
Exploiting Content Redundancy for Web Information
Extraction

Pankaj Gulhane Rajeev Rastogi Srinivasan H Sengamedu Ashwin Tengli
Yahoo! Labs, Bangalore Microsoft IDC, Bangalore

{pankajeg, rrastogi, shs}@yahoo-inc.com ashwint@microsoft.com

ABSTRACT
We propose a novel extraction approach that exploitscontent re-
dundancyon the web to extract structured data fromtemplate-based
web sites. We start by populating a seed database with records
extracted from a few initial sites. We then identify values within
the pages of each new site that match attribute values contained
in the seed set of records. To match attribute values with diverse
representations across sites, we define a new similarity metric that
leverages the templatized structure of attribute content. Specifi-
cally, our metric discovers the matching pattern between attribute
values from two sites, and uses this to ignore extraneous portions of
attribute values when computing similarity scores. Further, to filter
out noisy attribute value matches, we exploit the fact that attribute
values occur at fixed positions within template-based sites. We de-
velop an efficient Apriori-style algorithm to systematically enumer-
ate attribute position configurations with sufficient matching values
across pages. Finally, we conduct an extensive experimental study
with real-life web data to demonstrate the effectiveness of our ex-
traction approach.

1. INTRODUCTION
A significant fraction of pages on the web are dynamically gener-

ated by populatingfixed page templateswith content from a back-
end DBMS. Previous studies [12] estimate that as high as 40-50%
of the content on the web is template content. Popular web sites
with thousands or even millions of template-based pages include
retailer siteamazon.com, aggregator siteyelp.com, news site
cnn.com, video siteyoutube.com, and so on.

Template-based pages contain a wealth of information about real-
world entities like businesses (e.g., address, phone, category, hours
of operation), products (e.g., description, price, reviews), restau-
rants, books, etc. Extracting this information and integrating it
across pages from multiple sites can allow us to create extensive
databases of entities. These databases can then be queried by users
to access product features and reviews collated from different web
sites, order products by price, determine the phone numbers of
restaurants in a specific location, etc.

1.1 Problem

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment,Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

Consider a set of template-based web sitesW = {W1, . . . , Wm}
belonging to a specific vertical (e.g., restaurants, books). Each page
within a web siteWi contains attribute values for a specific real-
world entity. LetA = {a1, . . . , aq} denote the set of entity at-
tributes within the vertical. In this paper, we address the following
extraction problem:Given a set of web sitesW, from each page of
web sitesWi ∈ W, extract a single record containing the attribute
values for the corresponding entity.We restrict our attention to ex-
tracting “string-valued” attributes from “single-entity” pages in this
paper.

1.2 Our Approach
In this paper, we develop a new approach to extract entity records

from multiple template-based web sites. Our extraction solution
delivers high accuracy while incurring minimal manual effort, and
leverages the following two key properties of template-based sites:
Property 1:Multiple sites contain pages for the same entity. Fur-
ther, the values of an attribute across the various pages for an entity
are “textually” similar.
Property 2:Pages within a web site have a similar structure con-
forming to a common template.

Property 1 implies that there is redundant content across web
sites. For example, multiple sites likeyelp.com,superpages.
com, etc. contain entity pages for overlapping sets of restaurants,
and the values of key attributes like name, address, and phone num-
ber are similar across the various pages for a restaurant. We exploit
this content redundancy by using extractions from one site to iden-
tify attribute values in the pages of overlapping entities in a dif-
ferent site. Property 2 implies that attribute values occur at fixed
positions within pages of a site. Thus, once we have identified at-
tribute values in a few pages of a site, we can infer their positions,
and use this to extract attribute values from the remaining pages of
the site.

Our extraction procedure starts by populating a seed database
R of records from a few initial sites. These records are extracted
from the sites by having human editors annotate attribute values in
a few sample pages from each site, and learning wrappers for the
sites. Note that each seed record inR contains attribute values for
an entity from a single entity page. Now, a new siteWi ∈ W will
typically contain pages for entities that already have records inR.
Thus, we scan the pages inWi to find values that match attribute
values in the seed records. These matching attribute values within
the pages of overlapping entities are used to learn wrappers that
are subsequently used to extract records from the remaining pages
of the new site. The seed database is augmented with the newly
extracted records (some of which will be for new entities) and the
process is repeated for other new sites.

Note that our extraction approach is largelyunsupervised. Ex-

578

Name Address
r1 Beijing Bites 120 Lexington Avenue

New York, NY 10016
r2 China Club 312 W 34th Street

New York, NY 10001

Bejing Bites

120 Lexington Ave
(between 28th and 29th St)
New York, NY 10016

Related
Nearest Transit: Restaurants:
Lexington Ave China Club
New York, NY China Grill

China Club

312 W 34th St
(between 8th and 9th Ave)
New York, NY 10001

Related
Nearest Transit: Restaurants:
Penn Station Bejing Bites
New York, NY China Grill

(a) Seed databaseR. (b) Pagep1. (c) Pagep2.

Figure 1: Web extraction example.

cept for a few initial sites where human annotations are needed to
generate the seed database, it eliminates the need for manually an-
notating attribute values in pages of web sites. Moreover, by con-
tinuously expanding the initial seed database with extracted records
for new entities, it ensures that there is sufficient overlap between
the seed database and new sites. In the following subsections,
we describe some of the key challenges with our content matching-
based approach, and our proposed solutions to overcome them.

1.3 Key Challenges
Our extraction approach faces two major challenges. First, it re-

lies heavily on the fact that attribute values across pages for the
same real-world entity are textually similar. However, in practice,
entity attribute values can vary between sites due to data entry er-
rors, abbreviations, heterogeneous representations, etc. This can
lead to attribute value matches going undetected during extraction.
Second, web pages are inherently noisy and contain extraneous val-
ues that can lead to spurious attribute value matches. The following
example, inspired by real-life web data, illustrates the two chal-
lenges.

EXAMPLE 1.1. Consider the seed databaseR in Figure 1(a)
with two recordsr1 and r2 containing the name and address at-
tributes of restaurants. Consider the two restaurant pagesp1 and
p2 in Figures 1(b) and (c), respectively, from a new web site. The
name and address of the restaurants are at the top of the pages,
and the nearest transit subway station and related restaurants with
similar cuisine are listed at the bottom. It is straightforward to see
that recordri and pagepi (i = 1, 2) refer to the same real-world
entity. Observe that, in the name attribute, “Beijing” is misspelled
as “Bejing” in pagesp1 andp2. Similarly, in the address attribute,
the terms “Avenue” and “Street” are abbreviated to “Ave” (inp1)
and “St” (in p2), respectively, and an additional line starting with
“(between” is uniformly inserted in both pages.

Now, suppose we use the Jaccard coefficient [19] to measure the
similarity between attribute values, where each value is treated as
a bag of words (using space as delimiter), and for two setsS1 and
S2, the Jaccard similarity is defined asJC(S1, S2) = |S1∩S2|

|S1∪S2|
.

Due to the different conventions for recording the address attribute,
the Jaccard similarity between the address values inr1 andp1 be-
longing to the same entity is only6

13
, which is less than0.5. In

contrast, the nearest transit value “Lexington Ave New York, NY”
at the bottom ofp1 has a higher similarity score of4

8
with the ad-

dress value inr1. Similarly, the name values inr1 and p1 have
a similarity score of only1

3
, while the string “China Club” under

“Related Restaurants:” inp1 has a similarity of 1 with the name
value inr2. Thus, extraneous values at the bottom ofp1 have much
higher similarity scores with name and address values in the seed
records which can lead to false positive matches. 2

1.4 Our Contributions

In this paper, we make the following contributions to solve the
above-mentioned problems.
1) We propose a novel extraction approach that exploits content
redundancy across sites and structural similarity among template-
based pages to extract attribute values with high precision and min-
imal manual intervention.
2) To cope with different attribute formatting conventions across
sites, we define a new similarity function. Our new function lever-
ages the fact that attribute values in template-based pages have a
templatized structure and uses this to improve matching accuracy.
Our proposed metric discovers repeating patterns among the match-
ing portions of attribute value pairs from two sites, and uses this
to filter out non-matching portions when computing the similar-
ity score between attribute value pairs. In Figure 1, our similarity
function detects that the lines beginning with “(between” are extra-
neous across the address values inp1 andp2, and so ignores them
when matching the values with addresses in the seed database. This
boosts the similarity scores (Jaccard similarity= 3

4
) between ad-

dress values in pagesp1 andp2, and their corresponding values in
recordsr1 andr2, respectively, and ensures that they are matched
correctly. Thus, our new similarity metric is able to match attribute
values (with diverse representations) belonging to the same entity
while keeping the number of false positive matches low.
3) In order to further filter out noisy matches, we match values for
multiple attributes and also exploit the fact that attribute values oc-
cur at fixed positions within the pages of a template-based web site.
Thus, suppose that for a configuration of attribute positions, we de-
fine thesupportas the number of pages for which the values at the
positions match seed record values. Then, we can essentially prune
configurations with insufficient support. We propose an efficient
Apriori-style [3] algorithm to systematically enumerate attribute
position configurations with sufficient support. In Figure 1, our
algorithm will prune the spurious match between the string “China
Club” under “Related Restaurants:” inp1 and the name attribute in
r2 since the address value in pagep1 does not match the address
value in recordr2 for restaurant “China Club”.
4) We conduct an extensive experimental study with real-life web
datasets from different verticals. Our extraction approach performs
well delivering greater than 95% precision and more than 80% re-
call for extracted records from a wide range of web sites.

2. SIMILARITY MODEL
A basic primitive for our extraction task is to be able to find

matching attribute value pairs between two setsU andV of values
for an attributea. The attribute values in a set can either come
from records in the seed database, or they can be text values at a
particular position within the pages of a web site. Observe that
this is different from previous work which primarily focuses on
determining if two values are similar.

In the following subsections, we first consider the case of com-

579

Algorithm 1 STRONGSIM

Input: Sets of valuesU,V , Attributea;
Output: Strong similarity scoresssima for value pairsu ∈ U
andv ∈ V ;

Let WS = {(u, v) : u ∈ U ∧ v ∈ V ∧ sima(u, v) ≥ Tw};
Initialize B() to ∅;
for each weakly similar pair(u, v) ∈ WS do

Construct a bipartite graphG with two sets of vertices corre-
sponding to words inu andv;
for each word pairw ∈ u, w′ ∈ v do

if JC(qg(w), qg(w′)) ≥ 0.9 then
Add edge(w, w′) with weightJC(qg(w), qg(w′)) toG;

end if
end for
Compute the max-weight bipartite matchingM(u, v) of G;
P (u, v) = MATCHINGPATTERN(u,v, M(u, v));
Let u′(v′) be the subsequence ofu(v) containing only the
matching words inM(u, v);
Add the pair(u′, v′) to B(P (u, v));

end for
for each pair(u, v), u ∈ U, v ∈ V do

if (u, v) is weakly similar and|B(P (u, v))| ≥ α·|WS| then
ssima(u, v) = sima(u′, v′);

else
ssima(u, v) = sima(u, v);

end if
end for
return ssima;

puting the similarity between a pair of values, and subsequently,
we use this to determine the similar value pairs between two sets of
attribute values.

2.1 Similarity Between Value Pairs
We treat each attribute value string as a sequence of words sepa-

rated by special characters such as space, tab, hyphen, comma, etc.
which are considered as word delimiters. We normalize each word
by converting all the letters to lower case.

For our web extraction scenario, we require a similarity met-
ric that is robust to typographical errors, word re-orderings, ab-
breviations, etc. A number of similarity functions for approxi-
mately matching strings have been proposed in the research litera-
ture. Popular measures include the Jaccard coefficient and Cosine
similarity metrics from information retrieval (IR) [19, 8], exten-
sions (of Cosine similarity) to useq-gramsinstead of words [17],
and the edit distance family of functions [10, 24, 18, 22]. We use
sima(u, v) to denote the similarity between stringsu andv whenu
andv are considered as values of the attributea. We use a variant of
the “Cosine similarity over q-grams” similarity function proposed
in [17] because it can handle both spelling errors as well as word re-
arrangements, and is computationally efficient. Appendix A gives
the details ofsima(u, v) computation. We refer tosima(u, v) as
the weak similarityscore betweenu andv. Further, we say that
valuesu andv areweakly similarif sima(u, v) ≥ Tw whereTw

is the weak similarity threshold.

2.2 Similarity Between Sets of Values
A straightforward approach to find similar value pairs from two

setsU = {u1, u2, . . .} andV = {v1, v2, . . .} is to simply consider
individual pairs of values(ui, vj) and check if they are weakly
similar. But this may not work in many cases because different

attribute representations between two sites can cause the similarity
between a pair of attribute values for the same entity to be low.
In Figure 1, lines beginning with “(between” are inserted into the
address values in pagesp1 andp2. These values will not be judged
as similar to the corresponding address values in seed recordsr1

andr2 unless the weak similarity threshold is set to a small value.
However, setting the weak similarity threshold too low can lead
to false positive matches between extraneous values (e.g., nearest
transit) in pages and attribute values in the seed database.

To prune the spurious matches resulting from a small weak sim-
ilarity threshold, our solution exploits the fact that within template-
based sites, attribute content also follows a templatized format. So
there is typically a fixed pattern of matching segments between at-
tribute value pairs for the same entity. For instance, in Figure 1,
if we ignore the line beginning with “(between”, then the two lines
consisting of the street name, city, state, and zip code in the address
values inp1 andp2 match the address values in recordsr1 andr2,
respectively.

We exploit this property of template-based sites to define astrong
similarity metric between attribute value pairs. Suppose that a pair
of attribute values(u, v) is weakly similar and the pattern of seg-
ment matches betweenu and v occurs in a sufficient number of
other attribute value pairs. Then we can compute a stronger sim-
ilarity score betweenu andv by ignoring all segments inu and
v that don’t match, and only considering the matching segments
betweenu andv. Thus, unlike existing similarity functions, our
strong similarity metric takes into account the matching pattern be-
tween other value pairs when determining the similarity score for a
specific pair of values.

Strong similarity essentially boosts similarity scores between sets
of values that have a templatized structure. Since our attribute
value content within a page is templatized, its similarity will be
boosted, while the similarity scores of noisy values in a page will
not be boosted to the same extent. Thus, by setting a high enough
strong similarity threshold, we can retain the legitimate attribute
value matches and filter out the false positive matches.

Procedure STRONGSIM describes the steps for computing strong
similarity scores between value pairs from two setsU andV of val-
ues for an attributea. For each weakly similar pair(u, v), it com-
putes the segment matching pattern by first identifying the poten-
tially matching word pairs(w, w′) with Jaccard similarityJC(qg(w),

qg(w′)) = |qg(w)∩qg(w′)|
|qg(w)∪qg(w′)|

≥ 0.9. (Hereqg(w) is the set of q-grams
associated withw. See Appendix A for details.) It then narrows
this down to a set of disjoint matching word pairs by computing a
max-weight matchingM(u, v). Now, since attribute values for dif-
ferent entities can contain a variable number of words, the match-
ing pattern over words may not be consistent across attribute value
pairs(u, v) belonging to the same entity. So STRONGSIM invokes
a separate procedure MATCHINGPATTERN to compute the match-
ing pattern over segments, which are essentially contiguous subse-
quences of words.

Procedure MATCHINGPATTERN takes as input the set of match-
ing word pairsM(u, v), and uses this to decomposeu andv into
segmentss1, . . . , sy ands′1, . . . , s

′
z , respectively. Each segment in

u(v) is either the longest contiguous subsequence of words with a
corresponding matching subsequence inv(u), or the longest con-
tiguous subsequence of words with no matching words inv(u).
The final segment matching patternP (u) for u is then a sequence
of positive integers in which theith element is “0” if segmentsi

in u does not match any segment inv; else, it is the index “j” of
the segments′j in v that matchessi. The segment matching pattern
P (v) for v is similarly derived, and the two are concatenated to de-
rive the final matching patternP (u, v) for the attribute value pair

580

Algorithm 2 MATCHINGPATTERN

Input: Valuesu = w1, . . . wk andv = w′
1, . . . , w

′
l, Matching

M(u, v);
Output: Matching patternP (u, v) betweenu andv;

Split u into segmentss1, . . . , sy, where each segments is the
longest contiguous subsequence of wordswi, wi+1, . . . in u such
that either

• There is a corresponding contiguous subsequence of
words w′

j , w
′
j+1, . . . in v such that the word pairs

(wi, w
′
j), (wi+1, w

′
j+1), . . . are inM(u, v), or

• None of the wordswi, wi+1, . . . appear inM(u, v).
Segmentv into segmentss′1, . . . , s

′
z similar tou;

P (u) = ǫ;
for i = 1 to y do

if words insi do not appear inM(u, v) then
Append a “0” toP (u);

else
Let s′j be the segment inv that matchessi in u (that is,
consecutive word pairs fromsi and s′j are contained in
M(u, v));
Append the index “j” for s′j to P (u);

end if
end for
ComputeP (v) in a similar manner toP (u);
return P (u) · P (v);

(u, v).
Now, for a(u, v) pair with matching patternP (u, v), let u′ and

v′ be the subsequences containing words from only the matching
segments inu andv, respectively. For weakly similar(u, v) pairs
for the same entity, we would like to boost the similarity scores to
sima(u′, v′) which essentially ignores the non-matching portions
of u andv during similarity computation. We use the matching
patternP (u, v) and matching subsequencesu′, v′ to determine if
a pair(u, v) could potentially correspond to the same entity. First,
since values are templatized, we require that a sufficiently large
number of pairs (for other entities) also have the patternP (u, v);
otherwise the pattern may just be noise. Second, the matching sub-
sequences for the value pairs with the patternP (u, v) must be suf-
ficiently diverse. For example, if the matching subsequencesu′, v′

for all address value pairs with a specific pattern is simply a generic
string like “new york ny”, then it is possible that the address val-
ues in each pair are for different entities, and we may not want to
boost the similarity scores for such pairs. On the other hand, if
the matching subsequencesu′, v′ are distinct strings containing the
street number and street name, then each address value pair with
the pattern is very likely for the same entity, and so we can go
ahead and boost the similarity scores between values in each pair
by ignoring the non-matching portions.

So, for each pattern, STRONGSIM keeps track of the number of
distinct matching subsequencesu′, v′ for (u, v) pairs with the pat-
tern in the setB(). For a weakly similar pair(u, v), if the number
of distinct matching subsequences inB(P (u, v)) is at least a frac-
tionα of the weakly similar pairs, then we boost the similarity score
betweenu andv by performing similarity computation usingu′, v′

instead ofu, v. Note that, to accommodate noise in the matching
patterns, we can cluster similar patterns (e.g., using edit distance as
the similarity metric). Then for each pattern, the set of matching
subsequencesB() can be obtained by taking the union of all the
B() sets for patterns in its cluster.

EXAMPLE 2.1. LetU be the set of addresses in the seed records
r1 andr2 in Figure 1, andV be the set of address values at the top
of pagesp1 andp2. Let the addresses inr1 andr2 be weakly sim-
ilar to the address values inp1 andp2, respectively. We trace the
execution of our strong similarity computation algorithm on inputs
U andV . Consider the(u, v) value pair whereu andv are the ad-
dress values in recordr1 and pagep1, respectively. The matching
words inu and v are “120”, “lexington”, “new”, “york”, “ny”
and “10016”. The valueu is split into 3 segments:s1 = “120 lex-
ington”, s2 = “avenue”, and s3 = “new york ny 10016”. Value
v is also split into 3 segments:s′1 = “120 lexington”, s′2 = “ave
between 28th and 29th st” ands′3 = “new york ny 10016”. The
matching patternsP (u) for u and P (v) for v are both “1 0 3”
sinces1 matchess′1, s2 and s′2 do not match any other segments,
ands3 matchess′3. Thus, the matching pattern for the(u, v) pair
is “1 0 3 1 0 3”, and the matching subsequencesu′ andv′ are both
“120 lexington new york ny 10016”.

The matching pattern for the address values inr2 and p2 can
also be shown to be “1 0 3 1 0 3” but with a different matching
subsequence “312 w 34th new york ny 10001”. Thus,B(“1 0 3 1 0
3”) contains two distinct matching subsequences which is the same
as the number of weakly similar pairs, and so the strong similarity
betweenu andv is ssimaddr(u, v) = simaddr(u

′, v′) = 1.
Now, supposeU is the set of addresses in seed records as before,

but V is the set of nearest transit values inp1 and p2. Further,
let all 4 (u, v) pairs be weakly similar, andα = 0.3. We show
that the strong similarity scores for all the(u, v) pairs are iden-
tical to their original similarity scores. Consider the(u, v) pair
with u equal to the address value inr1 and v equal to the near-
est transit value inp1. The matching patternsP (u) andP (v) are
“0 1 0 3 0” and “2 0 4”, respectively, and the matching subse-
quences are both “lexington new york ny”. For the remaining 3
(u, v) pairs, the matching patternsP (u) and P (v) are “0 2 0”
and “0 2”, respectively, with a single matching subsequence “new
york ny”. Thus, the number of distinct subsequences in theB() sets
for the two matching patterns is 1 and this is less thanα times 4,
the number of weakly similar pairs. Thus, for all the(u, v) pairs,
ssimaddr(u, v) = simaddr(u, v), which is low in most cases be-
cause of the small word overlap betweenu andv values. 2

We say that attribute valuesu andv arestrongly similarif ssima(u, v)
is greater than or equal to a strong similarity thresholdTs. In our
experiments (see Section 4), we found that with weak and strong
similarity threshold settings ofTw = 0.5 and Ts = 0.9, and
α = 0.1, we were able to match attribute values (with different for-
mats) for the same entity without too many false positive matches.

3. EXTRACTION ALGORITHM
We are now ready to describe our algorithm that leverages strongly

similar content between the seed databaseR and the web pages of
sites inW for structured data extraction.

Notation: Consider the DOM tree representation of a web page
p. For a noden in the page, letx be the unique path from the root
to n in the DOM tree. We treat the pathx as the position of node
n in pagep. Further, we usep[x] to denote the value of the node
n at positionx in pagep. For a leaf node, the value is essentially
the text string contained in it. Ifn is an internal node, then its value
is the concatenated sequence of text from the leaves of the subtree
rooted atn (in the order in which the nodes appear in the DOM
tree). For a seed recordr in R, we denote the value of attribute
ai ∈ A in r by r[ai]. With each recordr, we associate the web site
from which the record was extracted, denoted byW (r).

Algorithm: Our extraction algorithm scans the pages of a new

581

web siteW to find node values that match attribute values in the
seed databaseR, and uses this to infer the node position for each
attribute within the pages ofW . It then extracts entity records from
pages of the web site by extracting the attribute values at the iden-
tified positions.

A key challenge here is to find the correct node values within a
page that match the attribute values within a seed record. Even
with strong similarity, due to noise and extraneous information
in web pages, we may still have spurious matches within a page.
For instance, in Figure 1, values like “china club” under “Related
Restaurants:” can match name values in seed records.

In this section, we use multiple attribute matches and the tem-
plate structure of pages to filter out additional spurious matches.
Consider a subset of attributesA′ = {a1, . . . , at}. Let S =
{(a1, x1), . . . , (at, xt)} be a configuration of attribute positions
wherexi is the position of attributeai. We define the support
sup(S) of S to be the number of pagesp in siteW such that values
at positionsxi in pagep match values of attributesai in some seed
recordr. Now, the intuition behind our spurious matches pruning
strategy is that legitimate attribute position configurationsS will
generally have high supportsup(S). Thus, we can simply go ahead
and prune all configurations with inadequate support. Observe that
in the definition ofsup(S), for each pagep that contributes to
sup(S), we require the values at the designated positions inp to
match the attribute values in a single recordr. This ensures that the
matched values inp (andr) belong to the same entity.

We can now formally state our attribute position computation
problem.
ATTRIBUTE POSITION COMPUTATION PROBLEM: Given a seed
databaseR, web siteW , and a minimum support parameterβ, find
a maximal setS of (attribute, position) pairs such thatsup(S) ≥
β. 2

Notice that we are looking to find positions for as many attributes as
possible and not necessarily all attributes – this is to accommodate
scenarios in which certain attributes are missing from siteW . In
case there are multiple setsS with the same number of (attribute,
position) pairs and with support at leastβ, then we select the set
S with the maximum support. In our experiments (see Section 4),
we found that setting the support parameterβ = 10 is effective at
filtering out the spurious matches.

Procedure FINDATTRPOS describes an efficient algorithm for
computing the maximal setS of (attribute, position) pairs with sup-
port≥ β for a new web siteW . Similarity computation between a
node value and an attribute value in a record serves as a basic build-
ing block for determining record-level similarity between attribute
values in a page ofW and a seed record fromR. We keep track
of the weakly similar (page, position) and (record, attribute) pairs
by storing inWS(a, x) the record, page pairs(r, p) such thatr[a]
is weakly similar top[x]. For each (attribute, position) pair(a, x)
such that there are a sufficient number of pages with weakly similar
values in positionx, we compute strong similarity scores between
(r[a], p[x]) pairs. We store inSS(a, x) the (record, page) pairs
(r, p) such thatr[a] is strongly similar top[x]. Note thatSS(a, x)
will contain fewer false positive matches compared toWS(a, x).

Due to spurious attribute value matches still contained inSS(a, x),
within each page ofW , there may be multiple attribute position
configurations for which values in the page match (portions of) a
record in the seed databaseR. Across all the pages ofW , the num-
ber of these attribute position configurations could become really
large, even though most of them do not have the required support.
Computing support for each of these configurations to determine
the maximal configuration with support≥ β can turn out to be
very inefficient. Instead, we devise an efficient Apriori-style [3] al-

Algorithm 3 FINDATTRPOS

Input: Seed relationR, Web siteW ;
Output: Maximal set of (attribute, position) pairs with support
≥ β;

WS(a, x) = ∅;
for each noden (at positionx) in each pagep of W do

for each seed record, attribute pair(r, a) such that
sima(r[a], p[x]) ≥ Tw do

WS(a, x) = WS(a, x) ∪ (r, p);
end for

end for
C = {{(a, x)} : WS(a, x) contains at leastβ distinct pagesp};
for each{(a, x)} in C do

SS(a, x) = ∅;
for each web siteW ′ with a record in the seed databaseR do

U = {r[a] : r ∈ R ∧ W (r) = W ′};
V = {p[x] : p ∈ W};
ssima = STRONGSIM(U,V, a);
SS(a, x) = SS(a, x) ∪ {(r, p) : r ∈ R ∧ W (r) = W ′ ∧
p ∈ W ∧ ssima(r[a], p[x]) ≥ Ts};

end for
end for
C1 = C; k = 1; Smax = ∅;
while Ck 6= ∅ do

for each setS ∈ Ck do
sup(S) = number of distinct pagesp in ∩(a,x)∈SSS(a, x);
PruneS from Ck if sup(S) < β;

end for
SetSmax to set inCk with maximum support;
Ck+1 = ∅;
For each pair of setsS, S′ in Ck with k − 1 elements in com-
mon andkth element with distinct attributes, addS ∪ S′ to
Ck+1;
k = k + 1;

end while
return Smax;

gorithm based on the following observation:for a pair of (attribute,
position) pairs setsS, S′, if S ⊆ S′, thensup(S′) ≤ sup(S).
Thus, we can use an iterative Apriori-style algorithm that generates
candidate (attribute, position) pairs sets of sizek in thekth itera-
tion and stores these inCk. Candidate sets whose support is less
thanβ are pruned fromCk since any superset of these cannot have
support≥ β. The remaining sets inCk (after pruning) are used to
generate supersets of sizek + 1 which become candidates for the
next iteration.

Once we have identified the maximal setS of (attribute, position)
pairs with support≥ β, we extract entity records by extracting
attribute values at the specified positions inS from the pages of web
siteW . Example B.1 in Appendix B highlights several aspects of
FINDATTRPOSwhen applied on the dataset in Figure 1.

4. EXPERIMENTAL EVALUATION
In this section, we present experimental results with real-life

web datasets which demonstrate the effectiveness of our content
matching-based extraction approach. Specifically, we show that
our strong similarity metric and multi-attribute matching technique
result in high-precision extractions while ensuring adequate web
site coverage.

4.1 Experimental Setup

582

Dataset # # # #
seed records attributes test sites pages

Restaurant 40000 5 17 984992
Bibliography 40000 3 7 1299329

Table 1: Dataset summary.

Datasets: We use two real-life datasets covering two verticals:
restaurantandbibliography. Each dataset consists of a set of seed
records and crawled pages from a set of test sites. We use the seed
records to extract from the single-entity pages belonging to each of
the test sites, and report the precision and coverage of the extrac-
tions.We classify attributes into core and non-core. Core attributes
are present in every page belonging to the test dataset, while non-
core attributes are optional.

The seed data for restaurants is obtained fromchefmoz.com.
Data from chefmoz is available as structured data in RDF format.
Extractions are performed on 17 sites. The attributes extracted are:
1. restaurant name (core) 2. address (core), 3. phone, 4. pay-
ment, and 5. cuisine. The seed dataset consists of 40000 records
randomly selected from chefmoz data.

For the bibliography dataset, we use data from DBLP as seed
records. DBLP data is available in XML format. The seed dataset
consists of 40000 records randomly selected from this dump. 7
sites are used as test sites. The following attributes are selected
from the DBLP dataset: 1. title (core), 2. author (core), and 3.
source.

Table 1 summarizes the details of the datasets. Appendix C pro-
vides additional details.

Metrics: We use precision and coverage as the primary metrics
to evaluate the quality of the extractions. Since the datasets we use
are very large, generating the complete ground truth editorially is a
daunting task. Hence, we choose a random set of1000 pages from
each dataset, and generate the ground truth for this set. Precision
metrics are reported on this random set.

We define thecoveragefor a dataset as the fraction of pages in
the dataset from which we are able to extract core attributes.
Extraction Schemes: We use the FINDATTRPOS procedure de-
scribed in Section 3 to compute the attribute positions (from which
values are extracted) for each test site. We set the support param-
eterα for strong similarity computation to0.1, and useβ = 10 to
prune attribute position configurations with inadequate support. We
fix the weak similarity thresholdTw at 0.5, and varyTs, the strong
similarity threshold, between0.5 and0.9 in our experiments.

In order to compare the quality of extractions using weak and
strong similarity, we consider a variant of FINDATTRPOSwhich we
refer to as FINDATTRPOSW. FINDATTRPOSW is identical to FIN-
DATTRPOS except that it uses weak similarity (instead of strong
similarity) to determine the matching attribute values between seed
records and web pages. Thus, in FINDATTRPOSW, for a setS of
(attribute, position) pairs,sup(S) is the number of distinct pages
in ∩(a,x)∈SWS(a, x). We set the minimum support parameterβ
to 10.
Platform: All the experiments were performed on a shared Hadoop
0.20 cluster. The execution times reported are based on the number
of map/reduce tasks and the average time of the map/reduce tasks.

4.2 Experimental Results
Effectiveness of Strong Similarity. In order to gauge the impact

of strong similarity, we compare the precision and coverage of ex-
tractions generated by FINDATTRPOSand FINDATTRPOSW. Fig-

 50

 60

 70

 80

 90

 100

 0.5 0.6 0.7 0.8 0.9

C
ov

er
ag

e/
P

re
ci

si
on

 (
%

)

Similarity Threshold

Restaurant Dataset

Coverage_SS
Precision_Name_SS

Precision_Address_SS
Coverage_WS

Precision_Name_WS
Precision_Address_WS

 50

 60

 70

 80

 90

 100

 0.5 0.6 0.7 0.8 0.9
C

ov
er

ag
e/

P
re

ci
si

on
 (

%
)

Similarity Threshold

Bibliography Dataset

Coverage_SS
Precision_Title_SS

Precision_Author_SS
Coverage_WS

Precision_Title_WS
Precision_Author_WS

Figure 2: Precision/coverage of weak and strong similarity-
based extraction of core attributes.

ure 2 plots these for the 2 datasets asTs for FINDATTRPOSandTw

for FINDATTRPOSW are increased from 0.5 to 0.9 (Tw for FIND-
ATTRPOS is fixed at 0.5). In the plots, we use suffixes SS and WS
to qualify the precision and coverage metrics of procedures FIN-
DATTRPOS and FINDATTRPOSW, respectively. It can be seen
that the extraction precision increases with the similarity threshold
for both the techniques. There is a significant coverage drop for
FINDATTRPOSW at high (> 0.7) weak similarity threshold val-
ues. Strong similarity-based matching, on the other hand, provides
both high precision and high coverage at higher strong similarity
threshold values (> 0.7). This is because strong similarity boosts
the similarity scores between diverse representations of the value
of an attribute for the same entity which otherwise have low weak
similarity scores. As a result, at the higher threshold values, true
matches are retained (leading to high coverage) and false matches
are pruned (leading to high precision). In fact, it is interesting to
observe that FINDATTRPOS consistently has high coverage over
the entire range ofTs values between 0.5 and 0.9.

Figure 3 plots the strong and weak similarity scores for 200 ad-
dress pairs between the seed database and the test sites. All of the
address pairs have weak similarity scores exceeding 0.5, and are
classified by hand into true and false matches. It is easy to see
that the weak similarity scores of both true as well as false matches
are distributed between 0.5 and 0.9. Thus, with weak similarity,
there are true matches with low scores and false matches with high
scores. This makes it difficult to find a threshold value that cleanly
separates the true matches from the false ones. In contrast, for sev-
eral true matches, the strong similarity scores are boosted close to
1 even from very low weak similarity scores. Thus, with a high
enough strong similarity threshold (≈ 0.9), we can identify the true
matches while filtering out the false ones.

583

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9

S
tr

on
g

S
im

ila
rit

y
S

co
re

Weak Similarity Score

Strong vs Weak Similarity Scores

True Positives

False Positives

Figure 3: Scatter plot of strong similarity vs weak similarity
scores. True matches are shown as green triangles and noisy
matches as red squares.

Restaurant Bibliography
Attribute Precision Attribute Prec

Name 78.26 Title 96.14
Address 99.74 Author 98.12
Phone 100.00 Source 100.00

Payment 100.00
Cuisine 100.00

Table 2: Precision of extractions for all attributes.

Extraction of Non-Core Attributes. Next, we look at the preci-
sion metrics for all of the core and optional attributes for both the
datasets (see Table 2). We only consider strong similarity for ex-
traction, and set the parameter valuesTs = 0.9 andTw = 0.5 in
our FINDATTRPOSextraction procedure since these settings yield
the best results across the 2 datasets. As can be seen, the precision
for most of the attributes is above 95% and the coverage of core
attributes for both the datasets exceeds 80%.

The precision of the name attribute in the restaurant dataset is
somewhat low because of the presence of long lists of “Nearby
Restaurants” in the restaurant pages ofwww.tripadvisor.com;
this results in false matches with the name attribute values in seed
records.

Effectiveness of Multi-attribute Matching. In order to quan-
tify the amount of filtering achieved due multi-attribute matching
in procedure FINDATTRPOS, we track the number of attribute po-
sitions in the generated candidate setsCk. Let Ck(a) be the set of
distinct positions (DOM tree paths) for an attributea in Ck. The
decay in the number of distinct positions|Ck(a)| as a function ofk
indicates the efficiency of multi-attribute matching. Table 3 lists the
number of distinct paths for the core attributes in both the datasets
as a function ofk. Observe that a majority of the attribute positions
involved in spurious matches are pruned within two iterations. This
indicates that considering pairs of attributes when matching values
can substantially improve matching accuracy.

Restaurant Bibliography
Name Address Author Title

k = 1 1002 387 254 694
k = 2 113 64 34 39

Table 3: Number of positions for core attributes in multi-
attribute matching.

Seed size 2000 5000 10000 20000 40000
Coverage (%) 53.57 59.73 61.06 69.40 90.37

Table 4: Coverage of extractions vs seed set size for restaurant
data.

Stage Restaurant Bibliography
Weak Similarity 23987 17488
Strong Similarity 163 15

Multi-attribute Matching 22 5
Extraction 65 26

Total 24237 17534

Table 5: Running time (in hours) of different steps for the two
datasets.

Impact of seed database size. We next study the effect of seed
database size on the coverage of core attribute extraction. Table 4
shows coverage of strong similarity-based extractions atTs = 0.9
for the restaurant dataset as the number of seed records is increased
from 2000 to 40000. As can be seen, coverage jumps from 53.57%
to 90.37% due to higher content overlap between seed records and
web pages at the larger seed set sizes.

Execution Times. Table 5 provides the execution times of dif-
ferent stages. It can be seen that weak similarity computation dom-
inates the execution time despite the use of prefix filtering [7] in
our implementation. A complete run involving all the stages can be
done on a 1000 CPU cluster in 1 day for the restaurant dataset and
in 0.73 days for the bibliography dataset. Note that the execution
time for the restaurant dataset is more than that for the bibliogra-
phy dataset. The reason is that pages in the restaurant dataset are
structurally more complex than those in the bibliography dataset:
the average number of nodes per page for the restaurant dataset is
2.5 times more than that for the bibliography dataset.

5. RELATED WORK
Web information extraction. In recent years, a number of re-

search papers [16, 20, 9, 25, 14, 11, 13] have studied the prob-
lem of extracting structured data from web pages. Early proposals
for extracting structured data from the web were based on wrap-
per induction [16, 20]. These require human editors to annotate
pages from each site and thus have high overhead. In recent years,
there has been a flurry of research activity on extraction techniques
that incur little manual effort. [9, 25, 11] devise methods to de-
tect repeated patterns of tags within a web page and use this to
extract records from the page. In [5, 1], attribute models based
on Hidden Markov Models(HMMs) are learnt from training data,
and these are used to segment short text strings like addresses and
bibliographic entries. Web pages have a more complex hierarchi-
cal structure, and Zhu et al. [14] proposeHierarchical Conditional
Random Fields(HCRFs) to label attribute values in web pages. An
HCRF is a graphical model that captures both hierarchical and sib-
ling dependencies in the tree corresponding to a web page.Markov
Logic Networks(MLNs) [21] go a step further and allow relation-
ships between arbitrary tree nodes to be expressed as first-order
formulas. MLNs are used in [13] to extract structured data from
web forum sites. These models rely on structural features of pages
(e.g., phone numbers follow address values) and content features
of attributes (e.g., 5-digit numbers correspond to zip codes) to label
attribute values.

The precision of machine learning models may be poor in web
environments due to the heterogeneity in web page structure and

584

attribute content formats, and noise in web pages. Our extraction
approach overcomes these problems by exploiting content redun-
dancy across sites, and uses the actual extracted attribute values to
find matching values within web pages. Thus, we circumvent the
difficult problem of building models that can capture the diverse
structural and content formats prevalent across web sites.

Finally, there is a body of work on iteratively growing seed sets
of relation instances and patterns for relation extraction. This is
done by finding occurrences of the seed data in the corpus, discov-
ering patterns, and matching the patterns to augment the seed data
(see, e.g., [6, 2]). The usetemplatized page and content structure
in a sitedistinguishes our approach from these techniques.
Approximate string matching. At its core, our extraction ap-
proach depends on being able to approximately match the attribute
values for an entity across multiple sites. Fortunately, a number
of approximate string matching algorithms have been proposed for
detecting duplicate records in databases, text searching in the pres-
ence of spelling errors, etc. Comprehensive surveys of approximate
string matching techniques can be found in [10, 15].

Existing similarity functions for string matching take as input
two strings, and return a similarity score that quantifies the match
between them. A popular measure used to gauge the similarity be-
tween two strings is the string edit distance. The edit distance met-
ric works well for typographical errors but it cannot capture word
rearrangements, insertions, and deletions. To address this, numer-
ous variants of the edit distance metric have been proposed in the
literature like affine gap distance [24] that allows gap mismatches,
block edit distance [18] that allows word moves, and a fuzzy match
similarity function that allows words to be inserted/deleted with
a cost equal to the IDF weight of the word [22]. However, most
variants either do not handle word rearrangements well, or are too
expensive from a computation perspective. For instance, finding
the exact block edit distance between two strings is an NP-hard
problem [18].

The WHIRL [8] system adopts a different approach based on Co-
sine similarity between IDF-weighted words which it borrows from
the IR literature. Unfortunately, while Cosine similarity can han-
dle word swaps and weighs words based on their importance, it is
less resilient to word misspellings. To alleviate this problem, Gra-
vano et al. [17] propose a similarity metric that computes the Co-
sine similarity between IDF-weighted q-grams (instead of words).
This metric has a number of desirable properties – it is capable of
handling both word reorderings as well as spelling errors, and is
computationally efficient.

Our notion of weak similarity also employs q-grams and is a
variant of the similarity function proposed in [17]. Further, our
strong similarity metric adds a new dimension by also taking into
account the template structure when matching strings. Unlike pre-
vious similarity functions, it takes as input two sets of string values,
and refines similarity scores based on the matching pattern between
value pairs from the two sets.

A bulk of the previous work has focused on using the above
string similarity functions to match records with multiple attributes.
[4, 23] train classifiers to combine the multiple attribute-level sim-
ilarity scores into a single record-level similarity score, while [17,
22] simply extend the edit distance and Cosine similarity variants
to work at the granularity of records as opposed to individual at-
tributes. In contrast, in our web extraction scenario, we are inter-
ested in finding values within unstructured web pages that match
attribute values within a record. Our problem setting is a lot more
challenging due to the presence of noise in web pages; our proposed
solutions filter out the noisy attribute value matches by exploiting
the template structure of attribute content and web pages.

6. CONCLUDING REMARKS
In this paper, we proposed a novel approach that exploits over-

lapping content across web sites and the template structure of web
pages to extract structured data from the web. We defined a new
similarity metric for matching previously extracted attribute values
with the content in a fresh page. Our new metric takes into account
the matching pattern between attribute values from two sites to re-
fine similarity scores for differently formatted attribute values be-
longing to the same entity. We also developed an Apriori-style al-
gorithm for efficiently enumerating attribute positions with match-
ing values in a sufficient number of pages. In our experiments with
real-life web data sets, our techniques were able to extract records
with > 95% precision and> 80% recall. An important direction
for future work involves extending our methods to handle non-text
numeric (e.g., price) and image (e.g., ratings) attributes.

7. REFERENCES
[1] E. Agichtein and V. Ganti. Mining reference tables for automatic text

segmentation. InSIGKDD, 2004.
[2] E. Agichtein and L. Gravano. Snowball: extracting relations from

large plain-text collections. InACM DL, 2000.
[3] R. Agrawal and R. Srikant. Fast algorithms for mining association

rules. InSIGMOD, 1994.
[4] M. Bilenko and R. Mooney. Adaptive duplicate detection using

learnable string similarity measures. InSIGKDD, 2003.
[5] V. Borkar, K. Deshmukh, and S. Sarawagi. Automatic segmentation

of text into structured records. InSIGMOD, 2001.
[6] S. Brin. Extracting Patterns and Relations from the World Wide Web.

In WebDB, 1998.
[7] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for

similarity joins in data cleaning. InICDE, 2006.
[8] W. Cohen. Integration of heterogeneous databases without common

domains using queries based on textual similarity. InSIGMOD, 1998.
[9] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards

automatic data extraction from large web sites. InVLDB, 2001.
[10] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record

detection: A survey.IEEETKDE, 2007.
[11] G. Miao et al. Extracting data records from the web using tag path

clusterting. InWWW, 2009.
[12] D. Gibson, K. Punera, and A. Tomkins. The volume and evolution of

web page templates. InWWW, 2005.
[13] J. Yang et al. Incorporating site-level knowledge to extract structured

data from web forums. InWWW, 2009.
[14] J. Zhu et al. Simultaneous record detection and attribute labeling in

web data extraction. InSIGKDD, 2006.
[15] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:

Similarity measures and algorithms. InSIGMOD (Tutorial), 2006.
[16] N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrapper induction

for information extraction. InIJCAI, 1997.
[17] L. Gravano et al. Text joins in an RDBMS for web data integration.

In WWW, 2003.
[18] D. Lopresti and A. Tomkins. Block edit models for approximate

string matching.TheoreticalComputerScience, 181(1), 1997.
[19] C. Manning, P. Raghavan, and H. Schutze.Introductionto

InformationRetrieval. Cambridge University Press, 2008.
[20] I. Muslea, S. Minton, and C. Knoblock. Hierarchical wrapper

induction for semistructured information sources.Autonomous
AgentsandMulti-Agent Systems, 1(2), 2001.

[21] M. Richardson and P. Domingos. Markov logic networks.Machine
Learning, 62(1), 2006.

[22] S. Chaudhuri et al. Robust and efficient fuzzy match for online data
cleaning. InSIGMOD, 2003.

[23] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using
active learning. InSIGKDD, 2002.

[24] M. Waterman, T. Smith, and W. Beyer. Some biological sequence
metrics.Advancesin Math., 20(4), 1976.

[25] Y. Zhai and B. Liu. Web data extraction based on partial tree
assignment. InWWW, 2005.

585

APPENDIX

A. WEAK SIMILARITY
Q-grams. The q-gram set of a string is the set of allq-length sub-
strings of the string. We denote the q-gram set of a wordw by
qg(w). To ensure that characters at the start and end of the wordw
appear in a sufficient number of q-grams, we padw at the beginning
and end withq−1 occurrences of a special padding character #. So
for q = 3, qg(“china”) = {“##c”, “#ch”, “chi”, “hin”, “ina”, “na#”,
“a##”}. Next, we derive the q-gram set for an attribute value by
taking the union of the q-grams in the words comprising the value.
More formally, for a valuev, the q-gram setqg(v) = ∪w∈vqg(w).
It is easy to see that q-grams can cope with spelling errors better
than whole words. For instance, the Jaccard similarity between the
strings “beijing bites” and “bejing bites” is only1

3
in Example 1.1

because “beijing” and “bejing” are treated as separate words. But
with q-grams instead of words, the Jaccard similarity is more than
2
3
.

Q-gram weights. We associate a weight with each q-gram inqg(v)
based on the importance of the word that it originates from. Here,
we adopt the popularinverse document frequency(IDF) weight
from the IR literature [19] to capture the importance of each word
w that appears in attributea of a seed record. For a word, attribute
pair (w, a), we defineIDFa(w) aslog N

Na,w
, whereN = |R| is

the number of records in the seed databaseR andNa,w is the num-
ber of records inR for which the attributea containsw. Informally,
the IDF score of a word decreases as its frequency increases, and
so common words have low IDF scores. Note that the IDF value of
a word can vary depending on the attribute. For example, the word
“avenue” has a low IDF score if it is part of the address attribute,
but a much higher score if it belongs to the name attribute. For clar-
ity of presentation, we will drop the subscript for attributea when
it is clear from context.

We assign a weightcv(e) to each q-grame in qg(v) equal to the
sum of the IDF weights of all the words inv that containe. More
formally, let e1, . . . , el be the instances of q-grame appearing in
wordsw1, . . . , wl of v. Thencv(e) =

Pl

i=1 IDF (wi). The intu-
ition here is that q-grams should inherit importance scores from the
words that they originate from. Thus, by associating the IDF scores
of words as the weights of q-grams in them, we can ensure that q-
grams belonging to important words are assigned higher weights.
For example, the q-gram “ave” in the word “avenue” should have a
lower weight compared to its weight in “davenport” which is less
common. This is in contrast to previous approaches [17] that as-
sign a single IDF weight to each q-gram based on its individual
frequency irrespective of the frequencies of the words that contain
it. So for instance, in [17], a frequent q-gram like “ave” will end
up with a single low weight irrespective of whether it belongs to a
rare word like “davenport” or a common word like “avenue”.

Similarity score. We can conceptually map each valuev into a
vector in q-gram space, with the component in the dimension cor-
responding to q-grame in qg(v) set tocv(e). We then define the
similarity between valuesu andv as the widely used Cosine simi-
larity metric between their corresponding vectors in q-gram space.

DEFINITION A.1. Given a pair of valuesu andv for attribute
a, the similaritysima(u, v) is given by

sima(u, v) =

P

e∈(qg(u)∩qg(v)) cu(e) · cv(e)
qP

e∈qg(u) cu(e)2 ·
qP

e∈qg(v) cv(e)2

Observe that the above similarity functionsima(u, v) that re-
turns a similarity score between 0 and 1. We refer to this as the
weak similarityscore betweenu andv. Further, we say that values
u andv areweakly similarif the similarity score between the val-
ues is greater than or equal to a weak similarity thresholdTw. Else,
they are considered to be dissimilar. In case an attribute is missing
from a page, we useNULL to represent the value of the missing
attribute. If either of the attribute valuesu or v is NULL, then the
similarity score between the values is 0.

Typically, we need to compute the similarity between two val-
uesu andv of an attributea, where one is an attribute value in a
seed record and the other is text within a web page. It may hap-
pen that the IDF value for a wordw within the valuev from a
page is not defined since it is not part of the attribute in the seed
database. For such words, we setIDFa(w) to the IDF weight of
the closest wordw′ appearing in the attributea of seed records.
Here, we use the Jaccard similarity between q-gram sets to mea-
sure closeness betweenw andw′; thus, w′ is the word with the
maximumJC(qg(w), qg(w′)) score. In the event that there are
multiple wordsw′ with the maxJC(qg(w), qg(w′)) value, then
we setIDFa(w) to the average of their IDF weights.

B. EXAMPLE FOR FINDATTRPOS

The following example illustrates the workings of Algorithm 3.

EXAMPLE B.1. Consider the seed databaseR and pagesp1, p2

in Figure 1. Let us number the positions for name and address val-
ues at the top of the pages as 1 and 2, respectively, and the po-
sitions for values under “Nearest Transit:” and “Related Restau-
rants:” as 3 and 4, respectively. Now, suppose that the (record,
page) pairs with strongly similar values for the various (attribute,
position) pairs are as follows:

• SS(name, 1) = {(r1, p1), (r2, p2)}.

• SS(name, 4) = {(r2, p1), (r1, p2)}.

• SS(address, 2) = {(r1, p1), (r2, p2)}.

• SS(address, 3) = {(r1, p1)}.

The first bullet states that the name values in recordsr1 andr2 are
strongly similar to the values in position 1 in pagesp1 andp2, re-
spectively. Similarly, it follows from the final bullet that the address
value in recordr1 is strongly similar to the value in position 3 in
pagep1. Let the minimum support parameterβ = 1. Observe that
the support of all four (attribute, position) pairs above is at leastβ,
and so they will be added toC1.

In the second iteration, the following four sets of (attribute, posi-
tion) pairs will be added toC2: S1 = {(name, 1), (address,2)},
S2 = {(name, 1), (address,3)}, S3 = {(name, 4), (address, 2)},
andS4 = {(name, 4), (address,3)}. Of these onlyS1 has sup-
port 2 (since name and address values in recordsr1 and r2 will
match the values in positions 1 and 2 in pagesp1 andp2, respec-
tively). S2 has support 1 (since name and address values in only
record r1 will match the values in positions 1 and 3 in pagep1),
and bothS3 and S4 have zero support. Thus, all butS1 and S2

will be pruned fromC2 due to lack of support, and the setS1 will
be returned by procedureFINDATTRPOSsince it has the maximum
support of 2. 2

C. DATASET DETAILS
The following table lists the 17 test sites in the restaurant dataset

along with the number of pages. The sites were a combination of
head (sites with a few hundreds of thousands of pages) and tail

586

(sites with a few thousands of pages) sites.

Site Number of Pages
cityguide.aol.com 81038
dinesite.com 1186
tupalo.com 4245
www.8coupons.com 1700
www.agoda.com 13485
www.blogsoop.com 7413
www.city-data.com 17152
www.insiderpages.com 32205
www.menupages.com 9207
www.opentable.com 17423
www.restaurantrow.com 46494
www.savorycities.com 2613
www.travelmuse.com 3323
www.tripadvisor.com 421275
www.urbanspoon.com 46293
www.yellowbot.com 106572
www.yelp.com 173368
Total 984992

For the bibliography dataset, we use the following 7 head and
tail sites as test sites.

Site Number of Pages
arxiv.org 119564
citeseerx.ist.psu.edu 51573
ieeexplore.ieee.org 321325
libra.msra.cn 2282
portal.acm.org 21897
www.citeulike.org 778130
www.sciencedirect.com 4558
Total 1299329

587

