 . . . tk, then let b =
t1t2 . . . tk−1 be the prefix k–1-gram of a, and c = t2t3 . . . tk be
the suffix k–1-gram of a. There are two measures of confidence:
pre-confidence pre-conf C1a and post-confidence post-conf C2a,
where C1a = Sa/Sb, and C2a = Sa/Sc. The pre-conf is nothing

but the probability that tk is seen given that we have already seen
t1t2t3 . . . tk−1.

We define min-confidence min-conf as the minimum of the pre-
conf and the post-conf. The min-conf is useful because it is a lower-
bound on the confidence we have on the k-gram relative to the k–
1-grams. If a k-gram has its min-conf higher than a threshold (a
function of k), then we would prefer keeping the k-gram as a con-
cept than the k–1-grams that it contains (assuming that it satisfies
other properties).

Similarly, max-confidence max-conf is defined as the maximum
of pre- and post-conf. The metric max-conf is useful when a sub-
concept can be followed by many possible phrases/words, e.g.,
‘John Lennon’ (a well-known musician) would have a low min-conf
because the pre-conf is very low (since ‘John’ can be followed by
any number of “popular” surnames), however, the max-conf is high
because the surname uniquely identifies the first name. Thus, if the
max-conf is higher than a certain threshold (a function of k), we
would prefer to still consider the k-gram to be a concept. Typically
this threshold will be higher than that for min-conf for a given k.

Another useful metric that we define is the relative confidence,
rel-conf of a k-gram. This metric is defined as

rel-conf(a) =
min-conf(a)

max(max-conf(b), max-conf(c))

where a, b, c are as before. This metric captures our notion that
for a k-gram to be a concept, it should be better than any of the
k–1-grams that it contains, i.e., if the rel-conf is beyond a certain
threshold, we have higher confidence in the k-gram than in either
of the k–1-grams.

The reason we have this metric in addition to the min-conf metric
is that it is not sufficient to look at min-conf to decide if a k-gram
is worth keeping relative to the k–1-grams that it contains. A high
min-conf does not mean that the k–1-grams are not concept-worthy
relative to the k–2-grams that they contain, in fact they might be
more so than the k-gram relative to the k–1-grams. A high rel-conf
(greater than some value dependent on k) would ensure that we
are not making a mistake by keeping the k-gram as a concept, and
discarding the k–1-grams that it contains.

We outline the differences between our metrics and term recog-
nition metrics in detail in Sec. 4.
Indicator 3: Contains only portions of sentences that convey a sin-
gle meaning or idea

Note that the metrics outlined above may not be sufficient to
differentiate between concept and non-concept k-grams for some
data sources. Consider a dataset of news documents over the past
year and consider the example, ‘George Bush said yesterday’. This
4-gram is not a concept, but could still be evaluated highly by the
metrics above. Commonly occurring portions of sentences, e.g.,
‘How do I’ and ‘What does this’. would be other examples of text
fragments that could score well on the metrics but are not concepts.

We therefore need an evaluator that works on k-grams and re-
turns whether or not they can be concepts based on whether or not
they contain portions of sentences that do not form a single concise
concept. Note that this check is not as complicated in the web query
log case, because it is “dense” in concepts. For other datasets, we
may need an extensive procedure to prune noise words.

2.6 Using the Indicators
We define Algorithm 1: conceptExtraction which takes as in-

put the set of k-grams annotated with frequencies and proceeds to
extract a set of concepts in a bottom-up fashion. Note that the pro-
cedure maintains a set of k-grams that will be discarded at the end
of every phase (D).

Algorithm 1 calls Algorithm 2: candidateConceptCheck to check

568

if a k-gram satisfies the properties mentioned indicator 1 and 2 in
Sec. 2.5. A k-gram that passes the check in Algorithm 2 is called a
candidate concept.

Once the extraction of candidate concepts is complete, the pro-
cedure containsStopWords is called by the conceptExtraction pro-
cedure (lines 12-17) to eliminate candidate concepts that we do not
return as concepts because they do not satisfy indicator 3.

We now describe the details of algorithm candidateConceptCheck.
We will consider containsStopWords subsequently. In candidate-
ConceptCheck, a k-gram is first checked to see if it has requisite
support(a function of k) in line 4; i.e., the k-gram occurs frequently
enough to be a candidate concept.

As per the procedure candidateConceptCheck, a k-gram, k > 2
is a candidate concept if it falls into one of three cases, correspond-
ing to various values of pre-conf and post-conf of the k-gram. Ei-
ther the candidate concept on the whole is “good” (case 1) or is
formed by attaching words to the end or beginning of “good” can-
didate concepts (case 2/3). The first case (9-13) corresponds to both
pre- and post-conf being very close to 1. This corresponds to the
situation where neither of the k–1-grams contained in the k-gram
are judged to be concepts. The min-conf and rel-conf in this case
have to surpass some threshold (a function of k). In this case, we
keep the k-gram and discard both the k–1-grams. ‘Who framed
roger rabbit’ would be an example of such a concept. The second
case (15-17) corresponds to the post-conf being very close to 1, and
the pre-conf small. This corresponds to the case where the prefix
k–1-gram is extracted as a concept by itself. We would then expect
the post-conf to be larger than some threshold, and also larger than
the pre-conf by a factor of dominance-threshold (> 1). We then
discard only the non-concept suffix k–1-gram. An example of such
a concept would be ‘Home Alone 3’. The third case (19-21), e.g.,
‘Intel Research Labs’, is symmetric to the second case.

Note that we do not consider the case where both pre- and post-
conf are low. This is because of Claim 1 which states that a k-
gram concept cannot be formed out of two k–1-gram concepts. The
exception in the claim for k = 2 is absorbed into case 1, with the
min-conf threshold set suitably low. In this case, both of the 1-
grams are concepts, and hence cannot be discarded.

We prefer a bottom-up over a top-down approach for the algo-
rithm because we do not want to deal with a exploding number of
k-grams for larger k. Typically, k-gram concepts will occur with
many other words both before and after, giving rise to many k+1-
grams which contain the k-gram. If we are analyzing bottom-up,
all of these can be discarded because the k-gram has already been
isolated as a concept. If we were analyzing top-down, we can’t dis-
card any of the k+1-grams because we cannot be sure if there is a
k-gram that will override them.

Procedure containsStopWords is used to prune candidate con-
cepts that are not likely to be concepts because they violate the
third indicator. For instance, they could
• begin or end with a conjunction, article or pronoun, e.g., by, for,

and, an, that, from, because, where, how, yesterday or you
• begin or end with a verb
• contain no nouns

Thus this procedure detects special words (also called stop words)
as in the first item in the list above, and also does part-of-speech
(POS) tagging [6], a technique used to tag each word in a phrase
with its part-of-speech, for the second and third items. Note that the
example ‘George Bush said yesterday’ in Sec. 2.5 will be detected
by the first item.

Note that POS tagging and advanced techniques are not required
for query logs because they are a much more “refined” data source.

Algorithm 1 conceptExtraction: Extract k-grams from a set of
k-grams and their frequencies
Require: l← set of k-grams with frequencies Sa

1: C ⇐ ∅ {Set of Candidate Concepts}
2: for all k = 1 to n do
3: D ⇐ ∅ {Set of Sub-concepts to discard}
4: for all a ∈ l, a is a k-gram do
5: (D, Answer) = candidateConceptCheck(a, C, D)
6: if Answer == true then
7: C ⇐ C ∪ {a}
8: end if
9: end for

10: C ⇐ C −D
11: end for
12: F ⇐ ∅ {Set of Concepts}
13: for all a ∈ C do
14: if containsStopWords(a) == false then
15: F ⇐ F ∪ {a}
16: end if
17: end for
18: returnF

Query logs typically involve queries having multiple concepts one
after the other with no extraneous words. For query logs, con-
tainsStopWords just detects the first item in the list above (for ex-
ample, to detect k-grams like ‘Where can I find’). Additionally,
since most queries do not form a grammatically correct sentence
(or portion of it), some NLP techniques cannot be used. However,
for the Google k-gram case, a complete POS check as part of the
stop word procedure is an integral part of the non-concept pruning.

2.7 The Algorithm: Observations
In this section we state some observations about the algorithm

and how the thresholds work together to ensure that the correct set
of concepts are extracted. We then state a theorem about the cor-
rectness of our concept extraction algorithm. Intuitively, the the-
orem states that if only the concepts in the k-gram set satisfy the
indicators in Sec. 2.5, then conceptExtraction will extract precisely
the concepts. All proofs can be found in Appendix D.

OBSERVATION 1. Whether a k-gram a is extracted as a con-
cept or not does not depend on the order of processing of k-grams,
assuming that the k-grams are processed only when processing of
k–1-grams is complete.

OBSERVATION 2. If all other thresholds are fixed, and only the
support threshold of k-grams for a certain k is reduced, then the
number of k–1-gram concepts extracted can only decrease in num-
ber, and their precision can only increase.

OBSERVATION 3. If all other thresholds are fixed, and only the
support threshold of k-grams for a certain k is reduced, then the
number of k+1-gram concepts can only increase in number.

OBSERVATION 4. If all other thresholds are fixed, and only
the support threshold of k-grams for a certain k is changed, then
only the number of k–1, k, k+1, . . .-gram candidate concepts can
change.

THEOREM 1 (CORRECTNESS). Suppose we are provided with
a dataset of k-grams, k = 1 . . . r, such that c1, c2, . . . , cn are con-
cepts and s1, s2, . . . , sm are not concepts. If there exist functions
f and g such that:
• 1-gram concepts have frequency≥ f(1), and 1-gram non-concepts

have frequency less than f(1).

• For k ≥ 2, k-gram concepts ci have frequency greater than or
equal to the maximum of f(k) and g(k + 1)× frequency of any
k+1-gram that contains ci

569

Algorithm 2 candidateConceptCheck: Check if a k-gram is a
candidate concept
Require: a← k-gram
Require: C ← set of concepts
Require: D ← discard set
1: k ⇐ k-gram-size(a);
2: b⇐ k-gram-prefix(a)
3: c⇐ k-gram-suffix(a)
4: if [Sa > support-threshold(k)] then
5: if [k = 1] then
6: return(D, true)
7: end if
8: if [min-conf(a) > min-conf-threshold(k) ∧

rel-conf(a) > rel-conf-threshold(k)] then
9: if [k > 2] then

10: D ⇐ D ∪ {b}; D ⇐ D ∪ {c}
11: end if
12: return(D, true)
13: end if
14: if [b ∈ C ∧

post-conf(a) > dominance-thres× pre-conf(a) ∧
post-conf(a) > post-conf-threshold(k)] then

15: D ⇐ D ∪ {c}
16: return(D, true)
17: end if
18: if [c ∈ C ∧

pre-conf(a) > dominance-thres× post-conf(a) ∧
pre-conf(a) > pre-conf-threshold(k)] then

19: D ⇐ D ∪ {b}
20: return(D, true)
21: end if
22: end if
23: return(D, false)

• For k ≥ 2, k-grams si that are not concepts have frequency
less than f(k) or less than g(k + 1)× frequency of all k+1-
grams that (a) contain si and (b) have frequency greater than
f(k + 1), if they exist

Then there exist threshold values such that the algorithm concep-
tExtraction will output precisely the concepts ci.

2.8 Complexity of Algorithm
Let the total number of k-grams be n. If we sort all sets lexico-

graphically, then the algorithm does a constant number of lookups
(each of O(log n)) per k-gram, giving a complexity of O(n log n).
Performance can drastically improve using hashing.

3. EXPERIMENTAL RESULTS
We only describe our experimental analysis on the AOL query

log [10]. Appendix F contains details of our experiments on the
Google KGram [5] and the del.icio.us Tag Dataset [13] (also
outlined in Sec. 5).

We do not evaluate our program on the time taken for extraction.
This is because, in practice, the algorithm is not required to respond
on a real-time basis; and can be used to enrich the back-end concept
set whenever there is a new dataset available, for example, the day’s
query log. But we also note that the program took less than half
an hour to run on the AOL query log dataset on a laptop running
Ubuntu on Intel Centrino Pro 1.60 GHz, and is therefore reasonably
fast. We also note that extraction of concepts of a certain size k can
happen in parallel, thus the algorithm is parallelizable.

The goal of our experiments is to study how well our algorithm
performs in terms of “precision” and “recall” on varying various
parameters, and in comparison with other algorithms. Precision is
measured by seeing how many of the concepts returned by the algo-
rithm are actually concepts. We make use of Mechanical Turk [16],

a human evaluation engine, and the Wikipedia concept list for this
purpose. However, we cannot compute recall precisely since we
do not know how many concepts exist in the world at any point
of time. Instead, we use the number of concepts returned by our
algorithm as a measure of recall. We call this quantity the volume.

We first describe the results of our algorithm on the AOL query
log dataset. We then compare our results to two other algorithms
when extracting the same number of concepts (i.e., same volume).
Then, we study the precision of our algorithm when compared to
other algorithms when we vary the volume of concepts extracted.
We also study the performance of our algorithm on changing var-
ious thresholds. Finally, we study how our algorithm performs on
changing the size of the input dataset.

Methodology
For the algorithms, we set the thresholds empirically using a small
random sample of 30 k-grams for each k. We then used the thresh-
olds to extract a certain number of concept k-grams. Some of these
k-grams were already present in Wikipedia and are, therefore, cor-
rect concepts. For the remaining k-grams, to rate them against hu-
man intuition, we evaluated each independently by 3 unknown re-
viewers (with a high approval rate) on Mechanical Turk [16]. The
reviewers were given the definition of concepts as in Sec. 2.1 and
asked to identify k-grams that are concepts. The reviewers were
also provided the search results from a popular search engine for
the k-gram (thus helping reviewers judge concepts that they were
not familiar with). We took the majority of the opinions of the re-
viewers — if two or more (out of 3) reviewers said that a k-gram
is not a concept, we assumed that it is not a concept. (Note that the
results are not very different if we assumed a k-gram is a concept
iff all three reviewers said so.) We used these results to evaluate the
algorithms on how precise the returned concepts are — measured in
terms of absolute precision, i.e., (total ‘correct’ concepts/total con-
cepts) and non-wiki precision, i.e., (total ‘correct’ non-Wikipedia
concepts/total non-Wikipedia concepts). Non-wiki precision is also
important because we already have the list of Wikipedia concepts
at our disposal, and we would like to know how well the algorithms
extract new concepts not found in Wikipedia.

Later on, when we evaluate the performance on varying parame-
ters, we measure precision using the number of Wikipedia concepts
extracted, i.e., precision is (total wikipedia concepts/total concepts).
This makes it easier to evaluate our results automatically (for sev-
eral result sets) and is a lower-bound on actual precision.

Parameter k = 1 k = 2 k = 3 k = 4
support-threshold 100 35 60 60
min-conf-threshold - 0.035 0.1 0.15
rel-conf-threshold - - 0.2 0.25
post-conf-threshold - 0.1 0.15 0.2
pre-conf-threshold - 0.1 0.15 0.2
dominance-thres - 1.3 1.3 1.3

Table 2: Threshold Parameter Values.
Note that we did not use NLP as a filtering technique for any

of the algorithms, given that the query log dataset is a refined data
source, devoid of auxiliary words (which are necessary to make it
a grammatically correct sentence). We did, however, use a simple
stop word pruner which removes all concepts that begin with words
such as ‘who’,‘that’ and ‘of’, for all the 3 algorithms, as described
in Sec. 2.6. Note that we do not evaluate 1-grams because all of
them are likely to be concepts (if we eliminate stop-words).

Results
(1)We ran our experiments on the AOL query log dataset, which
contains 36M queries from different users and 1.5M unique terms.

570

20 30 40 50 60 70 80 90 100
500

1000

1500
2−grams vs. Support Threshold[2]

Support Threshold

N
o.

 o
f 2

−
gr

am
s

20 30 40 50 60 70 80 90 100
0.85

0.9

0.95

P
re

ci
si

on
 L

ow
er

bo
un

d

20 30 40 50 60 70 80 90 100
0.85

0.9

0.95

Support[3] = 30

Support[3] = 30

Support[3] = 20

Support[3] = 20

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
3400

3600

3800

4000

4200

4400

4600

4800

5000

5200
k−grams vs. Pre/Postconf Threshold[3]

Pre/Postconf Threshold

N
o.

 o
f k

−
gr

am
s

k = 2

k = 3

k = 4

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
3400

3600

3800

4000

4200

4400

4600

4800

5000

5200
k−grams vs. Pre/Postconf Threshold[3]

Pre/Postconf Threshold

N
o.

 o
f k

−
gr

am
s

k = 2

k = 3

k = 4

Figure 1: (a) Variation of Number of 2-grams and their precision, vs. Support threshold for 2-grams. (b) Variation of Number of k-grams extracted
for various values of the pre-/post-conf threshold and dominance-thres = 1.5(c) Same as before with dominance-thres = 1 for all k: More 3-gram and
4-gram concepts

With parameters as listed in Table 2, a total of 25882 concepts were
extracted by our algorithm, as in Table 3, with an absolute preci-
sion of 0.95 rated against Wikipedia and Mechanical Turk.
The thresholds in Table 2 were used to extract 25882 concepts. Out
of these, 21711 concepts were already present in Wikipedia. The
statistics are displayed in Table 3. The first column describes the
total statistics for 2,3 and 4-grams, while the subsequent columns
give the breakup independently for 2, 3 and 4-grams, and then 1-
grams. The first row gives the total number of concepts extracted
by the algorithm, the second row gives the number of Wikipedia
concepts found in the concepts obtained in the first row. The third
row gives the number of unevaluated concepts (i.e., those that are
not Wikipedia concepts). The fourth row gives the number of con-
cepts from the previous row found correct by the Mechanical Turk
reviewers. The next two rows give the absolute precision (total
‘correct’ concepts/total concepts) and the precision on excluding
concepts found in Wikipedia ((total ‘correct’ concepts - Wikipedia
concepts)/(total concepts - Wikipedia concepts)). As is clear from
the first column of Table 3, out of the 2303 unevaluated 2-, 3- and
4-grams, 1934 were found to be concepts by the reviewers. The
absolute precision for extraction of 2-,3- and 4-grams is (1934 +
4741)/(2303 + 4741) = 0.95. If we exclude Wikipedia concepts,
the precision is 0.84 (for 2-,3- and 4-grams). The mistakes made by
our algorithm are 369 for 2-,3- and 4-grams out of a total of 7044
concepts. Note that the precision for each k is high as well.

Quantity Total k = 2 k = 3 k = 4 k = 1
Concepts 7044 4393 2251 400 18838
Wiki Concepts 4741 3401 1147 193 16970
Remaining 2303 992 1104 207 -
M.Turk Correct 1934 837 947 150 -
Total Precision 0.95 0.97 0.94 0.86 -
Non-Wiki Precision 0.84 0.84 0.86 0.72 -

Table 3: Our Algorithm.
Here are examples of extracted concepts not in Wikipedia (and

verified by Mechanical Turk):“Who’s On My Page” (a Myspace
plugin), “Shih tzu puppies” (puppies of a certain breed), “Oriental
trading company”, “Weichert real estate”, etc. Examples of ex-
tracted concepts rejected by Mechanical Turk include: “Find out
if someone”, “Whats left of me”, “Sunshine of the spotless” (sub-
concept), “Get rid of ants”.

(2)Comparison with two other strategies (naive and C-Value) for
the same volume of 2,3 and 4-grams (7000): our algorithm gave
fewer errors (369) as compared to the Naive algorithm (997) and
C-Value algorithm (557). Also, the absolute precision for our al-
gorithm was 0.95, when compared to 0.86 for the Naive algorithm
and 0.92 for the C-Value algorithm. The non-wikipedia precision
was 0.84 for our algorithm, as compared to 0.66 for the Naive al-
gorithm and 0.75 for the C-value algorithm.

Quantity Total k = 2 k = 3 k = 4 k = 1
Concepts 7070 3669 2842 559 18838
Wiki Concepts 4131 2615 1261 255 16970
Remaining 2939 1054 1581 304 -
M.Turk Correct 1942 626 1101 215 -
Total Precision 0.86 0.88 0.83 0.84 -
Non-Wiki Precision 0.66 0.59 0.70 0.71 -

Table 4: Naive Algorithm.

To examine how a naive approach would work as compared to Al-
gorithm 1, we implemented a concept extraction procedure that se-
lects concepts based simply on the frequency of occurrence of the
k-gram. We tuned the frequency thresholds to achieve high preci-
sion (on a random set of 30 k-grams) and ensure that approximately
the same total number of 2-gram, 3-gram and 4-gram concepts were
extracted. The results are in Table 4.

The extracted concepts were evaluated by reviewers on Mechan-
ical Turk. The fraction of non-Wikipedia k-grams found to be con-
cepts by Mechanical Turk is less: 1942/2939 = 0.67. By compari-
son, the precision for our algorithm for non-Wikipedia concepts is
1934/2303 = 0.84. Overall the mistakes made (ignoring 1-grams),
is 2939 − 1942 = 997, almost 2.7 times the number of mistakes
made by our algorithm (369) for the same number of concepts.

Quantity Total k = 2 k = 3 k = 4
Concepts 7029 5091 1567 371
Wiki Concepts 4790 3730 872 188
Remaining 2239 1361 695 183
M.Turk Correct 1682 985 570 127
Total Precision 0.92 0.93 0.92 0.85
Non-Wiki Precision 0.75 0.72 0.82 0.69

Table 5: C-Value Algorithm.
To contrast our algorithm to a term recognition strategy that also

uses frequency information as a metric, we picked the C-Value
Method [15], and the results are in Table 5. The method does
not extract 1-gram concepts. The threshold was set so that a sim-
ilar total number of k-grams were extracted (sum of 2-, 3- and
4-grams) as concepts as in our algorithm above. The fraction of
non-Wikipedia k-grams found by the algorithm was 1682/2239 =
0.75, marginally better than the naive algorithm given above. The
number of mistakes made in total was 2239-1682=557, 1.5 times
the number of mistakes made in our algorithm.

The poor results of the C-Value Algorithm are probably because
the rules used in [15] are geared towards term recognition, and fail
to recognize some Wikipedia-like concepts. Additionally, while
our algorithm allows k-gram frequencies to affect whether k–n-
grams and k+n-grams are extracted as concepts, the C-Value al-
gorithm has a single top-down strategy, with k+n-grams affecting
k-grams. Our algorithm, being based on statistics of Wikipedia
concepts, reflecting true concepts, is therefore more sophisticated.

571

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 2000 4000 6000 8000 10000 12000 14000 16000

P
re

ci
si

on

No. of concepts

No. of Concepts vs. Precision

Figure 2: Variation of precision versus the volume of concepts ex-
tracted for the C-Value algorithm (×) and our algorithm (+)

(3)Variation of precision versus volume of concepts extracted
using a scatterplot for the C-Value algorithm and our algorithm:
Our algorithm gets better precision for all volumes.
Note that the performance of our algorithm and the C-Value algo-
rithm may vary as the total number of k-grams extracted as con-
cepts changes. To check this variation, we plotted the precision
(measured using the number of Wikipedia concepts) of each of the
two algorithms versus the volume of concepts extracted in Fig. 2.
Each point plotted on the figure corresponds to execution of one
of the two algorithms with various threshold values, for instance,
there is an execution of the C-Value algorithm that extracts around
15000 concepts and has a precision of 0.6, while there is a setting
of threshold parameters for our algorithm which extracts the same
number of concepts, but has a precision of around 0.64. It is clear
from the figure that we can achieve higher precision for our algo-
rithm than for the C-value algorithm for any number of concepts
extracted. So for any value of the volume of concepts required, we
can adjust threshold values in order to extract more precise con-
cepts with our algorithm. This plot also demonstrates that setting
the thresholds is relatively easy in our algorithm, because the data
points in the scatter-plot were obtained by setting threshold values
at 10 different starting configurations, and varying one threshold
while keeping the rest fixed.

Now that we have established that our algorithm gives us more
flexibility in getting more concepts for a fixed precision, we now
try to study how the various thresholds and the size of the query
log affect the precision and volume of concepts extracted for our
conceptExtraction algorithm.

(4)For our algorithm, Precision-Volume Tradeoff On Varying
Support Threshold: Precision increases as Volume decreases on
increasing support threshold.
In Figure 1(a) we kept all other thresholds constant and varied the
2-gram support threshold and examined the number of 2-gram con-
cepts extracted and the precision of those 2-gram concepts. We re-
peated the experiment for two values of the support threshold of
the 3-grams, for 20 and for 30. As expected, the volume of 2-
grams extracted reduces as the support threshold increases. Also,
the precision increases as the threshold increases since the concepts
extracted with a high threshold are likely to be correct. Note that
the graph for volume with a lower support threshold for 3-grams is
below the graph with the higher support threshold. Similarly, the
graph for the precision for the lower support threshold for 3-grams
is above that for the higher one. This effect is because of Obsvn. 2.

(5)For our algorithm, Dependence of Volume (for various k) on
Post-conf / Pre-conf / Min-conf Threshold: Thresholds for each k

can be tuned independently of the others.
Figure 1(b) and 1(c) depicts the variation of the number of various
k-gram concepts with 3-gram pre-/post-conf threshold for fixed
values of other parameters. The 3-grams are directly affected, and
the graph falls sharply as the pre-/post-conf threshold is increased.
The number of 2-gram concepts increases slightly because the num-
ber of 3-gram concepts has fallen, and the 2-gram concepts are
less likely to be ‘overridden’ by a smaller number of 3-gram con-
cepts. The number of 4-gram concepts, on the other hand, de-
creases slightly. This decrease is because the number of 3-gram
candidate concepts has reduced in number, and by the second and
third case of Algorithm 2, this would screen out more 4-gram con-
cepts (since the 3-gram concepts would not pass the check). Note
that the number of 2-gram and 4-gram concepts increase or de-
crease only slightly. Therefore, in practice, we can tune the pre/post-
conf parameter independently for each k.

We repeated the experiment on varying the min-conf threshold
and found similar behavior (i.e., that one could tune min-conf inde-
pendently for each k). These figures can be found in Appendix E.

(6)For our algorithm, Volume-Precision tradeoff with differing
size of query log: Precision increases as Volume increases with in-
creasing size of query log: Intuitively, larger datasets give us more
and better concepts. Details are given in Appendix E.

Setting the Thresholds
The performance of conceptExtraction hinges on whether or not
the thresholds are set appropriately. In the experiments above we
manually tuned the parameters to obtain good results. In this paper,
we focus on using the metrics rather than on finding the optimal
thresholds. We show how to set thresholds in Appendix G.

4. RELATED WORK
In this section, we briefly discuss work closely related to ours;

additional work is surveyed in Appendix H.
Our work is closely related to the field of association rule mining

[2], also called the market baskets problem. There are two steps
to the solution of this problem: (a) extracting sets of items with
sufficient support and (b) testing whether the items actually depend
on each other. Agrawal et. al. [2] only deals with the first step,
noting that the second step is straightforward in the item-sets case.

Our problem is related in the sense that our goal is to extract con-
cepts that are groups of words that occur more together than with
other words. We use metrics similar to support and confidence.
But the ordering of the words imposes additional restrictions on our
problem. Also, we wish to extract the “best” concept, and delete
some sub- and super-concepts. In our case, the downward-closure
property does not hold. Also unlike [2], we focus on the equiva-
lent of the second step of the market baskets problem, given that
we know the frequencies of all k-grams that are above a certain
small threshold. The A-priori method may be used to determine
‘frequent’ word-sequences that have minimum support (the small-
est support threshold over all k), i.e., step (a) above.

Term Recognition or Terminology Extraction [8, 19, 17, 14, 26]
is a well studied problem in the field of Information Extraction. Su-
perficially, the aim is similar: that of extracting the most meaning-
ful and concise k-grams, i.e., terms from a document. These terms
aid in indexing for textbooks, creation of thesauri, etc. However,
we wish to extract popular terms, i.e., concepts, and our metrics are
tuned towards extracting high precision concepts. Also, since our
aim is to extract concepts that are Wikipedia-like, our algorithm has
been selected in order to make use of Claim 1 (which is based on
statistics of Wikipedia concepts).

The statistical metrics used for term extraction include Mutual

572

Information, log likelihood, cost criteria [17, 23] etc. For example,
Mutual Information is a single quantity which measures the prob-
ability of two terms occurring together as against independently.
This measure is similar to our metrics of pre- and post-conf. How-
ever, the term extraction metrics suffer due to the fact that they give
an absolute score to a k-gram, which is not sufficient when we are
concerned about extraction of concepts that are “good” relative to
super- and sub-concepts. Claim 1 illustrates why we need both pre-
and post-conf independently when looking for concepts. Also note
that Mutual Information and the log likelihood measure would rank
highly for a ‘term’ that has not been seen before in the dataset (and
is therefore not popular). The cost criteria metric does not allow a
concept to be part of a larger concept. It therefore does not apply
for our purpose (see Sec. 2.3).

However, we found that the C-Value metric [15] incorporates
frequency information in such a way that could be used to extract
popular terms using a top-down scheme. But in our analysis in
Sec. 3 we find that the C-Value metric does not perform as well
as our algorithm in extracting concepts from data sources that are
‘dense’ in concepts.

We could also consider semantic methods: the extraction of con-
cepts from text based on semantic relationships, stemming, part-of-
speech tagging and other natural language processing tools. While
our statistical approach can also be adapted seamlessly to free text
(with the help of an NLP parser in containsStopWords), a seman-
tic approach of determining concepts from text would not work in
the case of query logs or tags. Thus the standard linguistic tech-
niques [14, 19, 26] used in term extraction are not applicable.

5. CONCLUSIONS
In this paper, we considered the problem of extracting concepts

from a large set of k-grams annotated with frequencies. We demon-
strated that it is necessary to look at not just the frequency of the k-
gram concerned, but also at the k–1-gram and k+1-gram frequen-
cies when determining if a k-gram is a concept. We defined metrics
to capture the indicators that we expect concepts to possess. We de-
signed a one-pass algorithm to extract concepts using these metrics
and showed that the algorithm is correct and possesses some desir-
able properties. We performed experimental analysis on the AOL
dataset, measuring the volume-precision tradeoff on varying vari-
ous parameters. The results were compared with those of a naive
algorithm and a term recognition algorithm, displaying that our al-
gorithm performs better than other techniques for the problem of
concept extraction from large datasets. We also provided some in-
tuition as to how thresholds may be tuned to get high precision and
volume on a new dataset.

The experiments were also carried out on the Google k-gram
dataset [5] (k-grams extracted from web-pages along with their
frequency) and the del.icio.us tag dataset for one year. The
Google k-gram dataset required an extensive POS tagger and eval-
uator to remove free text context and spam from the k-grams repre-
senting portions of concepts, but extracted as many as 0.25M con-
cepts. The tag dataset gave rise to around 21500 concepts for the
same thresholds in Table 2. However, most of the concepts were
1-grams, indicating that users tend to use short concepts to label
URLs. Additionally, the precision values were less for the two
datasets. For example, for the tag dataset, while 1-grams had a
precision lower-bound of 0.85, 2-grams had 0.6 precision.

There are several avenues for future work in extracting useful
information from query logs. Once concepts have been identified,
the web query logs could prove to be helpful not only in finding
metadata about concepts (for example, the search query “Red bull
taurine” might help us identify that the “Red bull” energy drink
contains taurine), but also finding relationships between concepts

(for example, “Martin Scorcese” and “The Departed” are likely to
appear together in many search queries). In particular, if our web
of concepts is arranged as a taxonomy (as in Wikipedia), then we
can use cues from search queries that the concept is present in to
find the “nearest” parent of a concept, or examine queries similar
to the one the concept is in to find siblings. We can then add our
concept to the taxonomy at its appropriate location.

Also, it would also be interesting to see if the precision of our
results can be improved even further, automatically, using informa-
tion from the Web.

Acknowledgments: We would like to thank Digvijay Lamba
for useful discussions, Paul Heymann for the tag dataset, and the
reviewers for their suggestions.

6. REFERENCES
[1] http://en.wikipedia.org/wiki/wikipedia:criteria for speedy deletion.
[2] R. Agrawal and R. Srikant. Fast algorithms for mining association

rules in large databases. In VLDB 1994.
[3] B. Gelfand et. al. Discovering concepts in raw texts: Building

semantic relationship graphs. Technical report, 1998.
[4] I. Bichindaritz and S. Akkineni. Concept mining for indexing

medical literature. LNCS, 3587, 2005.
[5] T. Brants and A. Franz. Web 1T 5-gram V1, 2006.
[6] E. Brill. A simple rule-based part of speech tagger. In Ap. NLP 1992.
[7] S. Brin. Extracting patterns and relations from the world wide web.

In WebDB, EDBT 1998.
[8] D. Evans and C. Zhai. Noun-phrase analysis in unrestricted text for

information retrieval. In ACL 1996.
[9] F. De Comit et. al. Positive and unlabeled examples help learning. In

Conf. on Alg. Learning Theory 1999.
[10] G. Pass et. al. A picture of search. In InfoScale 2006.
[11] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without

candidate generation. Data Min. Knowl. Discov., 2004.
[12] M. A. Hearst. Automatic acquisition of hyponyms from large text

corpora. In COLING 1992.
[13] P. Heymann, G. Koutrika, and H. Garcia-Molina. Can social

bookmarking improve web search? In WSDM 2008.
[14] C. Jacquemin and D. Bourigault. Term extraction and automatic

indexing. Handbook Of Comp. Linguistics, 2003.
[15] K. Frantzi et. al. Automatic recognition of multi-word terms: the

c-value/nc-value method. Int. Journal on Digital Libraries 2000.
[16] A. Kittur, E. Chi, and B. Suh. Crowdsourcing user studies with

mechanical turk. In CHI 2008.
[17] K.Kageura and B. Umino. Methods of automatic term recognition: a

review. Terminology, 3, 1996.
[18] M. Looks et. al. Streaming hierarchical clustering for concept

mining. Aerospace Conference, IEEE, 2007.
[19] M. T. Castellvi et. al. Automatic term detection: A review of current

systems. In Recent Adv. in Comp. Terminology 2001.
[20] A. Maedche and S. Staab. Mining ontologies from text. In EKAW

2000, London, UK.
[21] C. D. Manning and H. Schutze. Foundations of Statistical NLP. MIT

Press, June 1999.
[22] N. Dalvi et. al. A web of concepts. In PODS 2009.
[23] P. Pantel et. al. A statistical corpus-based term extractor. AI 2001.
[24] R. Agrawal et. al. Mining sequential patterns. In ICDE 1995.
[25] R. Jones et. al. Generating query substitutions. In WWW 2006.
[26] S. Loh et. al. Concept-based knowledge discovery in texts extracted

from the web. SIGKDD Explor. Newsl., 2(1), 2000.
[27] M. Sanderson and B. Croft. Deriving concept hierarchies from text.

In SIGIR 1999.
[28] M. Seno and G. Karypis. Finding frequent patterns using

length-decreasing support constraints, 2001.
[29] K. Wang, Y. He, D. W. Cheung, and Y. L. Chin. Mining confident

rules without support requirement. In CIKM 2001.
[30] Q. Yang and H. H. Zhang. Web-log mining for predictive web

caching. TKDE., 15(4), 2003.

573

APPENDIX
In the appendix, we give details for several items that were not
considered in the main body of the paper, including
• Justification for evaluating sub-concepts in Appendix A
• Details of the Algorithm in Appendix B
• Complexity in Appendix C
• Proofs of Theorems/Observations in Appendix D
• Additional Experiments for Query Logs in Appendix F
• Experiments on other Datasets in Appendix F
• Setting the Thresholds in Appendix G
• Additional Related Work in Appendix H

A. JUSTIFICATION FOR APPROACH
In this section, we provide justification for why our technique of

evaluating bottom up, and comparing k-grams with sub-concepts
is sufficient in order to evaluate indicator 2 given in Sec. 2.5. We
provide this justification by proving the correctness of our approach
while making some assumptions.

Given a dataset, we will define concepts to be all the k-grams
in the dataset that are “better” than k–1-grams (sub-concepts) and
k+1-grams (super-concepts). Thus, all k-grams in our setting have
sufficient support to be a concept, and do not contain portions of
sentences (i.e., they satisfy both indicator 1 and 3). Therefore, all
1-grams are concepts.

Let c be a k-gram (k > 2). Let b1 and b2 be the two k–1-
grams that c contains, and d1, d2, . . ., dm be all the k+1-grams
that contain c. Let function� take two word sequences and return
either true or false. (Intuitively, a � b says that a is a “better
concept” than b.) We define c to be a concept iff
• c� b1 or c� b2 (i.e., c is better than sub-concepts) AND
• ∀i ∈ {1, . . . , m} it is not true that di � c (i.e., c is better than

super-concepts)
For 2-gram concepts, only the second item is true. (Recall that
Claim 1 states that 2-gram concepts can contain two 1-gram con-
cepts.)

We now suggest a bottom-up procedure that at every iteration
evaluates k-grams relative to k–1-grams. Consider the following
procedure Simple:
• 0: Let set S contain all 1-grams and 2-grams
• 1: For k from 3 to m

• 2: For all k-grams: (Let c be a k-gram, containing two k–
1-grams b1 and b2.)
• 3: If c� b1, add c to S, remove b1 from S.
• 4: If c� b2, add c to S, remove b2 from S.

We now prove that Simple extracts precisely the concepts from the
dataset.

THEOREM 2 (CORRECTNESS OF SIMPLE). If we define con-
cepts as given above, at the end of iteration k, the i-grams (∀i :
1 ≤ i ≤ k−1) still present in S are precisely the concept i-grams.

PROOF. We use an induction argument. First, note that the the-
orem is trivially true at the end of iteration 1 and iteration 2. Con-
sider the end of iteration 3. We first prove that all 2-gram concepts
a are in S. Since a is a concept, there exists no 3-gram c that con-
tains a such that c � a. Therefore, the condition in line 3 and 4
would never be true, and a is never removed from S. We also need
to prove that no extraneous 2-grams are in S. If the 2-gram a is not

a concept, then there is a c in the 3-gram set for which c � a, in
which case a would be removed from S.

Now let us assume that the theorem holds at the end of iteration
m, we wish to prove that it holds at the end of iteration m+1. By
the induction hypothesis, all 1, 2, . . . , m–1-grams still in S are pre-
cisely the concepts among the 1, 2, . . . , m–1-grams. Now we need
to prove the same for m-grams. We first prove that all m-gram
concepts a are in S. Since a is a concept, (i) there is a m–1-gram b
that a contains such that a� b (ii) there exists no m+1-gram c that
contains a such that c � a. Due to (i), a is added to S in iteration
m via line 3 or 4. Additionally, due to (ii), at iteration m+1, the
condition in line 3 and 4 never evaluates to true, and a is never re-
moved from S. On the other hand, if a is not a concept, then either
a was not added to S at iteration m, or there is a c for which c� a,
in which case a would be removed from S at iteration m+1. Thus,
at the end of iteration m+1, the 1, 2, . . . , m-grams still in S are pre-
cisely the concepts among the 1, 2, . . . , m-grams.

B. ALGORITHMIC DETAILS
In this section, we provide additional details for procedures can-

didateConceptCheck and containsStopWords from Sec. 2.6 that we
did not cover in the main body of the paper due to space constraints.

As per the procedure candidateConceptCheck, a k-gram (k > 2)
is a candidate concept if it falls into one of three cases. These three
cases (lines 8−13, 14−17, 18−21 in Algorithm 2) correspond to
various values of pre-conf and the post-conf of the candidate con-
cept. Either the candidate concept on the whole is “good” (case 1)
or is formed by attaching words to the beginning or end of “good”
concepts (case 2/3). The first case (8 − 13) corresponds to both
pre- and post-conf being very close to 1. This case corresponds to
the case when neither of the k–1-grams are extracted as concepts.
The second case (14-17) corresponds to the post-conf very close to
1, and the pre-conf small. This corresponds to the case where the
prefix k–1-gram is extracted as a concept. The third case is sym-
metric to the second case (replacing b with c, pre- with post-, and
so on) and we do not discuss it further.

In the first case, the k-gram is evaluated using two checks: the
first of which says the least amount of confidence that we have
in the candidate concept (i.e., the min-conf) should surpass some
threshold (which is a function of k). The second check says that the
k-gram should be “better” than its sub-concepts - defined by the
fact that rel-conf surpasses a threshold. If a k-gram passes these
two checks, then we are better off keeping the given k-gram in our
set of extracted concepts than any of the 2 sub-concepts; and thus
we discard both the sub-concepts. Consider, for example, ‘Who
Framed Roger Rabbit’, which has a high min-conf and a high rel-
conf. We discard ‘Who Framed Roger’ and ‘Framed Roger Rabbit’,
and retain ‘Who framed Roger Rabbit’.

The second case involves concepts of the form <name> <topic>,
where topic refers to a concept that forms a kind of ‘category’ (ex-
ample: Intel / Microsoft Research Labs) or <topic> <name>
(example: Home Alone I/II/III (These are children’s movies.)).
Here, the pre-conf is likely to be much higher than the post-conf
(in the algorithm, we would want pre-conf to be > post-conf ×
dominance-thres, where dominance-thres > 1) - because the <name>
field can be changed. We also expect the pre-conf to be very close
to 1. Since the pre-conf is very high, we can effectively discard the
prefix k-gram and keep the k-gram as a candidate concept. How-
ever, we retain the suffix, because that could still be extracted as a
concept. The suffix must already be a candidate concept, since it
has been examined before. <topic> <name> is dealt with in the
same way. These cases are reflected in the algorithm.

Now, a few remarks about the containsStopWords procedure.

574

While the containsStopWords check may eliminate some actual con-
cepts, we prefer to have higher precision (which is the case when
we discard k-grams of the above form) rather than higher recall
(more concepts, including those with stop-words). The trade-off
is strongly in favor of precision, because the loss in precision is
drastic if we allow k-grams of the above kind to be concepts. Not
having this check essentially allows portions of sentences to be con-
cepts simply because the words involved occur often together —
yet may not represent a real-world entity.

Note that we only run the containsStopWords check (and prune
candidate concepts that do not pass the check) after the first phase
of extraction (lines 2-10 of conceptExtraction). This is because the
candidate concepts could still be part of a larger concept, and may
be required for correct screening of the larger concepts. However,
we could pass the candidate concept set of size until k through to
the containsStopWords check when we have moved to the process-
ing of the k+2-grams in the first phase.

C. COMPLEXITY DETAILS
If we sort the k-gram set lexicographically, searching is O(log n).

Per k-gram, we do a lookup of the frequencies of two k–1-grams
and three k–2-grams, which amounts to 5 lookups. In addition, we
may need to check if the two k–1 grams are candidate concepts in
the candidate concept set (or discard them), which may incur an
additional O(log n) each. Thus the worst case number of lookups
that we may need to perform per concept are 7 log n, and the over-
all complexity of the one-pass algorithm is O(n log n). Our perfor-
mance can drastically improve if we use hashing to do the lookups.

D. PROOFS
In this section, we give proofs for the results listed in Sec. 2.7.

PROOF OF OBSERVATION 1. Whether or not a k-gram is added
as a candidate concept depends on the set of k–1-grams. As per
algorithm 1, we do not discard the k–1-grams that get ‘overridden’
until we are done processing all the k-grams. Thus the order of
processing of the k-grams is unimportant.

PROOF OF OBSERVATION 2. Lower the k-gram support thresh-
old, more the number of k-gram candidate concepts will pass the
support condition, and the number of k–1-grams that get overrid-
den and discarded will increase (because they are sub-concepts of
the new k-gram candidate concepts). The k–1-grams that remain
are only the exceptionally good ones (implying an increase in pre-
cision). Hence the result.

PROOF OF OBSERVATION 3. Lower the k-gram support thresh-
old, more the number of k-gram sub-concepts, more the number of
k+1-gram candidate concepts that will be under consideration via
lines 14-21, and more of them will get accepted as concepts. Hence
the result.

PROOF OF OBSERVATION 4. When we are analyzing k-grams,
the k–2-gram candidate concept set (and below) has already been
fixed, and hence cannot be changed. k–1-grams are affected be-
cause they may be discarded. k+1-grams are affected because the
k-gram set is consulted to see if a k+1-gram is a candidate concept
or not. Similarly, k+2-grams are affected because the k+1-gram set
is consulted to see if a k+2-gram is a candidate concept or not, and
so on.

Note that in the theorem of correctness, whose proof we give
below, we do not need to specify the frequency of concepts relative
to sub-concepts, just relative to the context (i.e., the k+1-grams that
the k-gram appears in).

PROOF OF THEOREM 1. Consider rel-conf-threshold to be 0 for
all k. Let min-conf-threshold(k) = post/pre-conf-threshold(k) =
1/g(k). Let the support-threshold = f(k). We let dominance-
thres be 1. We also let the containsStopWords check returns false
for all k-grams, since we can make out if a k-gram is a concept or
not by looking at just the statistical properties. We use induction
for the proof. We start with k = 1, and argue that the conceptEx-
traction algorithm precisely outputs the concepts and discards the
non-concepts.

For k = 1, as per the algorithm, if the support threshold is met,
it is a concept, else not. This set is the same as the 1-gram concept
set matching the specification above. Since none of the 1-grams
are discarded (while analyzing 2-grams) in the algorithm, the same
1-grams are output as concepts.

Now consider analysis of k-grams (k ≥ 2) by the algorithm. By
the end of this phase, the k–1-gram concept set will no longer be
modified, so we analyze the k–1-grams that are output as concepts.
We assume, as the induction hypothesis, that all up-to k–2-gram
concepts have been correctly extracted.

If a k–1-gram a is a concept, then we prove the following:

• It is not discarded at the k–1-gram stage
• It is not discarded at the k-gram stage

At the k–1-gram stage, the k–1-gram passes the support threshold,
either contains one k–2-gram that is a concept, or no k–2-grams
that are concepts (from Claim 1). In the first case, the candidate-
ConceptCheck procedure proceeds to lines 14-17 (or 18-21, equiv-
alently). The prefix k–2-gram is a candidate concept, the post-conf
> the pre-conf (since the threshold is 1) — because the concept k–
2-gram occurs more frequently than g(k−1)×Sa, while the other
k–2-gram occurs less frequently than g(k−1)×Sa. Also, the post-
conf is greater than the threshold 1/g(k − 1). Thus a will not be
discarded at the k–1-gram stage. In the second case, no k–2-gram
is a candidate concept. In this case the min-conf will be greater
than threshold 1/g(k − 1), and hence a will not be discarded.

At the k-gram stage, any k-gram b that the k–1-gram concept
a appears in has a pre/post-conf (as the case may be) of Sb/Sa,
which is definitely less than 1/g(k), and hence the k–1-gram is not
discarded.

Thus all the concepts are definitely not discarded.
If a k–1-gram is not a concept and is not contained in any k-

gram, then it does not pass the support threshold, and hence is dis-
carded by the algorithm. If the k–1-gram is not a concept but is
contained in some k-gram, then:

• Either it does not pass the support threshold (in which case
the algorithm discards it at the k–1-gram phase),
• Or, the algorithm accepts the k–1-gram in the k–1-gram phase.

But the frequency of the k–1-gram is smaller than g(k)×R,
where R is the smallest frequency of all k-grams containing
the k–1-gram having frequency > f(k). In this case, one of
two things can happen for any given k-gram b (with frequency
> f(k) — since only those k-grams can pass the support
threshold):

– The other k–1-gram contained in b is also a non-concept
– The other k–1-gram contained in b is a concept

In the first sub-case, the two k–1-grams in b give rise to a min-
conf for b > 1/g(k), thus the algorithm (correctly) discards
both the k–1-grams (lines 8-13). In the second case, we look
at lines 14-17 or 18-21. Let us assume that the second k–
1-gram (the one that is a concept) is a prefix k–1-gram. In
this case the k-gram has a high post-confidence > 1/g(k)
(higher than the pre-confidence, which is < 1/g(k)), and the
non-concept k–1-gram is discarded.

575

Thus all the non-concepts are definitely discarded by the algorithm
either at the k–1-gram phase or the k-gram phase.

Hence the algorithm correctly extracts the concepts and discards
the non-concepts.

E. QUERY LOG EXPERIMENTS (CONTD.)
We now describe in detail additional experiments that we per-

formed on the AOL query log set.
(5)For our algorithm, Dependence of Volume (for various k) on

Min-conf Threshold: Thresholds for each k can be tuned indepen-
dently of the others.

Figure 3(a) is identical to Figures 1(b) and 1(c) except that we
vary the min-conf thresholds. This figure shows that we can tune
the min-conf thresholds independently for each k. We changed
the 4-gram min-conf threshold and plotted the results on the same
graph. Also note that while the number of 2-gram concepts do not
change on changing the 4-gram threshold, the number of 4-gram
concepts reduce on increasing the threshold, and 3-gram concepts
increase, as expected. Thus the min-conf thresholds can be tuned
independently as well.

(6)For our algorithm, Volume-Precision Tradeoff with differing
size of query log: Precision Increases as Volume Increases with
increasing size of query log.

In Figure 3(b) and 3(c) we ran the algorithm (having fixed the
thresholds) on segments of the query log of increasing size for 3-
and 4-grams respectively. We found that while the number of con-
cepts (i.e., the volume) increased as the query log size increased
(because more and more k-grams cross the thresholds), the pre-
cision does not increase after a point, because all the Wikipedia
concepts have been found.

F. ADDITIONAL EXPERIMENTS
We now briefly outline our experiments on the Delicious tag

dataset and the Google K-gram dataset.

F.1 Experiments on Web KGrams (Summary)
In addition to looking at the AOL query logs, we also ran our

algorithm on Google’s Web KGram Dataset [5]. KGrams from the
Web are more prone to spam and errors from portions of sentences
in free text and thus special rules to eliminate such candidate con-
cepts were required. A powerful POS tagger was used in our con-
tainsStopWords procedure to eliminate portions of sentences. Af-
ter this, (and after eliminating those found in Wikipedia) around
0.05M 2-gram concepts and around 0.2M 3-gram concepts were
extracted. The dataset had around 300M 2-grams and around 900M
3-grams in total.

Since it is not feasible (both practically and monetarily) to eval-
uate all the concepts extracted by our algorithm, we instead evalu-
ated a random sample of concepts, wherein the accuracy was found
to be around 70%.

F.2 Experiments on Tag Dataset (Summary)
User submitted tags for delicious (http://del.icio.us)

are another useful source for k-grams. We repeated our experi-
ment on the Delicious Dataset [13], for the period from June 2007
to March 2008. Similar thresholds were used as in Sec. 2. The
experiment extracted 20302 1-gram concepts, with 85% found in
Wikipedia. But the 2-, 3- and 4- gram concepts extracted were
fewer: 396, 334 and 480 respectively. 60% of the 2-grams were
Wikipedia topics, while 15% of the rest were Wikipedia topics.
The reason that a smaller number of concepts were extrated is prob-
ably that the del.icio.us interface encourages users to type in all the

tags for a URL together on one line, not separated by punctuation.
Hence the smaller concepts are harder to extract when placed next
to other frequently occurring concepts.

Clearly, tagging sets are less useful than query logs for long con-
cepts because people tend to tag items with as few ‘disjoint’ words
as possible. Most useful tags are therefore, 1-grams.

G. SETTING THE THRESHOLDS
The thresholds that we use in our algorithm candidateConceptCheck

needs to be tuned inorder to extract concepts with a high level of
precision. To select good thresholds, one can use the following
techniques:
•Machine Learning Approach: We could use machine classifica-

tion to ‘learn’ optimal thresholds for the candidateConceptCheck
algorithm, in order to be able to classify better what is a concept
and what is not. In our case, the problem is that of learning from
positive and unlabeled examples (also called PU-learning [9]). The
positive examples include k-grams that we know to be concepts
from sources such as Wikipedia article titles and encyclopedias.
The machine learning algorithm should try to extract or approxi-
mate a set of reliable negative training examples and then apply a
classification algorithm to approximate the optimal thresholds. We
plan to explore this direction in subsequent work.
•Manual Tuning Approach: We can also tune the thresholds

manually. On a new dataset, we could do the following: Figures
1(b) 1(c) and 3(a) indicate that parameters may be tuned separately,
independent of each other. Thus we could fix all parameters at
some starting value, change thresholds for one k, note the response
(either by looking at the Wikipedia set, or by random sampling
and evaluation). We then use that as the starting point for tuning
thresholds for the next k. We set all thresholds in this manner in
increasing order of k. However, note that the threshold dominance-
threshold will need to be tuned globally.

For a given k, to set the pre-/post-conf, rel-conf, min-conf and
support thresholds, we do the following: Assume that d% of the k-
grams are concepts (We can quickly determine the value d by look-
ing at a random sample of the k-grams). Set the support threshold
to the value such that for a random sample of the log, (d + ∆)%
of that sample has frequency above this value. Then consider all
the k-gram Wikipedia concepts that are above the support thresh-
old, and choose the smallest values for the pre-/post-conf, rel-conf
and min-conf thresholds such that the same Wikipedia concepts
are selected as concepts. For those Wikipedia concepts that have
sub-concepts (since we have tuned the k–1-gram thresholds be-
forehand), depending on the ratio r = pre-conf/post-conf, we select
thresholds such that the Wikipedia concepts pass the check in line
8 (if r ≈ dominance-threshold), line 14 (r is smaller) or 18 (r
is larger) in Algorithm 2. We retain one of the k–1-grams as sub-
concepts if r or 1/r > dominance-threshold. Else we discard both
k–1-grams.

We note that a lower min-conf threshold needs to be accorded to
the 2-grams relative to the 3-grams because a given word may be
followed by many other words giving rise to a number of concepts.
Basically, seeing the 1-gram gives you less indication as to what
the 2-gram might be.

H. ADDITIONAL RELATED WORK
We now describe in detail some other prior work which is not

as closely related as those in Sec. 4 and details for some that were
briefly outlined in Sec. 4.

[28] describes an approach to extract item-sets with length de-
creasing support-thresholds, which is true in our case (as k in-

576

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

1000

2000

3000

4000

5000

6000

7000
k−grams vs. Minconf Threshold[3]

Minconf Threshold

N
o.

 o
f k

−
gr

am
s

k = 2

k = 3

k = 4

k = 2 & Minconf [4] = 0.1 or 0.2
k = 3 & Minconf [4] = 0.1
k = 4 & Minconf [4] = 0.1
k = 3 & Minconf [4] = 0.2
k = 4 & Minconf [4] = 0.2

0 20 40 60 80 100
0

1000

2000

3000

4000
k−grams vs. Percentage of log

Percentage of log

N
o.

 o
f k

−
gr

am
s

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

P
re

ci
si

on
 L

ow
er

bo
un

d

Precision

Number of k−grams

0 20 40 60 80 100
0

1000

2000

3000

4000
k−grams vs. Percentage of log

Percentage of log

N
o.

 o
f k

−
gr

am
s

0 20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

P
re

ci
si

on
 L

ow
er

bo
un

d

Precision

Number of k−grams

Figure 3: (a) Variation of Number of k-grams extracted for various values of the min-conf threshold for 3-grams (b) Variation of number of
3-grams extracted and precision vs. percentage of log exposed (c) Same as before for 4-grams

creases, the k-gram support threshold decreases), however, the al-
gorithm involves use of the FP-tree method [11], which cannot
be immediately applied to find all k-grams (which are word se-
quences, not sets) with a support greater than some f(k), since the
subset property does not hold. Adapting the FP-tree method for
our purposes remains an open problem. Additionally, we focus on
the second part of the frequent-itemset problem, i.e., how the con-
fidence in an k-gram relative to other k′-grams affects our choice
of the k-gram as a concept.

[29] describes a method to mine confident association rules with-
out a support requirement. While we could use this method to
prune k-grams that we do not have sufficient confidence in, even
this work is not immediately applicable to our case, because the
universal-existence upward closure property as in [29] does not
hold. Additionally we have multiple confidence metrics and values
of thresholds for those metrics, as against one min-conf threshold
in [29].

Another related topic of research is sequence mining [24] which
deals with mining sequences of items to find items that occur one
after the other in sequence, in order to isolate temporal dependen-
cies between items, which is very different from our goal, which is
to find sequence of words that form concepts, and the procedures
used are vastly different.

Generating hierarchies from documents has been explored in the
past [27, 20], however, these works are limited by the fact that they
use natural language processing to extract terms from grammati-
cally correct sentences, and therefore cannot be applied to generic
datasets like tags and query logs.

In [3], the authors use SRGs (Semantic Relationship Graphs)
to represent semantic relationships between words extracted from
text. Popularity is not used as a criteria to extract these words. [18,
12] deal with determining relationships, groupings etc. between
terms extracted from text. We do not discuss relationships between
concepts - or even the conditions of hypernymy or metronymy in
this paper.

[7, 4] talk of extracting items (and then relationships between
those items) based on bootstrapping with pre-defined (or subse-
quently discovered) patterns appearing in text. We, on the other
hand, do not have a seed set of patterns or items to begin with, and
our domain is not restricted to select types, the set of book-author
pairs or symptom-cause pairs, respectively in the two references
above. Our approach is general and does not require grammatically
correct sentences as input.

The problem of named entity recognition [21] has as its aim de-
tection and identification of ‘named entities’ — cars, persons, insti-
tutions, dates etc. Recognition is done via part-of-speech tagging
and other natural language processing techniques. While we ex-
tract concepts of all kinds, named entity recognition can detect and
extract concepts of specific types. However, named entity recog-

nition cannot be performed on datasets such as query logs and tag
data.

Building association rules on text k-grams is not new; [30] uses
association rules between text k-grams and web pages that are clicked
on for those k-grams.

Our work is also related to the field of word-level k-gram lan-
guage modeling [21]: the post-conf metric we use is nothing but
the marginal probability of seeing the last word given the previ-
ous k–1 words. However, we measure both forward and backward
probabilities, i.e., that of seeing the first word given the last k–1
words as well. Additionally, rel-conf metric has no counterpart in
the language modeling field.

577

